• ISSN 1008-505X
  • CN 11-3996/S

施氮水平对富士苹果果实钙形态及品质的影响

张艳珍, 程存刚, 赵德英, 周江涛, 陈艳辉, 张海棠, 解斌

张艳珍, 程存刚, 赵德英, 周江涛, 陈艳辉, 张海棠, 解斌. 施氮水平对富士苹果果实钙形态及品质的影响[J]. 植物营养与肥料学报, 2021, 27(1): 87-96. DOI: 10.11674/zwyf.20307
引用本文: 张艳珍, 程存刚, 赵德英, 周江涛, 陈艳辉, 张海棠, 解斌. 施氮水平对富士苹果果实钙形态及品质的影响[J]. 植物营养与肥料学报, 2021, 27(1): 87-96. DOI: 10.11674/zwyf.20307
ZHANG Yan-zhen, CHENG Cun-gang, ZHAO De-ying, ZHOU Jiang-tao, CHEN Yan-hui, ZHANG Hai-tang, XIE Bin. Effects of nitrogen application levels on fruit Ca forms and quality of ‘Fuji’ apples[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(1): 87-96. DOI: 10.11674/zwyf.20307
Citation: ZHANG Yan-zhen, CHENG Cun-gang, ZHAO De-ying, ZHOU Jiang-tao, CHEN Yan-hui, ZHANG Hai-tang, XIE Bin. Effects of nitrogen application levels on fruit Ca forms and quality of ‘Fuji’ apples[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(1): 87-96. DOI: 10.11674/zwyf.20307

施氮水平对富士苹果果实钙形态及品质的影响

基金项目: 中国农业科学院科技创新工程(CAAS-ASTIP);现代苹果产业技术体系建设专项(CARS-27)。
详细信息
    作者简介:

    张艳珍 E-mail:17854266797@163.com

    通讯作者:

    程存刚 E-mail:ccungang2003@163.com

    赵德英 E-mail:zdy8235622@163.com

Effects of nitrogen application levels on fruit Ca forms and quality of ‘Fuji’ apples

  • 摘要:
    目的 

    钙是影响苹果果实品质最重要的元素之一,施氮量影响树体对钙的吸收。探究不同施氮量对果实品质、钙形态以及二者之间的关系的影响,以期为通过科学施肥改善苹果果实品质提供参考。

    方法 

    本研究选择5年生盆栽富士 (基砧为组培山定子,中间砧为SH38) 为试材,共设6个施氮水平:0 (N0)、50 (N50)、100 (N100)、200 (N200)、300 (N300) 和400 (N400) kg/hm2,各处理施钙量相同,均施Ca 200 kg/hm2。从花后7天开始,每7天施1次肥,共施3次。于果实成熟期采样,测定果实横纵径、果皮色泽、果实硬度、可溶性固形物、可滴定酸、可溶性糖、维生素C含量等果实品质指标,以及果实总钙含量和不同形态钙含量。

    结果 

    施氮可增加果实总钙含量,N200处理总钙含量显著高于其它处理,比N0处理增加了73.47%。随施氮量的增加,果实中不同形态钙的组成比例发生了变化,水溶性钙比例整体呈上升趋势,果胶酸钙比例变化趋势不明显,磷酸钙比例呈先下降后升高趋势。N200处理的果形指数、果皮亮度、红绿色差、可溶性固形物、可溶性糖和维生素C含量比N0处理分别增加了4.46%、41.07%、67.12%、27.02%、26.71%和38.08%,可滴定酸含量降低了22.49%。总钙含量与果形指数、果皮亮度、红绿色差、果实硬度、可溶性固形物、可溶性糖、维生素C含量等果实品质指标之间呈高度相关。通过广义线性模型 (GLM),建立了不同形态钙 (响应变量) 与果实品质指标 (预测变量) 之间的关系,经矫正的AIC模型检验,选出最佳拟合模型,并通过MuMIn程序包的dredge函数评估各形态钙对果实品质指标的影响程度及方式 (促进或抑制),发现各形态钙对不同果实品质指标影响程度不同。果胶酸钙对果形指数、黄蓝色差、果实硬度、可滴定酸、可溶性糖、维生素C的影响位居首位,水溶性钙对果皮亮度、红绿色差和可溶性固形物的影响位居首位;果胶酸钙对各项品质指标均起促进作用,水溶性钙、磷酸钙和草酸钙对不同品质指标影响方式不一。

    结论 

    施氮可增加果实中总钙含量,改变各形态钙的组成比例。施氮量为200 kg/hm2时,果实中总钙含量最高,对果实品质指标影响最大的钙形态是果胶酸钙和水溶性钙,果胶酸钙对果实各项品质指标均起促进作用。

    Abstract:
    Objectives 

    Calcium (Ca) is one of the most important elements affecting fruit quality, and nitrogen availability affects the absorption of calcium by fruit trees. We assessed the effects of different nitrogen application rates on fruit quality, calcium forms, and their relationship to provide basis for improving apple fruit quality through fertilization.

    Methods 

    Five-year-old potted Fuji apple (Malus domestica Borkh cv. Fuji) trees were selected as the test material, while N application rates [0 (N0), 50 (N50), 100 (N100), 200 (N200), 300 (N300), and 400 (N400) kg/hm2] were the treatments. Ca (200 kg/hm2) was generally applied to all treatments. Beginning from the 7th day after flower emergence, the fertilizer was applied once every 7 days for a total of 3 times. Fruit samples were collected at fruit maturity stage to determine fruit quality indicators (fruit diameter, pericarp color, fruit firmness, soluble solid, titratable acid, soluble sugar and vitamin C content), total calcium content, and different forms of calcium contents.

    Results 

    N application increased the total Ca content of the Fuji apple fruits. The total Ca content of the fruits in N200 treatment was significantly higher than those in other treatments. With increase in N application rate, the proportion of different forms of Ca in fruits changed, the proportion of water-soluble Ca increased, but the proportion of pectin calcium was constant and calcium phosphate decreased. Fruit shape index, peel brightness, red-green color difference, soluble solids, soluble sugars, and vitamin C content of Fuji apples in N200 treatment increased by 4.46%, 41.07%, 67.12%, 27.02%, 26.71%, and 38.08%, respectively, whereas the titratable acid content (22.49%) in N200 was less than that in N0 treatment. Total Ca content and fruit shape index, peel brightness, red-green color difference, fruit hardness, soluble solids, soluble sugars, vitamin C content and other fruit quality indicators were highly correlated (P<0.01). Ca pectin had the highest effect on fruit shape index, yellow-blue color difference, fruit hardness, titratable acid, soluble sugars, and vitamin C, while water-soluble Ca had the highest effect on peel brightness, red-green color difference, and soluble solids. Ca pectin contributed to all the quality indicators, while water-soluble Ca, calcium phosphate, and calcium oxalate affected different quality indicators in different ways.

    Conclusions 

    N application could increase the total Ca content in fruit and change the proportion of Ca in each form. The suitable N application rate (200 kg/hm2) promotes the highest total Ca content in the Fuji apple fruits. Both pectin Ca and water-soluble Ca have the highest influence on the quality of fruits, while pectin Ca promotes all the quality indices.

  • ‘富士’苹果作为我国的主栽品种,其栽培面积约占我国苹果种植面积的70%以上[1]。近些年随着人民生活水平的日益提高,人们对苹果果实品质的要求也越来越高[2]。钙在果实品质形成过程中起重要作用,甚至超过了氮、磷、钾等元素[3]。大量研究表明,果实内适量的钙含量能提高果实硬度、果实总糖和维生素C含量,同时降低果实可滴定酸含量[4-7]。果实中钙含量不足,会增大果实生理失调 (苦痘病、水心病等) 发生几率[8-10]。钙在果实内主要以水溶性钙、果胶酸钙、磷酸钙、草酸钙和残渣钙的形式存在[11]。果实品质的形成与保持不仅与果实总钙含量有关,还与不同形态钙含量有关[12-13]。不同形态的钙在植物体内具有不同的功能,且在一定的生理环境条件下可相互转化[14]

    氮是植物需求量最大的必需营养元素之一。氮可影响钙的吸收,从而改变果实内钙含量,影响果实品质[15]。供氮不足或过量均会影响果树对钙的吸收[8],降低果实品质[16]。有研究表明,供氮不足导致果实内钙含量减少,果实品质变差;氮肥过多时,钙离子和铵离子产生拮抗作用,阻碍钙离子正常吸收[17-18]。前人研究主要集中在钙肥种类[19-20]、施钙方式[21-22]、施钙量和施钙时期[23] 对果实品质及不同形态钙的影响方面,而施氮量对富士苹果果实内不同形态钙的影响,以及各形态钙在果实品质形成中的作用研究较少。

    因此,研究不同施氮量下富士苹果果实内各形态钙的变化趋势,及其与果实品质指标变化的相关性,明确不同形态钙对果实品质的影响程度及影响方式,以便通过调整氮肥施用量,调控果实中某种形态钙的比例,实现改善果实品质的目的,进而为苹果氮肥合理施用提供理论依据。

    试验于2019年4—12月在中国农业科学院果树研究所进行。以5年生盆栽富士 (Malus domestica Borkh cv. Fuji) 为试材,基砧为组培山定子,中间砧为SH38,每株果25个左右。营养钵尺寸为上口径36 cm、下口径32 cm、高29 cm,土壤重量30 kg。土壤pH为7.1、有机质含量11.5 g/kg、碱解氮含量86.3 mg/kg、有效磷含量57.5 mg/kg、速效钾含量138.7 mg/kg。

    试验共设置6个施氮 (N) 水平,分别为0、50、100、200、300、400 kg/hm2,折合每盆尿素用量分别为0、1.48、2.96、5.93、8.89和11.86 g,依次记为N0、N50、N100、N200、N300和N400处理。同时按施钙 (Ca) 200 kg/hm2计,折合无水氯化钙为每盆7.58 g。所用氮肥为尿素 (N 46%),钙肥为无水氯化钙 (分析纯)。每个处理选取长势一致的植株6株,单株小区,6次重复。肥料等分为3次施入,花后7天开始施肥,每7天施1次。肥料溶于1 L水中,采用施肥袋进行施肥,滴速为250 mL/h。其他管理水平为常规管理。

    果实成熟期,每个处理随机采集树冠外围中部,大小均匀的果实50个。将10个果实洗净切片混匀,105℃杀青30 min,70℃烘干至恒重,粉碎后过80目筛于自封袋保存,用于总钙含量测定;将10个果取皮下果肉,经液氮冷冻后于−80℃冰箱中保存,用于测定不同形态钙;另外30个果实则10个果为一个重复,测定果实品质。

    样品经H2O2-H2SO4[24]消煮后,用原子吸收分光光度计 (ZEEnit700P,德国) 测定总钙含量。根据总钙含量 (FW)/(1 – 果实含水量) = 总钙含量 (DW),计算果实总钙含量 (FW)。

    采用逐级提取法提取[25]果实中各形态钙,浸提液依次为去离子水、1 mol/L NaCl、2% HAc和5% HCl,提取液的主要组分分别为水溶性钙 (H2O-Ca)、果胶酸钙 (NaCl-Ca)、磷酸钙 (HAc-Ca)、草酸钙 (HCl-Ca)。原子吸收分光光度计测定各提取液中钙含量。

    于果实成熟期采样,每个处理随机采集树冠外围中部大小均匀的果实30个,10个果为一个重复,共3次重复。用色差仪 (NR145,中国) 测量果皮的色泽参数。用IP67型数显卡尺测量果实纵横径,果形指数用果实纵径与横径的比值表示。使用TA-HDplus物性分析仪测定果实硬度;使用PAL-1手持测糖仪测定可溶性固形物含量;采用酸碱滴定法测定可滴定酸含量,采用蒽酮比色法测定可溶性糖含量,采用2,6-二氯靛酚滴定法测定维生素C含量。

    使用Microsoft Excel 2016软件进行数据处理,使用SAS 9.4进行方差分析和相关性分析。

    广义线性模型 (generalized linear model,GLM) 可以应用于非线性或非恒定方差结果的数据中,因此参照丛金鑫[26] 的方法,采用R3.6.3软件平台,通过广义线性模型 (GLM) 建立不同形态钙与果实品质指标之间的关系,使用矫正的AIC进行模型检验,选出最佳拟合模型,同时通过MuMIn程序包的dregre函数,分析不同形态钙对果实品质指标的影响程度及影响方式。

    施氮可显著影响果实钙含量及各形态钙的组成比例(表1)。富士苹果果实中总钙含量随施氮量的增加呈先升高后降低的趋势,N200处理果实总钙含量显著高于其他处理和对照,但N300与N400处理之间无显著差异。施氮量由低到高各施氮处理的总钙含量比N0分别增加了21.02%、59.14%、73.47%、42.99%和41.60%。施氮可增加果实中水溶性钙 (H2O-Ca)、果胶酸钙 (NaCl-Ca)、磷酸钙 (HAc-Ca) 含量。除N50处理的H2O-Ca和N400处理的草酸钙 (HCl-Ca) 外,各施氮处理果实中的4种形态钙均与N0之间存在显著差异。H2O-Ca、NaCl-Ca、HAc-Ca和HCl-Ca分别在N400、N200、N100、N200处理时含量最高,比对照N0处理分别增加了138.31%、87.25%、34.49%、59.35%。

    表  1  不同施氮水平下果实总钙及不同形态钙含量 (mg/kg, FW)
    Table  1.  Total Ca and different forms of Ca content of fruits at different nitrogen levels
    处理 Treatment水溶性钙 H2O-Ca果胶酸钙 NaCl-Ca磷酸钙 HAc-Ca草酸钙 HCl-Ca总钙 Total Ca
    N016.57 ± 0.41 d25.68 ± 0.25 f12.22 ± 0.04 c5.32 ± 0.20 c64.45 ± 0.46 e
    N5018.84 ± 0.51 d33.76 ± 0.19 d16.26 ± 0.38 a4.99 ± 0.30 cd78.24 ± 1.02 d
    N10034.74 ± 0.69 bc40.58 ± 0.29 b16.44 ± 0.21 a6.15 ± 0.32 b102.89 ± 0.16 b
    N20036.54 ± 1.03 ab48.09 ± 0.52 a13.49 ± 0.21 b8.48 ± 0.25 a112.15 ± 1.06 a
    N30033.12 ± 1.14 c35.38 ± 0.61 c13.71 ± 0.31 b4.32 ± 0.02 d92.44 ± 1.82 c
    N40039.48 ± 1.89 a28.00 ± 0.13 e13.81 ± 0.53 b5.18 ± 0.05 c91.55 ± 2.42 c
    注(Note):H2O-Ca—Water-soluble Ca; NaCl-Ca—Pectin Ca; HAc-Ca—Phosphate Ca; HCl-Ca— Oxalate Ca. 同列数据后小写字母表示不同施氮水平间在 5% 水平差异显著 Values followed by different lowercases in the same column are significantly different among different nitrogen application levels at the 0.05 level.
    下载: 导出CSV 
    | 显示表格

    随施氮量的增加,果实中不同形态钙的组成比例发生了变化,其中H2O-Ca、NaCl-Ca、HAc-Ca变化幅度较大 (图1)。H2O-Ca随施氮量的增加比例整体呈上升趋势,在N400处理中占果实中总钙含量的44.13%,比N0处理中的占比增加了15.70%,在N200处理中占果实中总钙含量的32.58%,比N0处理中的占比增加了6.95%;NaCl-Ca随施氮量的增加变化趋势不明显,在N50与N200处理时分别占果实中总钙含量的43.15%和42.88%,分别比N0处理中占比增加了3.43%和3.15%;HAc-Ca所占比例随施氮量的增加呈先降低后升高趋势,在N200处理时占比最小,为果实中总钙含量的12.03%;HCl-Ca和残余钙 (Res-Ca) 变化范围较小,占果实中总钙含量的比例分别为5%~8%和4%~7%。

    图  1  不同施氮水平下果实中不同形态钙的组成比例
    [注(Note):Res-Ca—残余钙 Residual Ca; H2O-Ca—水溶性钙 Water-soluble Ca; NaCl-Ca—果胶酸钙 Pectin Ca; HAc-Ca—磷酸钙 Phosphate Ca; HCl-Ca—草酸钙 Oxalate Ca]
    Figure  1.  Proportions of different forms of calcium in fruit at different nitrogen levels

    图2右上方为总钙含量和其余钙含量的相关系数,左下方为一种钙形态的钙含量随其余钙的增加而呈现的增加或者减少情况。图2显示,果实中4种形态钙均与总钙含量呈正相关,其中H2O-Ca、NaCl-Ca与总钙 (Total-Ca) 含量呈极显著正相关,相关系数分别为0.85和0.86,HCl-Ca与Total-Ca含量呈显著相关,相关系数为0.63。不同形态钙之间也存在一定的相关性,表现为:NaCl-Ca与HCl-Ca的含量呈极显著正相关,相关系数达0.74;H2O-Ca与NaCl-Ca、HAc-Ca和HCl-Ca均呈正相关,相关系数分别为0.46、0.07和0.32。而HAc-Ca与HCl-Ca呈负相关,相关系数为–0.066。

    图  2  不同施氮水平下果实中不同形态钙的相关系数及分布关系
    [注(Note):H2O-Ca—水溶性钙 Water-soluble Ca; NaCl-Ca—果胶酸钙 Pectin Ca; HAc-Ca—磷酸钙 Phosphate Ca; HCl-Ca—草酸钙 Oxalate Ca; Total Ca—总钙. 图中刻度值15、25、35为H2O-Ca含量值,25、35、45为NaCl-Ca含量值,12、14、16为HAc-Ca含量值,5、6、7、8、9为HCl-Ca含量值,70、90、110为Total-Ca含量值,单位均为mg/kg In the figure, the scale values 15, 25, 35 are H2O-Ca content values; 25, 35, 45 are NaCl-Ca content values; 12, 14, 16 are HAc-Ca content values; 5, 6, 7, 8, 9 are HCl-Ca content values; 70, 90, 110 are Total-Ca content values; units are mg/kg. *代表5% 水平差异显著,** 代表1%水平差异显著,***代表0.1%水平差异显著. *, ** and *** indicate significant difference at the 0.05, 0.01 and 0.001 levels, respectively.]
    Figure  2.  Correlation coefficients and distribution of different forms of calcium in fruit at different nitrogen levels

    c通过果实内不同形态钙的分布图可以发现,随着H2O-Ca含量的增加,其他3种形态钙均呈先上升后下降的趋势。H2O-Ca含量为35 mg/kg时,其他3种形态钙含量均最高,随H2O-Ca继续增加,其他形态钙含量均出现明显下降趋势。HAc-Ca含量随NaCl-Ca含量的增加呈先上升后下降的趋势,NaCl-Ca含量为40 mg/kg时,HAc-Ca含量最高,随NaCl-Ca含量继续增加,HAc-Ca含量明显下降;HCl-Ca含量随NaCl-Ca含量的增加呈先上升后下降的趋势,当NaCl-Ca含量为30~35 mg/kg时,HCl-Ca含量最低,且随着NaCl-Ca含量继续增加,HCl-Ca含量明显上升。随HAc-Ca含量的增加,HCl-Ca含量波动较小,总体呈先下降后上升的趋势,HAc-Ca含量为13~15 mg/kg时,HCl-Ca含量最低。

    果实品质形成是一个极其复杂的过程,各品质指标间关系密切。由表2可以看出,10个指标中共有16对指标间|r| > 0.7,表现出高度相关性[27],且相关系数达到极显著水平 (P < 0.01)。其中,与果形指数 (FSI) 表现出高度相关的指标有3个,分别是黄蓝色差 (b)、果实硬度 (FF)、可溶性糖 (SSC);与果皮亮度 (L) 表现出高度相关的指标有3个,分别是红绿色差 (a)、可溶性固形物 (TSS)、SSC;与a表现出高度相关的指标有5个,分别为L、FF、TSS、SSC、维生素C (Vc);与b表现出高度相关的指标有3个,分别为FSI、FF、可滴定酸 (TA);与FF表现出高度相关的指标有5个,分别为FSI、ab、TA、SSC;与TSS表现出高度相关的指标有4个,分别为L、a、SSC、Vc;与SSC表现出高度相关的指标有5个,分别为FSI、L、a、FF、TSS;与TA表现出高度相关的指标有2个,分别为b、FF;与Vc表现出高度相关的指标有2个,分别为a、TSS。

    表  2  果实品质指标间的相关系数 (r)
    Table  2.  Correlation coefficients among fruit quality indicators
    指标 IndexFSILabCFFTSSTASSCVc
    FSI1
    L0.24771
    a0.6444**0.8448**1
    b–0.8466**–0.0484–0.4902*1
    C–0.5365*–0.4662–0.5164*0.43291
    FF0.8765**0.38820.7891**–0.8341**–0.6231**1
    TSS0.5133*0.7612**0.8921**–0.3724–0.31690.6711**1
    TA–0.6617**–0.1375–0.45350.9176**0.4227–0.7015**–0.3321
    SSC0.7351**0.7006**0.9344**–0.5125*–0.44380.8278**0.8560**–0.38191
    Vc0.5456*0.6998**0.7964**–0.5860*–0.42930.6438**0.7124**–0.6917**0.6788**1
    注(Note):FSI—果形指数 Fruit shape index;L—果皮亮度 Peel brightness; a—红绿色差 Red-green color difference;b—黄蓝色差 Yellow-blue color difference; C—色彩饱和度 Color saturation;FF—果实硬度 Fruit firmness;TSS—可溶性固形物 Soluble solids;TA—可滴定酸 Titratable acid; SSC—可溶性糖 Soluble sugar content; Vc—维生素C Vitamin C. **—P < 0.01,*—P < 0.05.
    下载: 导出CSV 
    | 显示表格

    本试验中各指标的相关性分析结果表明,在不同施氮量下,除色彩饱和度 (C) 外,其余9项品质指标与多个指标间存在高度相关性,可作为反映富士苹果果实品质的重要因子。

    果实品质由外观品质和内在品质组成。由表3可以看出,随施氮量的增加,FSI、L、a、FF、TSS、SSC和Vc含量均呈现先增加后减少趋势,b和TA含量呈现先减少后增加趋势。各施氮处理的L、ab、TSS含量、SSC含量与对照 (N0) 之间均存在显著差异;N50处理FSI、N400处理FF和N300处理TA,以及N300和N400处理Vc与N0无显著差异,其它各施氮处理的FSI、FF、TA和Vc均与N0之间存在显著差异。N200处理效果最为显著,FSI、L、a、FF、TSS、SSC和Vc含量分别比N0处理增加了4.46%、41.07%、67.12%、20.16%、27.02%、26.71%和38.08%,b与TA含量分别比N0处理减少了30.63%和22.49%。

    表  3  施氮量对果实品质指标的影响
    Table  3.  Effects of nitrogen application on fruit quality indicators
    处理
    Treatment
    FSILabFF
    (kg/cm2)
    TSS
    (%)
    TA
    (%)
    SSC
    (%)
    Vc
    (%)
    N00.839 ± 0.00 c53.06 ± 0.42 f21.67 ± 0.58 e20.80 ± 0.62 b10.43 ± 0.23 d15.3 ± 0.29 d0.532 ± 0.00 b8.63 ± 0.04 e4.62 ± 0.09 c
    N500.837 ± 0.01 c55.54 ± 0.20 e25.22 ± 0.19 d17.79 ± 0.19 d10.9 ± 0.06 c17.7 ± 0.10 c0.470 ± 0.00 c9.06 ± 0.14 d5.22 ± 0.14 b
    N1000.878 ± 0.01 a59.47 ± 0.16 d31.55 ± 0.19 b15.24 ± 0.27 e12.46 ± 0.15 a18.5 ± 0.24 b0.479 ± 0.02 c10.69 ± 0.12 ab5.28 ± 0.11 b
    N2000.876 ± 0.01 a74.85 ± 0.43 a36.21 ± 0.09 a14.43 ± 0.26 e12.53 ± 0.10 a19.4 ± 0.09 a0.412 ± 0.00 d10.93 ± 0.02 a6.38 ± 0.01 a
    N3000.859 ± 0.00 b62.93 ± 0.30 c29.45 ± 0.10 c19.07 ± 0.29 c11.67 ± 0.14 b18.5 ± 0.15 b0.534 ± 0.01 b10.38 ± 0.09 b5.04 ± 0.00 bc
    N4000.813 ± 0.01 d68.77 ± 0.34 b28.75 ± 0.05 c26.13 ± 0.24 a10.27 ± 0.11 d18.2 ± 0.22 bc0.612 ± 0.01 a9.71 ± 0.17 c5.02 ± 0.34 bc
    注(Note):FSI—果形指数 Fruit shape index;L—果皮亮度Peel brightness;a—红绿色差 Red-green color difference;b —黄蓝色差 Yellow-blue color difference;FF—果实硬度 Fruit firmness;TSS—可溶性固形物 Soluble solids;TA—可滴定酸 Titratable acid;SSC—可溶性糖 Soluble sugar content;Vc—维生素 C Vitamin C. 同列数据后不同小写字母表示处理间在 0.05 水平差异显著 Values followed by different lowercases letters in the same column indicate significant difference among treatments at the 0.05 level.
    下载: 导出CSV 
    | 显示表格

    钙含量与果实品质之间存在显著相关。相关分析表明,FSI、L、a、FF、TSS、SSC和Vc均与果实中总钙含量呈极显著正相关 (P < 0.01),相关系数分别为0.6304、0.8021、0.9794、0.7811、0.9112、0.9522和0.7629,b、TA含量与果实中总钙含量呈负相关,相关系数分别为–0.4660和–0.4150。表明果实内总钙含量与果实品质形成密切相关。

    不同形态钙在果实内具有不同的功能,对果实品质指标的影响程度和方式不同。由表4可见,NaCl-Ca与H2O-Ca对果实各项品质指标的影响最大,表现为NaCl-Ca对FSI、b、FF、TA、SSC、Vc的影响位居首位,H2O-Ca对L、a和TSS的影响位居首位。不同果实品质指标受果实内不同形态钙的影响顺序不同,如:各形态钙对FSI影响程度由大到小为NaCl-Ca > H2O-Ca > HCl-Ca > HAc-Ca,对FF影响程度由大到小为NaCl-Ca > HCl-Ca > HAc-Ca > H2O-Ca,对TSS影响程度由大到小为H2O-Ca > NaCl-Ca > HCl-Ca > HAc-Ca;NaCl-Ca对9项品质指标均起促进作用,H2O-Ca对FSI、b、TA和果实Vc含量起抑制作用,对其余果实品质指标起促进作用,HAc-Ca对L、FF、TSS和Vc含量起促进作用,对其余品质指标起抑制作用,HCl-Ca对ab和Vc含量起促进作用,对其余指标起抑制作用。

    表  4  不同形态钙对各项果实品质指标的影响程度及方式
    Table  4.  Influence degree and manner of different forms of calcium on each fruit quality index
    影响程度
    Influence degree
    FSILabFFTSSTASSCVc
    1NaCl-Ca (+)H2O-Ca (+)H2O-Ca (+)NaCl-Ca (+)NaCl-Ca (+)H2O-Ca (+)NaCl-Ca (+)NaCl-Ca (+)NaCl-Ca (+)
    2H2O-Ca (–)HCl-Ca (–)NaCl-Ca (+)H2O-Ca (–)HCl-Ca (–)NaCl-Ca (+)H2O-Ca (–)H2O-Ca (+)HCl-Ca (+)
    3HCl-Ca (–)HAc-Ca (+)HCl-Ca (+)HAc-Ca (–)HAc-Ca (+)HCl-Ca (–)HCl-Ca (–)HCl-Ca (–)H2O-Ca (–)
    4HAc-Ca (–)NaCl-Ca (+)HAc-Ca (–)HCl-Ca (+)H2O-Ca (+)HAc-Ca (+)HAc-Ca (–)HAc-Ca (–)HAc-Ca (+)
    注(Note):FSI—果形指数 Fruit shape index;L—果皮亮度Peel brightness; a —红绿色差 Red-green color difference; b —黄蓝色差 Yellow-blue color difference;FF—果实硬度 Fruit firmness;TSS—可溶性固形物 Soluble solids;TA—可滴定酸 Titratable acid;SSC—可溶性糖 Soluble sugar content;Vc—维生素 C Vitamin C. (+)—促进作用 Facilitation,(–)—抑制作用 Inhibition. H2O-Ca—水溶性钙 Water-Soluble Ca;NaCl-Ca—果胶酸钙 Pectin Ca;HAc-Ca—磷酸钙 Phosphate Ca;HCl-Ca—草酸钙 Oxalate Ca.
    下载: 导出CSV 
    | 显示表格

    果实中的钙以5种不同的形态存在,分别为水溶性钙、果胶酸钙、磷酸钙,草酸钙和残渣钙[11]。果实中各种形态的钙都有其不同的生理功能,在一定的生理环境条件下相互转化[12-14]。本试验研究发现,施氮处理显著提高了果实总钙含量,施氮量在200 kg/hm2时,效果最为显著,比对照增加了73.47%。此外,施氮量在200 kg/hm2时,果实中水溶性钙、果胶酸钙、磷酸钙的含量均显著增加。本试验还发现,随施氮量的增加,果实中不同形态钙的比例发生了变化,水溶性钙和果胶酸钙含量变化最大。施氮量为200 kg/hm2时,水溶性钙和果胶酸钙占据总钙含量的比例分别比N0增加了6.95%和3.15%。

    分析富士苹果果实中不同形态钙的相关性,发现水溶性钙与果胶酸钙含量与总钙含量呈极显著正相关,说明氮处理增加总钙含量,主要是增加了水溶性钙和果胶酸钙含量,这与王雷[28]、马建军等[11]、Silveira等[29]研究结果一致,说明水溶性钙与果胶酸钙的含量变化是影响果实中钙积累的重要因子。水溶性钙和果胶酸钙为活性钙,二者与草酸钙呈正相关。说明随总钙含量的增加,二者占总钙含量比例增高,活性钙与草酸结合形成草酸钙增多,从而避免液泡内钙离子过多而影响液泡中阴阳离子平衡[30]。草酸钙和大部分磷酸钙沉淀在液泡内[14],二者均由游离钙离子结合而成,推测两者存在竞争作用,因此呈负相关。并且根据果实内不同形态钙的分布 (图2) 可以发现,在不同施氮量下,果实中不同形态钙的变化趋势不一致,且伴随着一种形态钙含量的增加,其余形态的钙均不呈线性增加或降低,推测在不同施氮量下,富士苹果果实内不同形态钙之间发生了相互转变。

    氮肥在苹果果实品质的形成过程中有着极为重要的作用。适量施氮可改善果形和色泽[31],但对于适宜施氮量研究结果[32-33]不同,可能与树龄、品种以及地域差异有关。本试验研究表明,施氮量在200 kg/hm2时,富士苹果的果形指数、果皮亮度和红绿色差显著高于其他处理,说明200 kg/hm2的施氮量显著改善了果实外观,表现为果形指数变大,果皮亮度明显提高,果实偏红。施氮量过高或者过低,都不利于果实外观品质形成。关于氮肥施用量对果实内在品质影响的研究已有很多,适量施氮可显著提高可溶性固形物、维生素C及可溶性糖含量[32-34],施氮量为300 kg/hm2时,库尔勒香梨果实中的可滴定酸含量可降低0.1 g/kg[35]。本试验结果显示,施氮量在200 kg/hm2时,可溶性固形物、可溶性糖和维生素C含量分别比N0增加了27%、27%、38%,可滴定酸含量降低了22%,施氮量过高或者过低,果实内可溶性固形物、可溶性糖和维生素C含量均降低,可滴定酸含量升高,说明200 kg/hm2的施氮量有利于富士苹果内在果实品质的形成。

    果实品质指标间存在显著相关性。可溶性糖、可溶性固形物含量与可滴定酸呈显著负相关,可能是因为果实发育过程中,一部分酸转化为糖,另一部分作为呼吸底物被消耗了[36]。糖分积累是着色的基础[37]。研究表明,果实着色度与可溶性固形物、可溶性糖含量呈显著正相关,与果实硬度呈显著负相关,因此李猛等[38]将果实着色度作为分级贮藏的重要依据。在维生素C主要合成途径L-半乳糖合成途径中,可溶性糖是主要底物,较高的可溶性糖可促进维生素C合成,可能是糖和维生素呈正相关的原因[39]。果实各项品质指标间存在高度相关性。虽然这些相关性存在差异,但正是这些不同指标之间的相互制约关系,形成了富士苹果独特的品质和特色[40]

    钙对果实品质的形成起重要作用。研究表明,果实内适宜的钙含量有利于果实硬度的增加,可溶性固形物和可溶性糖含量提高[41],这与本研究结果一致。果实内钙含量与果形指数、果实硬度、可溶性固形物含量、可溶性糖含量等果实品质指标之间表现出高度相关性,且相关系数达到极显著水平 (P < 0.01),说明果实内钙含量可显著影响果形指数、果实硬度、可溶性固形物含量等果实品质指标。不同形态钙在果实中有着不同的功能[12],水溶性钙和果胶酸钙是果实中的活性钙,能维持细胞壁的稳定,提高果实硬度[42];磷酸钙的形成与ATP的能量代谢相联系,当果实中磷酸钙过多时,磷酸基的能量代谢受阻[43];草酸钙的形成可阻止果实中由于草酸过多破坏中胶层而诱发的苦痘病[44]。但不同形态钙对果实各项品质指标的影响程度及影响方式不明确,在此基础上,本研究评估单一形态钙以及多种类型钙对果实品质各项指标的影响发现,对于某一项果实品质指标而言,对其影响较大的钙形态多为1种或1种以上,并且4种形态钙的影响程度和影响方式不同[26]。其中果胶酸钙与水溶性钙为影响果实品质指标的两种主要形态[25],对各项果实品质指标的影响最大。本研究还发现,果胶酸钙对各项果实品质指标均起促进作用,说明果实中果胶酸钙含量增加有利于提高果实品质。水溶性钙、磷酸钙和草酸钙对果实某些品质指标有促进作用,对某些品质指标有抑制作用,且其中一种形态钙对某项品质指标不能同时起促进或者抑制作用[26]。因此,为获得高品质的果实,需要对不同施氮量下果实内不同形态钙与果实品质指标的关系进行更加深入地研究,以达到通过调节施氮量,调控不同形态钙的含量和组成比例,进而提升果实品质的最终目的。

    1) SH38中间砧富士适宜施氮(N)量 为200 kg/hm2,此时果实品质最好,果实果形指数较大,果皮亮度和红绿色差最高,可溶性固形物、可溶性糖、维生素C含量最高,可滴定酸含量最低。

    2) 施氮可增加果实中总钙含量,改变各形态钙的组成比例。施氮(N)量为200 kg/hm2时,果实中总钙含量最高,对品质影响最大的钙形态为果胶酸钙和水溶性钙,果胶酸钙对各项品质指标均起促进作用。

  • 图  1   不同施氮水平下果实中不同形态钙的组成比例

    [注(Note):Res-Ca—残余钙 Residual Ca; H2O-Ca—水溶性钙 Water-soluble Ca; NaCl-Ca—果胶酸钙 Pectin Ca; HAc-Ca—磷酸钙 Phosphate Ca; HCl-Ca—草酸钙 Oxalate Ca]

    Figure  1.   Proportions of different forms of calcium in fruit at different nitrogen levels

    图  2   不同施氮水平下果实中不同形态钙的相关系数及分布关系

    [注(Note):H2O-Ca—水溶性钙 Water-soluble Ca; NaCl-Ca—果胶酸钙 Pectin Ca; HAc-Ca—磷酸钙 Phosphate Ca; HCl-Ca—草酸钙 Oxalate Ca; Total Ca—总钙. 图中刻度值15、25、35为H2O-Ca含量值,25、35、45为NaCl-Ca含量值,12、14、16为HAc-Ca含量值,5、6、7、8、9为HCl-Ca含量值,70、90、110为Total-Ca含量值,单位均为mg/kg In the figure, the scale values 15, 25, 35 are H2O-Ca content values; 25, 35, 45 are NaCl-Ca content values; 12, 14, 16 are HAc-Ca content values; 5, 6, 7, 8, 9 are HCl-Ca content values; 70, 90, 110 are Total-Ca content values; units are mg/kg. *代表5% 水平差异显著,** 代表1%水平差异显著,***代表0.1%水平差异显著. *, ** and *** indicate significant difference at the 0.05, 0.01 and 0.001 levels, respectively.]

    Figure  2.   Correlation coefficients and distribution of different forms of calcium in fruit at different nitrogen levels

    表  1   不同施氮水平下果实总钙及不同形态钙含量 (mg/kg, FW)

    Table  1   Total Ca and different forms of Ca content of fruits at different nitrogen levels

    处理 Treatment水溶性钙 H2O-Ca果胶酸钙 NaCl-Ca磷酸钙 HAc-Ca草酸钙 HCl-Ca总钙 Total Ca
    N016.57 ± 0.41 d25.68 ± 0.25 f12.22 ± 0.04 c5.32 ± 0.20 c64.45 ± 0.46 e
    N5018.84 ± 0.51 d33.76 ± 0.19 d16.26 ± 0.38 a4.99 ± 0.30 cd78.24 ± 1.02 d
    N10034.74 ± 0.69 bc40.58 ± 0.29 b16.44 ± 0.21 a6.15 ± 0.32 b102.89 ± 0.16 b
    N20036.54 ± 1.03 ab48.09 ± 0.52 a13.49 ± 0.21 b8.48 ± 0.25 a112.15 ± 1.06 a
    N30033.12 ± 1.14 c35.38 ± 0.61 c13.71 ± 0.31 b4.32 ± 0.02 d92.44 ± 1.82 c
    N40039.48 ± 1.89 a28.00 ± 0.13 e13.81 ± 0.53 b5.18 ± 0.05 c91.55 ± 2.42 c
    注(Note):H2O-Ca—Water-soluble Ca; NaCl-Ca—Pectin Ca; HAc-Ca—Phosphate Ca; HCl-Ca— Oxalate Ca. 同列数据后小写字母表示不同施氮水平间在 5% 水平差异显著 Values followed by different lowercases in the same column are significantly different among different nitrogen application levels at the 0.05 level.
    下载: 导出CSV

    表  2   果实品质指标间的相关系数 (r)

    Table  2   Correlation coefficients among fruit quality indicators

    指标 IndexFSILabCFFTSSTASSCVc
    FSI1
    L0.24771
    a0.6444**0.8448**1
    b–0.8466**–0.0484–0.4902*1
    C–0.5365*–0.4662–0.5164*0.43291
    FF0.8765**0.38820.7891**–0.8341**–0.6231**1
    TSS0.5133*0.7612**0.8921**–0.3724–0.31690.6711**1
    TA–0.6617**–0.1375–0.45350.9176**0.4227–0.7015**–0.3321
    SSC0.7351**0.7006**0.9344**–0.5125*–0.44380.8278**0.8560**–0.38191
    Vc0.5456*0.6998**0.7964**–0.5860*–0.42930.6438**0.7124**–0.6917**0.6788**1
    注(Note):FSI—果形指数 Fruit shape index;L—果皮亮度 Peel brightness; a—红绿色差 Red-green color difference;b—黄蓝色差 Yellow-blue color difference; C—色彩饱和度 Color saturation;FF—果实硬度 Fruit firmness;TSS—可溶性固形物 Soluble solids;TA—可滴定酸 Titratable acid; SSC—可溶性糖 Soluble sugar content; Vc—维生素C Vitamin C. **—P < 0.01,*—P < 0.05.
    下载: 导出CSV

    表  3   施氮量对果实品质指标的影响

    Table  3   Effects of nitrogen application on fruit quality indicators

    处理
    Treatment
    FSILabFF
    (kg/cm2)
    TSS
    (%)
    TA
    (%)
    SSC
    (%)
    Vc
    (%)
    N00.839 ± 0.00 c53.06 ± 0.42 f21.67 ± 0.58 e20.80 ± 0.62 b10.43 ± 0.23 d15.3 ± 0.29 d0.532 ± 0.00 b8.63 ± 0.04 e4.62 ± 0.09 c
    N500.837 ± 0.01 c55.54 ± 0.20 e25.22 ± 0.19 d17.79 ± 0.19 d10.9 ± 0.06 c17.7 ± 0.10 c0.470 ± 0.00 c9.06 ± 0.14 d5.22 ± 0.14 b
    N1000.878 ± 0.01 a59.47 ± 0.16 d31.55 ± 0.19 b15.24 ± 0.27 e12.46 ± 0.15 a18.5 ± 0.24 b0.479 ± 0.02 c10.69 ± 0.12 ab5.28 ± 0.11 b
    N2000.876 ± 0.01 a74.85 ± 0.43 a36.21 ± 0.09 a14.43 ± 0.26 e12.53 ± 0.10 a19.4 ± 0.09 a0.412 ± 0.00 d10.93 ± 0.02 a6.38 ± 0.01 a
    N3000.859 ± 0.00 b62.93 ± 0.30 c29.45 ± 0.10 c19.07 ± 0.29 c11.67 ± 0.14 b18.5 ± 0.15 b0.534 ± 0.01 b10.38 ± 0.09 b5.04 ± 0.00 bc
    N4000.813 ± 0.01 d68.77 ± 0.34 b28.75 ± 0.05 c26.13 ± 0.24 a10.27 ± 0.11 d18.2 ± 0.22 bc0.612 ± 0.01 a9.71 ± 0.17 c5.02 ± 0.34 bc
    注(Note):FSI—果形指数 Fruit shape index;L—果皮亮度Peel brightness;a—红绿色差 Red-green color difference;b —黄蓝色差 Yellow-blue color difference;FF—果实硬度 Fruit firmness;TSS—可溶性固形物 Soluble solids;TA—可滴定酸 Titratable acid;SSC—可溶性糖 Soluble sugar content;Vc—维生素 C Vitamin C. 同列数据后不同小写字母表示处理间在 0.05 水平差异显著 Values followed by different lowercases letters in the same column indicate significant difference among treatments at the 0.05 level.
    下载: 导出CSV

    表  4   不同形态钙对各项果实品质指标的影响程度及方式

    Table  4   Influence degree and manner of different forms of calcium on each fruit quality index

    影响程度
    Influence degree
    FSILabFFTSSTASSCVc
    1NaCl-Ca (+)H2O-Ca (+)H2O-Ca (+)NaCl-Ca (+)NaCl-Ca (+)H2O-Ca (+)NaCl-Ca (+)NaCl-Ca (+)NaCl-Ca (+)
    2H2O-Ca (–)HCl-Ca (–)NaCl-Ca (+)H2O-Ca (–)HCl-Ca (–)NaCl-Ca (+)H2O-Ca (–)H2O-Ca (+)HCl-Ca (+)
    3HCl-Ca (–)HAc-Ca (+)HCl-Ca (+)HAc-Ca (–)HAc-Ca (+)HCl-Ca (–)HCl-Ca (–)HCl-Ca (–)H2O-Ca (–)
    4HAc-Ca (–)NaCl-Ca (+)HAc-Ca (–)HCl-Ca (+)H2O-Ca (+)HAc-Ca (+)HAc-Ca (–)HAc-Ca (–)HAc-Ca (+)
    注(Note):FSI—果形指数 Fruit shape index;L—果皮亮度Peel brightness; a —红绿色差 Red-green color difference; b —黄蓝色差 Yellow-blue color difference;FF—果实硬度 Fruit firmness;TSS—可溶性固形物 Soluble solids;TA—可滴定酸 Titratable acid;SSC—可溶性糖 Soluble sugar content;Vc—维生素 C Vitamin C. (+)—促进作用 Facilitation,(–)—抑制作用 Inhibition. H2O-Ca—水溶性钙 Water-Soluble Ca;NaCl-Ca—果胶酸钙 Pectin Ca;HAc-Ca—磷酸钙 Phosphate Ca;HCl-Ca—草酸钙 Oxalate Ca.
    下载: 导出CSV
  • [1] 张强, 李兴亮, 李民吉, 等. ‘富士’苹果品质与果实矿质元素含量的关联性分析[J]. 果树学报, 2016, 33(11): 1388–1395. Zhang Q, Li X L, Li M J, et al. The correlation analysis between quality characteristics and fruit mineral element contents in ‘Fuji’apples[J]. Journal of Fruit Science, 2016, 33(11): 1388–1395.

    Zhang Q, Li X L, Li M J, et al. The correlation analysis between quality characteristics and fruit mineral element contents in‘Fuji’apples[J]. Journal of Fruit Science, 2016, 33(11): 1388-1395.

    [2] 李中勇, 高东升, 王闯, 等. 土壤施钙对设施栽培油桃果实钙含量及品质的影响[J]. 植物营养与肥料学报, 2010, 16(1): 191–196. Li Z Y, Gao D S, Wang C, et al. Effects of calcium application on calcium content and quality of nectarine under protected culture[J]. Journal of Plant Nutrition and Fertilizers, 2010, 16(1): 191–196.

    Li Z Y, Gao D S, Wang C, et al. Effects of calcium application on calcium content and quality of nectarine under protected culture[J]. Plant Nutrition and Fertilizer Science, 2010, 16(01): 191-196.

    [3]

    Bramlage W J, Drake M, Weis S A. Comparisons of calcium chloride, calcium phosphate, and a calcium chelate as foliar sprays for 'McIntosh' apple trees[J]. Journal of the American Society for Horticultural Science, 1985, 110(6): 768–789.

    [4] 张峰, 李养义, 张晓东, 等. 硅钙肥对库尔勒香梨果实品质的影响[J]. 中国农学通报, 2020, 36(4): 56–60. Zhang F, Li Y Y, Zhang X D, et al. Effects of silicon and calcium fertilizer on fruit quality of korla fragrant pear[J]. Chinese Agricultural Science Bulletin, 2020, 36(4): 56–60.

    Zhang F, Li Y Y, Zhang X D, et al. Effects of silicon and calcium fertilizer on fruit quality of korla fragrant pear[J]. Chinese Agricultural Science Bulletin, 2020, 36(04): 56-60.

    [5]

    Gullo G, Motisi A, Zappia R, et al. Rootstock and fruit canopy position affect peach [Prunus persica (L.) Batsch] (cv. Rich May) plant productivity and fruit sensorial and nutritional quality[J]. Food Chemistry, 2014, 153(15): 234–242.

    [6]

    He J, Hong L, Jie L, et al. A transcriptomic network underlies microstructural and physiological responses to cadmium in Populus × canescens: International symposium on forest soils[C]. 2013, 162(1): 424–439.

    [7]

    Ranjbar S, Rahemi M, Ramezanian A. Comparison of nano-calcium and calcium chloride spray on postharvest quality and cell wall enzymes activity in apple cv. red delicious[J]. Scientia Horticulturae, 2018, 240: 57–64. DOI: 10.1016/j.scienta.2018.05.035

    [8] 杨兰兰, 卢凯政, 邹平, 等. 苹果苦痘病与果实品质及矿质元素含量的相关性分析[J]. 经济林研究, 2019, 37(2): 134–140. Yang L L, Lu K Z, Zou P, et al. Correlation analysis of apple bitter pit with fruit quality and mineral element contents in fruits[J]. Non-wood Forest Research, 2019, 37(2): 134–140.

    Yang L L, Lu K Z, Zou P, et al. Correlation analysis of apple bitter pit with fruit quality and mineral element contents in fruits[J]. Non-wood Forest Research, 2019, 37(02): 134-140.

    [9]

    Perring M A. Incidence of bitter pit in relation to the calcium content of apples: Problems and paradoxes, a review[J]. Journal of the Science of Food & Agriculture, 1986, 37(7): 591–606.

    [10]

    Al Shoffe Y, Nock J F, Baugher T A, et al. Bitter pit and soft scald development during storage of unconditioned and conditioned ‘Honeycrisp’ apples in relation to mineral contents and harvest indices[J]. Postharvest Biology and Technology, 2020: 160.

    [11] 马建军, 张立彬, 刘玉艳, 等. 野生欧李生长期组织器官中不同形态钙含量的变化及其相关性[J]. 园艺学报, 2008, (5): 631–636. Ma J J, Zhang L B, Liu Y Y, et al. Variation of different forms of calcium contents and their correlation during the growth stage of prunus humilis tissues[J]. Acta Horticulturae Sinica, 2008, (5): 631–636. DOI: 10.3321/j.issn:0513-353X.2008.05.002

    Ma J B, Zhang L B, Liu Y Y, et al. Variation of different forms of calcium contents and their correlation during the growth stage of prunus humilis tissues[J]. Acta Horticulturae Sinica, 2008, (5): 631-636. DOI: 10.3321/j.issn:0513-353X.2008.05.002

    [12] 刘剑锋, 张红艳, 彭抒昂. 梨果实发育中果肉及种子钙和果胶含量的变化[J]. 园艺学报, 2003, 30(6): 709–711. Liu J F, Zhang H Y, Peng S A. Changes of calcium in flesh, seeds and pectin content during pear fruit development[J]. Acta Horticulturae Sinica, 2003, 30(6): 709–711. DOI: 10.3321/j.issn:0513-353X.2003.06.017

    Liu J F, Zhang H Y, Peng S A. Changes of calcium in flesh, seeds and pectin content during pear fruit development[J]. Acta Horticulturae Sinica, 2003, 30(6): 709-711. DOI: 10.3321/j.issn:0513-353X.2003.06.017

    [13] 刘会超, 姚连芳, 韩振海. 钙对苹果果实发育及果肉细胞超微结构的影响[J]. 植物营养与肥料学报, 2004, 10(4): 419–423. Liu H C, Yao L F, Han Z H. Effect of calcium on development and cell ultrastructure of apple fruit[J]. Journal of Plant Nutrition and Fertilizers, 2004, 10(4): 419–423. DOI: 10.3321/j.issn:1008-505X.2004.04.015

    Liu H C, Yao L F, Han Z H. Effect of calcium on development and cell ultrastructure of apple fruit[J]. Plant Nutrition and Fertilizing Science, 2004, 10(4): 419-423. DOI: 10.3321/j.issn:1008-505X.2004.04.015

    [14] 孙英杰. 钙和赤霉素对寒富苹果果实品质发育和贮藏性影响的研究[D]. 沈阳: 沈阳农业大学硕士学位论文, 2019.

    Sun Y J. Effects of calcium and gibberellin on quality development and storability of Hanfu apple fruit[D]. Shenyang: MS Thesis of Shenyang Agricultural University, 2019.

    [15] 李中勇, 韩龙慧, 史娟, 等. 高氮水平下钙对设施油桃果实生长及品质的影响[J]. 中国土壤与肥料, 2014, (4): 72–75. Li Z Y, Han L H, Shi J, et al. Effects of calcium on the fruit growth and quality of nectarine under high nitrogen level in greenhouse[J]. Soil and Fertilizer Sciences in China, 2014, (4): 72–75. DOI: 10.11838/sfsc.20140414

    Li Z Y, Han L H, Shi J, et al. Effects of calcium on the fruit growth and quality of nectarine under high nitrogen level in greenhouse[J]. Soil and Fertilizer Sciences in China, 2014, (4): 72-75. DOI: 10.11838/sfsc.20140414

    [16] 沙建川, 贾志航, 徐新翔, 等. 氮水平对苹果叶片13C光合产物和15N向果实转移分配的影响[J]. 应用生态学报, 2019, 30(4): 1373–1379. Sha J C, Jia Z H, Xu X X, et al. Effects of nitrogen application levels on translocation and distribution of 13C-photosynthate and 15N to fruit from leaves of apple tree[J]. Chinese Journal of Applied Ecology, 2019, 30(4): 1373–1379.

    Sha J C, Jia Z H, Xu X X, et al. Effects of nitrogen application levels on translocation and distribution of 13C-photosynthate and 15N to fruit from leaves of apple tree[J]. Chinese Journal of Applied Ecology, 2019, 30(4): 1373-1379.

    [17] 朱纵宇. 钙的生理作用及钙肥的施用方法[J]. 西北园艺(果树), 2015, (6): 5–8. Zhu Z Y. The physiological role of calcium and the application of calcium fertilizer[J]. Northwest Horticulture (Fruit Trees), 2015, (6): 5–8.

    Zhu Z Y. The physiological role of calcium and the application of calcium fertilizer[J]. Northwest horticulture (fruit trees), 2015, (6): 5-8.

    [18]

    Levin A G, Yermiyahu U, Doron I, et al. The role of calcium concentration in the endocarp wall of apple fruit in the development of core rot[J]. Crop Protection, 2019, 120: 67–74. DOI: 10.1016/j.cropro.2019.02.023

    [19] 裴健翔, 李燕青, 程存刚, 等. 不同钙制剂对‘寒富’苹果果实硬度及相关细胞壁代谢物质的影响[J]. 果树学报, 2018, 35(9): 1059–1066. Pei J X, Li Y Q, Cheng C G, et al. Effects of different calcium agents on fruit firmness and related cell wall metabolites in 'Hanfu' apple[J]. Journal of Fruit Science, 2018, 35(9): 1059–1066.

    Pei J X, Li Y Q, Cheng C G, et al. Effects of different calcium agents on fruit firmness and related cell wall metabolites in 'Hanfu' apple[J]. Journal of Fruit Science, 2018, 35(9): 1059-1066.

    [20] 黄艳, 文露, 庞亚卓, 等. 喷施钙肥对‘夏黑’葡萄果实糖酸积累的影响[J]. 中国土壤与肥料, 2020, (2): 166–172. Huang Y, Wen L, Pang Y Z, et al. Effect of spraying calcium on sugar and acid accumulation in 'Summer Black' grape[J]. Soil and Fertilizer Sciences in China, 2020, (2): 166–172.

    Huang Y, Wen L, Pang Y Z, et al. Effect of spraying calcium on sugar and acid accumulation in 'Summer Black' grape[J]. Soil and Fertilizer Sciences in China, 2020, (2): 166-172.

    [21] 张泽杰, 王雷, 付喜玲, 等. 外源钙对果实发育过程中肥城桃钙素动态变化的影响[J]. 核农学报, 2019, 33(9): 1818–1823. Zhang Z J, Wang L, Fu X L, et al. Effect of exogenous calcium on the dynamic changes of Feicheng peach during fruit development[J]. Journal of Nuclear Agricultural Sciences, 2019, 33(9): 1818–1823. DOI: 10.11869/j.issn.100-8551.2019.09.1818

    Zhang Z J, Wang L, Fu X L, et al. Effect of exogenous calcium on the dynamic changes of feicheng peach during fruit development[J]. Journal of Nuclear Agricultural Sciences, 2019, 33(9): 1818-1823. DOI: 10.11869/j.issn.100-8551.2019.09.1818

    [22] 沙守峰, 李俊才, 王家珍, 等. 叶面喷施钙肥和锌肥对‘早金酥’梨果实糖酸含量的影响[J]. 果树学报, 2018, 35(S1): 109–113. Sha S F, Li J C, Wang J Z, et al. Effect of foliar application of calcium and zinc fertilizers on sugar and acid content of 'Zaojinsu' pear fruits[J]. Journal of Fruit Science, 2018, 35(S1): 109–113.

    Sha S F, Li J C, Wang J Z, et al. Effect of foliar application of calcium and zinc fertilizers on sugar and acid content of 'Zaojinsu' pear fruits[J]. Journal of Fruit Science, 2018, 35(S1): 109-113.

    [23] 杨兰兰, 卢凯政, 齐国辉, 等. 提高苹果品质并抑制苦痘病发生的钙肥最佳施用量和次数[J]. 植物营养与肥料学报, 2020, 26(4): 765–772. Yang L L, Lu K Z, Qi G H, et al. Optimum application amount and times of calcium nitrate for better fruit quality and lower incidence of apple bitter pit[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(4): 765–772. DOI: 10.11674/zwyf.19273

    Yang L L, Lu K Z, Qi G H, et al. Optimum application amount and times of calcium nitrate for better fruit quality and lower incidence of apple bitter pit[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(4): 765-772. DOI: 10.11674/zwyf.19273

    [24] 裴健翔. 外源钙对‘寒富’苹果果实钙代谢及果实品质影响的研究[D]. 北京: 中国农业科学院硕士学位论文, 2019.

    Pei J X. Effects of exogenous calcium on calcium metabolism and fruit quality of ‘Hanfu’ apple[D]. Beijing: MS Thesis of Chinese Academy of Agricultural Sciences , 2019.

    [25] 王玲利, 刘超, 黄艳花, 等. ‘黄冠’梨采后热处理和钙处理对其钙形态及细胞壁物质代谢的影响[J]. 园艺学报, 2014, 41(2): 249–258. Wang L L, Liu C, Huang Y H, et al. Effects of postharvest heat and calcium treatments on calcium fractions and cell wall metabolism of ‘Huangguan’ pear fruit[J]. Acta Horticulturae Sinica, 2014, 41(2): 249–258. DOI: 10.3969/j.issn.0513-353X.2014.02.005

    Wang L L, Liu C, Huang Y H, et al. Effects of postharvest heat and calcium treatments on calcium fractions and cell wall metabolism of‘Huangguan'pear fruit[J]. Acta Horticulturae Sinica, 2014, 41(02): 249-258. DOI: 10.3969/j.issn.0513-353X.2014.02.005

    [26] 丛金鑫. 酸雨胁迫下小白菜体内不同形态钙对其生理生长影响研究[D]. 长春: 吉林大学硕士学位论文, 2018.

    Cong J X. The impacts of different forms of calcium on physiological characters of Brassica chinensis L. under the acid rain stress[D]. Changcun: MS Thesis of Jilin University, 2018.

    [27] 李燕青, 林治安, 温延臣, 等. 不同类型有机肥与化肥配施对小麦品质的影响[J]. 植物营养与肥料学报, 2016, 22(6): 1513–1522. Li Y Q, Lin Z A, Wen Y C, et al. Effects of combined application of chemical fertilizers with different sources of organic manure on the grain quality of winter wheat[J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(6): 1513–1522. DOI: 10.11674/zwyf.16020

    Li Y Q, Lin Z A, Wen Y C, et al. Effects of combined application of chemical fertilizers with different sources of organic manure on the grain quality of winter wheat[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(6): 1513-1522. DOI: 10.11674/zwyf.16020

    [28] 王雷. 喷施钙肥对肥城桃钙动态及果实品质的影响[D]. 泰安: 山东农业大学硕士学位论文, 2015.

    Wang L. Effect of Ca foliar feeding at growing season on calcium dynamics and quality of Feicheng peach(Prunus persica(L.)Batsch cv. Feicheng)[D]. Tai′an: MS Thesis of Shandong Agricultural University, 2015.

    [29]

    Silveira A C, Aguayo E, Chisari M, et al. Calcium salts and heat treatment for quality retention of fresh-cut 'Galia' melon[J]. Postharvest Biology & Technology, 2011, 62(1): 77–84.

    [30] 马士进. 苹果果实发育期Ca、Mg、K含量及果柄维管束结构变化与苦痘病的关系[D]. 保定: 河北农业大学硕士学位论文, 2015.

    Ma S J. Relationship between bitter pit and changes of Ca, Mg, K content and structure of vascular bundle of stalks during fruit develepment[D]. Baoding: MS Thesis of Hebei Agricultural University, 2015.

    [31] 高丹, 周晓超, 苏阳, 周开兵. 叶面喷施钾、钙和镁肥调节三月红荔枝果皮着色和果肉风味变化同步的效果[J]. 中国土壤与肥料, 2016, (1): 112–118. Gao D, Zhou X C, Su Y, Zhou K B. Effects of K and Ca and Mg applied in foliar nutrients on the synchronism of pericarp's coloring and flesh flavour's changing of Litchi chinensis Sonn. cv Sanyuehong[J]. Soil and Fertilizer Sciences in China, 2016, (1): 112–118. DOI: 10.11838/sfsc.20160120

    Gao D, Zhou X C, Su Y Y, et al. Effects of K and Ca and Mg applied in foliar nutrients on the synchronism of pericarp's coloring and flesh flavour's changing of Litchi chinensis Sonn. cv Sanyuehong[J]. Soil and Fertilizer Sciences in China, 2016, (1): 112-118. DOI: 10.11838/sfsc.20160120

    [32] 任静, 刘小勇, 韩富军, 等. 施氮水平对旱塬覆沙苹果园土壤酶活性及果实品质的影响[J]. 农业工程学报, 2019, 35(8): 206–213. Ren J, Liu X Y, Han F J, et al. Effects of nitrogen fertilizer levels on soil enzyme activity and fruit quality of sand-covered apple orchard in loess plateau of eastern Gansu[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(8): 206–213. DOI: 10.11975/j.issn.1002-6819.2019.08.024

    Ren J, Liu X Y, Han F J, et al. Effects of nitrogen fertilizer levels on soil enzyme activity and fruit quality of sand-covered apple orchard in loess plateau of eastern gansu[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(8): 206-213. DOI: 10.11975/j.issn.1002-6819.2019.08.024

    [33] 陈倩, 丁宁, 彭玲, 等. 供氮水平对矮化苹果15N-尿素吸收、利用、损失及产量和品质的影响[J]. 应用生态学报, 2017, 28(7): 2247–2253. Chen Q, Ding N, Peng L, et al. Effects of different nitrogen application rates on 15N-urea absorption, utilization, loss and fruit yield and quality of dwarf apple[J]. Chinese Journal of Applied Ecology, 2017, 28(7): 2247–2253.

    Chen Q, Ding N, Peng L, et al. Effects of different nitrogen application rates on 15N-urea absorption, utilization, loss and fruit yield and quality of dwarf apple[J]. Chinese Journal of Applied Ecology, 2017, 28(7): 2247-2253.

    [34]

    Wang X J, Jia Y H, Li X L, et al. Effects of calcium sprays and different storage treatment on the preservation of Malus pumila Mill. Cv. Jinguan’[J]. Agricultural Science & Technology, 2016, 17(9): 2183–2185.

    [35] 杨婷婷, 王庆惠, 陈波浪, 等. 氮肥运筹对库尔勒香梨产量和品质的影响[J]. 北方园艺, 2018, (8): 42–47. Yang T T, Wang Q H, Chen B L, et al. Effect of nitrogen application management on yield and quality of Korla fragrant pear[J]. Northern Horticulture, 2018, (8): 42–47.

    Yang T T, Wang Q H, Chen B L, et al. Effect of nitrogen application management on yield and quality of korla fragrant pear[J]. Northern Horticulture, 2018, (8): 42-47.

    [36] 甘霖, 谢永红, 吴正琴, 等. ‘嘉平大枣’果实发育过程中糖、酸及维生素C含量的变化[J]. 园艺学报, 2000, 27(5): 317–320. Gan L, Xie Y H, Wu Z Q, et al. Variation pattern of sugar, acid and vitamin C content during fruit development in jujube[J]. Acta Horticulturae Sinica, 2000, 27(5): 317–320. DOI: 10.3321/j.issn:0513-353X.2000.05.002

    Gan L, Xie Y H, Wo Z Q, et al. Variation pattern of sugar, acid and vitamin C content during fruit development in Jujube[J]. Acta Horticulturae Sinica, 2000, 27(5): 317-320. DOI: 10.3321/j.issn:0513-353X.2000.05.002

    [37] 王佳豪, 段雅倩, 乜兰春, 等. ‘羊角脆’类甜瓜果实品质因子分析及综合评价[J]. 中国农业科学, 2019, 52(24): 4582–4591. Wang J H, Duan Y Q, Mie L C, et al. Factor analysis and comprehensive evaluation of the fruit quality of 'Yangjiaocui' melons[J]. Scientia Agricultura Sinica, 2019, 52(24): 4582–4591. DOI: 10.3864/j.issn.0578-1752.2019.24.012

    Wang J H, Duan Y Q, Mie L C, et al. Factor analysis and comprehensive evaluation of the fruit quality of 'Yangjiaocui' melons[J]. Scientia Agricultura Sinica, 2019, 52(24): 4582-4591. DOI: 10.3864/j.issn.0578-1752.2019.24.012

    [38] 李猛, 王雷存, 任小林, 等. 陕西地区红富士苹果冠层果实品质差异及相关性分析[J]. 果树学报, 2010, 27(6): 859–863. Li M, Wang L C, Ren X L, et al. Diversity and correlation analysis of quality factors for canopy fruit of Fuji apple in Shaanxi area[J]. Journal of Fruit Science, 2010, 27(6): 859–863.

    Li M, Wang L C, Ren X L, et al. Diversity and correlation analysis of quality factors for canopy fruit of Fuji apple in Shaanxi area[J]. Journal of Fruit Science, 2010, 27(06): 859-863.

    [39] 穆瑞, 樊卫国. 不同大小的刺梨果实品质特征及重要指标间的相关性[J]. 中国南方果树, 2018, 47(5): 122–127. Mu R, Fan W G. Quality characteristics of different sizes of Rosa roxburghii fruits and the correlation between important quality indexes[J]. South China Fruits, 2018, 47(5): 122–127.

    Mu R, Fan W G. Quality characteristics of different sizes of Rosa roxburghii fruits and the correlation between important quality indexes[J]. South China Fruits, 2018, 47(5): 122-127.

    [40] 玄兆业. 吉林延边优质苹果梨适生元素地球化学模型研究[D]. 长春: 吉林大学硕士学位论文, 2008.

    Xuan Z Y. Research on the element geochemical model of the quality apple-pear in Yanbian, Jilin Province[D]. Changchun: MS Thesis of Jilin University, 2008.

    [41] 周君, 肖伟, 陈修德, 等. 外源钙对‘黄金梨’叶片光合特性及果实品质的影响[J]. 植物生理学报, 2018, 54(3): 449–455. Zhou J, Xiao W, Chen X D, et al. Effect of exogenous calcium on leaf photosynthetic characteristics and fruit quality of ‘Whangkeumbae’ pear[J]. Plant Physiology Journal, 2018, 54(3): 449–455.

    Zhou J, Xiao W, Chen X D, et al. Effect of exogenous calcium on leaf photosynthetic characteristics and fruit quality of ‘Whangkeumbae’ pear[J]. Plant Physiology Journal, 2018, 54(03): 449-455.

    [42] 管雪强, 杨阳, 王恒振, 等. 喷钙对红地球葡萄果实钙、果胶含量和品质的影响[J]. 植物营养与肥料学报, 2014, 20(1): 179–185. Guan X Q, Yang Y, Wang H Z, et al. Effects of spraying calcium on contents of calcium and pectin and fruit quality of Red Globe Grape (Vitis vinifera L.)[J]. Journal of Plant Nutrition and Fertilizers, 2014, 20(1): 179–185. DOI: 10.11674/zwyf.2014.0120

    Guan X Q, Yang Y, Wang H Z, et al. Effects of spraying calcium on contents of calcium and pectin and fruit quality of Red Globe Grape (Vitis vinifera L.)[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(1): 179-185. DOI: 10.11674/zwyf.2014.0120

    [43]

    Steenkamp J, Terblanche J H, de Villiers Q J. The role of organic acids and nutrient elements in relation to bitter pit in golden delicious apples[J]. Acta Hortic, 1983, 138: 35–42.

    [44] 王迎涛, 李晓, 李勇, 等. 果实套袋对黄冠梨花斑病的发生及果皮钙形态变化的影响[J]. 园艺学报, 2011, 38(8): 1507–1514. Wang Y T, Li X, Li Y, et al. Effects of bagging on browning spot incidence and content of different forms of calcium in 'Huangguan' pear fruits[J]. Acta Horticulturae Sinica, 2011, 38(8): 1507–1514.

    Wang Y T, Li X, Li Y, et al. Effects of bagging on browning spot incidence and content of different forms of calcium in 'Huangguan' pear fruits[J]. Acta Horticulturae Sinica, 2011, 38(8): 1507-1514.

  • 期刊类型引用(12)

    1. 付山,梁邺,何善林,吴永旺,赵军,李婷玉. 土壤全氮含量过高是引发台农17号菠萝水心病的关键因素. 植物营养与肥料学报. 2025(02): 353-363 . 本站查看
    2. 李泰,卢士军,黄家章,孙君茂. 土壤养分对‘富士’苹果品质的影响——基于3省6县苹果园调查. 中国农业大学学报. 2024(11): 30-38 . 百度学术
    3. 邵发琦,李改民,柯斧,张文慧,李夏,白岗栓,孙本华,高明霞,冯浩. 肥水蚓坑措施下不同施肥对土壤养分和山地苹果生产的影响. 水土保持研究. 2023(01): 197-203+208 . 百度学术
    4. 王文赞,韩建,倪玉雪,李记园,尹兴,王琛,张丽娟. 有机肥替代化肥氮对苹果产量、品质及温室气体排放的影响. 植物营养与肥料学报. 2023(03): 437-448 . 本站查看
    5. 师海斌,马亚军,张璐,梁永强,韩普民. 减量施氮配施复合微生物肥料对旱地苹果产量、品质的影响. 陕西农业科学. 2023(02): 87-91+104 . 百度学术
    6. 袁佳秋,孙大伟,杨玲,洑香香. 东京四照花钙组分与渗透调节物质对盐胁迫的响应. 生态环境学报. 2023(04): 687-696 . 百度学术
    7. 李宣志,张金珠,王振华,刘健,谭明东. 水-肥-盐耦合对滴灌加工番茄生长和产量的影响. 干旱地区农业研究. 2023(04): 133-140 . 百度学术
    8. 李振强,范志懿,杨荣,马圆,万仲武,刘佳嘉. 氮肥施用量对灵武长枣果实品质及土壤氮含量的影响. 中国土壤与肥料. 2022(11): 1-7 . 百度学术
    9. 李振强,范志懿,杨荣,马圆,万仲武,刘佳嘉. 氮肥施用量对灵武长枣果实品质及土壤氮含量的影响. 中国土壤与肥料. 2022(09): 1-7 . 百度学术
    10. 李振强,马旭,田应明,范志懿,万仲武,刘佳嘉. 不同施氮量对灵武长枣各发育阶段果实品质的影响. 经济林研究. 2022(04): 124-132 . 百度学术
    11. 李丹萍,寸待泽,李晶,周先艳,李进学,付小猛,董建梅,杜玉霞. 不同氮钾肥用量对百香果生长、品质及产量的影响. 中国土壤与肥料. 2022(12): 123-132 . 百度学术
    12. 许晨阳,蒲全明,邱玉玲,张跃强,张虹,段顺远,何新华. 养分专家系统推荐施肥提高梨果产量及品质. 植物营养与肥料学报. 2021(05): 849-857 . 本站查看

    其他类型引用(17)

图(2)  /  表(4)
计量
  • 文章访问数:  1792
  • HTML全文浏览量:  926
  • PDF下载量:  123
  • 被引次数: 29
出版历程
  • 收稿日期:  2020-06-29
  • 录用日期:  2020-09-24
  • 网络出版日期:  2020-12-01
  • 刊出日期:  2021-01-24

目录

/

返回文章
返回