• ISSN 1008-505X
  • CN 11-3996/S

根际代谢物介导的植物防御青枯菌入侵研究进展

Research progress on rhizosphere metabolite-mediated plant defense against Ralstonia solanacearum invasion

  • 摘要: 青枯菌(Ralstonia solanacearum)是一种毁灭性土传病原菌,通过侵染植物维管束系统引发青枯病,导致番茄、马铃薯、辣椒等经济作物大面积萎蔫死亡,每年造成全球数十亿美元经济损失。由于病原菌抗性增强及环境风险等问题,传统化学防治手段面临严峻挑战。植物根际微环境作为抵御病原入侵的“第一道防线”,其代谢物介导的抗病机制逐渐成为研究热点。根际代谢物是植物根系分泌与微生物代谢共同作用的产物,近年研究表明,这些化合物不仅直接调控青枯菌的毒力与定殖能力,还可通过重塑根际微生物群落结构形成抑菌屏障,从而在植物-青枯菌-微生物互作网络中发挥枢纽作用。本文通过系统梳理国内外关于根际代谢物的研究进展,总结了青枯菌入侵过程中根际代谢物的动态变化。在此基础上,从根际代谢物抑制青枯菌的根际招募与定殖、根系侵染与增殖两个方面综述根际代谢物防御青枯菌入侵的机制,并对未来发展方向及亟待解决的问题进行了展望。为深入解析根际代谢物防御青枯菌入侵的过程与机制,未来应重点展开以下研究:1)根际代谢物的深入挖掘。聚焦主要作物的根际代谢物的鉴定,在时间和空间尺度上解析根际代谢物对青枯菌入侵的响应动态变化;2)阐明植物通过免疫信号反向调控根际代谢物机理,揭示根际代谢物防御青枯菌入侵的微界面机制;3)根际代谢物防控青枯病的田间应用。提升代谢物在根际的缓释性与靶向性,解析根际代谢物合成的关键基因与调控通路,实现对根际代谢物和青枯菌互作的定向调控。

     

    Abstract: Ralstonia solanacearum is a highly destructive soil-borne pathogen that induces bacterial wilt by infiltrating plant vascular systems, leading to extensive wilting and mortality in economically vital crops such as tomatoes, potatoes, and peppers, and causing significant global economic losses. Conventional chemical controls are increasingly ineffective due to the pathogen’s rapid resistance evolution and the environmental hazards they entail. The rhizosphere microenvironment, as the first line of defense against pathogen invasion, has attracted growing attention, particularly for its metabolite-mediated disease resistance. Rhizosphere metabolites, sourced from plant root exudates and microbial activities, not only directly modulate the virulence and colonization ability of R. solanacearum but also restructure the rhizosphere microbial community to form inhibitory barriers, acting as pivotal elements in the plant-pathogen-microbe interaction network. This article systematically reviewed current research on rhizosphere metabolites, summarizing their dynamic changes during R. solanacearum’s invasion. We further examined the mechanisms by which these metabolites inhibit pathogen invasion, focusing on preventing pathogen recruitment and colonization in the rhizosphere, and suppressing root invasion and in planta proliferation. To advance our understanding of rhizosphere metabolite-mediated inhibition of R. solanacearum invasion, future research should: explore rhizosphere metabolites in major crops and their temporal-spatial dynamics in response to the pathogen; clarify how plant immune signaling feedback regulates rhizosphere metabolite profiles and the microinterface mechanisms of pathogen suppression; apply rhizosphere metabolites in field disease control by enhancing their persistence and targeting in the rhizosphere, identifying key biosynthetic genes and regulatory pathways, and enabling precise manipulation of metabolite-pathogen interactions.

     

/

返回文章
返回