Loading [MathJax]/jax/output/SVG/jax.js
  • ISSN 1008-505X
  • CN 11-3996/S

生物质炭基肥缓释性能及对土壤改良的研究进展

赵泽州, 王晓玲, 李鸿博, 任树鹏, 陈静, 王琳玲

赵泽州, 王晓玲, 李鸿博, 任树鹏, 陈静, 王琳玲. 生物质炭基肥缓释性能及对土壤改良的研究进展[J]. 植物营养与肥料学报, 2021, 27(5): 886-897. DOI: 10.11674/zwyf.20472
引用本文: 赵泽州, 王晓玲, 李鸿博, 任树鹏, 陈静, 王琳玲. 生物质炭基肥缓释性能及对土壤改良的研究进展[J]. 植物营养与肥料学报, 2021, 27(5): 886-897. DOI: 10.11674/zwyf.20472
ZHAO Ze-zhou, WANG Xiao-ling, LI Hong-bo, REN Shu-peng, CHEN Jing, WANG Lin-ling. Slow-release property and soil remediation mechanism of biochar-based fertilizers[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(5): 886-897. DOI: 10.11674/zwyf.20472
Citation: ZHAO Ze-zhou, WANG Xiao-ling, LI Hong-bo, REN Shu-peng, CHEN Jing, WANG Lin-ling. Slow-release property and soil remediation mechanism of biochar-based fertilizers[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(5): 886-897. DOI: 10.11674/zwyf.20472

生物质炭基肥缓释性能及对土壤改良的研究进展

基金项目: 国家重点研发计划重点专项项目(2019YFC1805202);国家自然科学基金资助项目(41671311);污染控制与资源化研究国家重点实验室开放课题(PCRRF18027);水利部公益性行业科研专项(201501019);湖南省重点研发计划项目(2016SK2057)
详细信息
    作者简介:

    赵泽州E-mail:zhaozezhou@hust.edu.cn

    通讯作者:

    陈静 E-mail:chenjing@hust.edu.cn

Slow-release property and soil remediation mechanism of biochar-based fertilizers

  • 摘要:

    生物质炭基肥是以生物质炭为基质,与有机、无机肥料配制而成的新型生态环保缓释肥料,也作为土壤改良剂应用于农业生产中,近年来受到农业与环保领域的广泛关注和研究应用。本文讨论了生物质炭基肥缓释性能机制及影响因素,生物质炭基肥的缓释性能在很大程度上取决于磷、氮、钾元素与生物质炭的结合方式。主要结合方式包括静电吸附、络合、矿化等。生物质炭基肥的缓释性能受到生物质炭原料种类、炭基肥制备方法和炭肥配合比的影响。生物质炭基肥通过改善土壤理化性质、调节土壤微生物活性,提高植物对养分的利用效率以及减少土壤中养分流失。综合已有研究与应用结果,需要进一步开展生物质炭基肥在土壤中的长期应用效果、老化过程研究,注重在老化过程中对土壤微生物结构的风险评估;建立生物质炭基肥的标准化应用体系,研究和完善生物质炭基肥对土壤持续的、累加性的改良标准。

    Abstract:

    Biochar-based fertilizers refer to biochar-containing organic, inorganic fertilizer, or both. Biochar-based fertilizers have prospects in agricultural production and environmental protection fields because of their nutrient slow-release and environmental-friendly properties. The slow-release property of biochar-based fertilizers is attributed to its combination modes with N, P, and K nutrients, including electrostatic attraction, complexity, mineralization and so on. The raw materials, production process, and ratio of biochar to fertilizer strongly influence the slow-release property of biochar-based fertilizers. Biochar-based fertilizers could improve soil physical and chemical properties, regulate soil microbial activities, improve efficiency of plant nutrients utilization, and reduce loss of nutrients in soil. The researches needed to promote the efficient use of biochar-based fertilizers include: assessment of the long-term effect and aging of biochar after its incorporation into soil; risk assessment of biochar to microbial structure and diversity; monitoring the sustainability and cumulative effect of biochar-based fertilizer in soil remediation; and setting standards for the application of biochar-based fertilizer.

  • 众所周知,施肥特别是盲目过量施用化肥,会造成肥料的损失,降低肥料效益,也导致土壤质量的破坏和农作物产量和品质的下降[1]。研制新型绿色肥料、提高肥料利用率是转变我国化肥行业传统生产经营模式的重要方向[2]。因此,兼具缓释性能和土壤改良功效的生物质炭基肥受到了广泛的关注。

    生物质炭是在限氧条件下生物质热解获得的富碳产品[3-4]。生物质炭基肥是以生物质炭为基质,通过添加氮、磷、钾等一种或几种营养元素,采用化学方法和 (或) 物理方法混合制成的肥料。生物质炭基肥在农业生产中的应用取得了令人信服的显著效果[5-8]。综合分析生物质炭基肥的缓释性能和机制以及影响因素,可为优化生物质炭基肥的缓释性能和土壤改良提供理论指导。

    生物质炭基肥的缓释性能是指生物质炭基肥吸附固持肥料养分,提高肥料养分的缓释性,降低肥料淋溶风险的能力[9]。按肥料养分的元素分类,生物质炭基肥分为单元素生物质炭基肥和生物质炭基复合肥。已报道的单元素生物质炭基肥有生物质炭基磷肥[10]、生物质炭基氮肥[11]和生物质炭基钾肥[12],生物质炭基复合肥是由生物质炭复配氮、磷、钾等多种元素制得。不同元素的生物质炭基肥缓释性能存在显著差异,生物质炭基肥中所含的元素,以及元素之间的相互作用,元素与生物质炭的结合方式等,均影响生物质炭基肥的缓释性能。

    炭基磷肥中磷素的来源主要包括内源性磷和外源性磷。内源性磷来源于生物质炭原材料中存在的磷素。作物残留物和猪牛粪中的磷大多以有机磷的形式存在,家禽粪便中磷以磷酸单酯占主导,在生物质炭形成过程中,这些磷转化成为无机态的可交换磷[13-14]。外源性磷是生物质炭复配的磷肥。内源性磷素与生物质炭的结合方式主要包括磷素在生物质炭上的矿化[15]、络合[14]、聚合[16]和阳离子桥键作用[17]。如图1所示,内源性磷在生物质转化过程中通过矿化作用形成矿物质磷。生物质原料显著影响磷素的存在形式。植物源生物质中磷素主要以植酸 (肌醇六磷酸) 有机磷的形式存在,在热解过程中,有机磷转化为焦磷酸盐,随着热解温度的上升,焦磷酸盐逐渐转化为正磷酸盐,在高温条件下 (≥ 800℃) 热解制备的生物质炭,正磷酸盐在生物质炭中磷素占主导地位[18]。动物粪便中的磷素以植酸和正磷酸盐的形式共存,热解过程中有机磷转化为焦磷酸盐,热解温度大于500℃时,正磷酸盐是生物质炭中的主要赋存状态[18]。与正磷酸盐相比,焦磷酸盐与生物质炭形成配合物更稳定或静电和氢键相互力更强[19-20],从而提高了磷素在炭基磷肥的缓释性能。正磷酸盐在生物质炭基肥中主要以非晶态磷酸钙形态存在,尤其是在高于650℃的制备条件下,生物质炭基肥中可溶性磷多由非晶态磷酸钙组成[18],是生物质炭上可溶性磷的主要成分。此外,也有大量研究通过改性调控正磷酸盐形成低溶解性矿物—(CaMg)3(PO4)2[21],或溶解性更高的磷酸盐矿物—鸟粪石 (MgNH4PO4·6H2O)[22],从而调控其缓释性。综上所述,生物质炭中磷素的赋存状态主要为焦磷酸盐和正磷酸盐,这取决于生物质原料和制备温度。

    图  1  生物质炭基肥中元素与生物质炭作用机制示意图
    Figure  1.  Schematic diagram of mechanism between elements and biochar in biochar-based fertilizer

    外源性磷主要通过络合作用与生物质炭结合,例如C—O—PO3或 (CO)2PO2等络合物[14],这些络合物能够显著减缓磷素的释放速度,避免过多的可溶性磷素释放至土壤中而引起土壤磷素饱和而造成的磷素的流失[23]。生物质炭通过羰基的亲核取代,C—O—C'基团与磷酸盐发生置换反应,在碳环层上形成稳定的C—O—P[24],从而避免磷素的流失。磷酸盐能够在生物质炭上发生聚合反应,形成聚磷酸盐[25],进一步提升炭基磷肥的缓释性能。炭基磷肥利用钙镁等的桥键作用,通过改性和磷酸根形成炭基磷肥-钙/镁-磷三元配合物,从而提高磷素的固定和缓释性能[26-27]。生物质炭与磷素的结合延缓了炭基磷肥中磷素的释放速率,在保证植物生长所需磷素的同时,还能够长时间维持土壤中磷素的含量。

    家禽粪便在400℃下限氧热解后,水溶性磷含量由2.95 g/kg降低至0.17 g/kg,大部分磷素形成了Ca/Mg与 (焦) 磷酸盐,施入土壤后以缓慢而恒定的速度释放[28]。家禽粪便、过磷酸钙和氧化镁混合热解制备的缓释磷肥中磷素的扩散速度和扩散半径远小于化肥磷素,扩散周期长达42天,显著长于化学磷肥中磷素的平衡时间(1天),且扩散半径为化肥磷素扩散半径的1/2。以牛粪为生物质制备的炭基磷肥[(CaMg)3(PO4)2],10天磷素的累计释放量为0.26 g/kg,相比于牛粪中磷的释放量1.07 g/kg,缓释效果提高了76%[29]。炭基磷肥的扩散半径越小,磷素的缓释性能越高,植物对磷素的利用效率越高[30]

    炭基磷肥作为土壤中磷的汇,除了本身含有较多的磷素,还能够活化土壤中不可利用磷。炭基磷肥施用到土壤后能够络合土壤中不能被植物利用的Fe-P、Ca-P和Al-P,从而使得这部分磷素能够释放被植物利用[31-32]。例如,炭基磷肥通过络合铁氧化物将磷固定在生物质炭基肥表面[33],铁氧化物能够结合土壤中的磷酸根,其中两个铁氧化物表面羟基离子之间的结合键被磷酸根离子取代,从而在炭基磷肥表面形成磷酸根离子的双核络合物[34]。炭基磷肥还具有“选择性溶出”的特性,能够络合植物根系在生长过程中分泌的有机酸,形成柠檬酸可溶性磷,释放至土壤中,增加土壤中可利用磷素的含量[31-35]

    炭基氮肥包括有机炭基氮肥和无机炭基氮肥,有机炭基氮肥是将有机氮肥与生物质炭结合形成炭基氮肥,有机氮肥包括尿素[36]和粪便[37]。有机炭基氮肥中生物质炭和尿素能够络合形成氮有机层,生物质炭上的C=O能够与尿素中的–NH2形成NHC═O/NH2—C等络合物,具体过程如图2所示,尿素与生物质炭上的羧酸酐反应,最终可环化为马来酰亚胺的羧脲加合物[38],使氮素固定在生物质炭上,增强氮素的表面保留而减缓了氮素的流失[39],此外,尿素能够在炭基氮肥中分解为氨气,氨气能够与生物质炭上的羧酸酯衍生物反应形成伯酰胺从而被固定下来,避免尿素以氨气形式流失[40]。有机炭基氮肥能够将氮素储存,与施用化学尿素相比,炭基氮肥能够在更长的时间内缓慢释放并保持较高可利用氮素的水平,炭基氮肥替代尿素,能够有效减少施肥过程中氮素的流失[36]

    图  2  炭基氮肥制备过程中生物质炭与尿素的反应机理[40]
    [注(Note):①—尿素 Urea;②—生物质炭上酸酐基团 Anhydride groups in biochar;③—羧基脲衍生物Carboxy urea derivatives;④—环化马来酰亚胺Cyclized maleimide]
    Figure  2.  Reaction mechanism between biochar and urea in the preparation of biochar-based nitrogen fertilizer

    无机炭基氮肥由无机氮肥与生物质炭结合形成,无机氮肥分为NH4+-N和NO3-N两类,包括KNO3、(NH4)2SO4和NH4NO3[11, 41],主要通过络合[42]、静电吸附[43]和物理孔隙吸附作用与生物质炭结合形成炭基氮肥[44],进而减少土壤中氮素的流失。炭基氮肥中含氧官能团能够与铵根离子络合[11],如式 (1)、(2)、(3) 所示,羟基 (–OH)、羧基 (–COOH) 和磺酸基 (–SO3H) 等含氧官能团能够与铵根离子结合形成络合物[45-45]

    OH+NH4+ONH4 (1)
    SO3H+NH4+SO3NH4 (2)
    COOH+NH4+COONH4 (3)

    除此之外,铵根离子还能够通过静电作用吸附与生物质炭结合,进而减少铵根离子在土壤中的淋失,增强氮素的缓释效果[46]

    无机炭基氮肥中NO3-N的结合效果低于NH4+-N[47],但通过阳离子 (Na+、Ca2+、Mg2+) 改性和氧化剂氧化后生物质炭基肥能够显著提高对NO3-N的结合能力,进而提高NO3-N类生物质炭基肥对氮素的缓释性能。例如,生物质炭表面的基团 (酚羟基) 能够结合阳离子,使得阳离子作为基团和硝酸根离子之间的桥梁将NO3-N储存在生物质炭上形成炭基氮肥[48]。此外,氧化后炭基氮肥上的羧基和羰基显著增加,增加了生物质炭表面正电荷以促进对硝酸根的吸附[48]。综上所述,NH4+-N和NO3-N以络合和静电吸附的形式储存于炭基氮肥中,减少了施用化学肥料过程中氮素的流失,维持了中土壤稳定的可利用氮含量。

    研究表明,枯枝叶生物质炭 (450℃~550℃热解制备) 和有机共聚物包膜尿素制备的炭基氮肥缓释性能显著优于纯尿素,在22天内NH4+-N释放率为65.28%,而纯尿素中NH4+-N几乎全部释放[49]。并且,随着制备温度的升高,炭基氮肥对NH4+-N的缓释性能逐渐下降。例如,300℃、400℃和500℃制备的炭基氮肥,21天NH4+-N的释放率分别为10%、30%和50%。通过改性也能有效提高炭基氮肥的缓释性能。相比于硝酸铵,镁改性玉米秸秆制备的炭基氮肥中NO3-N和NH4+-N的释放量分别降低了2.5和1.5倍[50]

    土壤中钾分为水溶性钾、可交换钾、不可交换钾和结构性钾[51],土壤中钾的总含量相对较高,只有小部分水溶性钾和可交换钾能够被植物利用,而大部分钾素难以直接被植物利用[52]。炭基钾肥能够显著增加土壤中可利用钾素的含量[12],有效补充和保留土壤中钾素,减少化学钾肥的施用[53]

    制备炭基钾肥的过程中,生物质本身含有的较多钾素能够转化为可交换钾,从而提高钾素的利用效率[54]。研究表明,生物质中的钾在热解过程中转化为钾长石,再通过离子交换作用向土壤中释放钾离子,从而被植物利用[12, 55]。生物质炭的多孔结构、大比表面积和表面负电荷使得炭基肥中的钾离子能够吸附储存在生物质炭中[6],而带负电的官能团,如羟基、酚羟基和羧基等通过静电吸附,π-阳离子键可保留可交换钾[56],从而降低了可交换钾的流失,达到了缓释的效果,提高钾素的利用效率。锯末制备的炭基钾肥中,与传统钾肥相比,72天钾素累积释放率降低了30%[6]

    炭基复合肥中含有氮磷钾等多种元素,不同元素之间具有拮抗或协同作用,使其缓释性能与单元素生物质炭基肥具有显著差异[61]

    炭基复合肥中氮素和钾素的缓释性能存在拮抗作用。炭基复合肥通过离子交换吸附铵根离子和钾离子,由于二者在离子交换中形成竞争交换关系,导致氮素和钾素的缓释性能相互制约[57]。但通过生物质炭上有机官能团络合作用结合的铵根离子,其缓释性能则不受钾离子的影响[58],这部分作用机制已在1.2小节中详细讨论过。炭基复合肥中氮素和磷素也存在拮抗作用,硝酸根与磷酸根也存在竞争离子交换[59],从而降低了炭基复合肥中氮素和磷素的缓释性能。

    然而,炭基复合肥氮素和磷素也能协同提高复合肥的缓释性能,铵根离子和磷酸盐能够在经过镁改性后的生物质炭表面形成一种优质的缓释肥料—鸟粪石[Mg(NH4)PO4·6H2O][60]。炭基复合肥中生物质炭经过镁改性后,能够提高生物质炭表面电势,增强对磷酸根离子的吸附,除此之外,生物质炭表面形成的氧化镁颗粒也能显著提高对磷酸根离子的吸附,使得更多的磷酸根离子聚集在生物质炭上。随着生物质炭基肥中磷素的增加,铵根离子通过静电吸附作用直接与磷酸根结合或进入生物质炭孔径中,通过内扩散和膜扩散的组合过程与磷酸根结合形成鸟粪石[61],使得氮磷元素储存在生物质炭基肥中缓慢释放,提高了炭基复合肥中氮素和磷素的缓释性能。

    铁改性生物质炭能够与铵根离子和磷酸根离子结合形成铁基-炭基复合肥,显著提高氮素和磷素的缓释性能[62-63],炭基复合肥中的铁基团FeO、Fe(OH)2或Fe(OH)3能够与磷酸根离子在生物质炭表面形成内球络合物[64-65],显著提高磷素的缓释性能,随着磷酸根离子在铁改性生物质炭表面络合数量的增加,更多铵根离子和磷酸根离子结合[66],进一步提高了炭基复合肥中氮素的缓释性能,因此也能够形成一种具有优质缓释性能的铁基-炭基复合肥[67]。综上所述,炭基复合肥中不同元素之间能够抑制或相互促进缓释性能,根源于炭基复合肥独特的性质,今后还需要对炭基复合肥的缓释性能及规律进行更深入的研究,以制备具有更优良的缓释性能和更高效的炭基复合肥。

    生物质炭基肥的缓释性能由磷、氮、钾元素与生物质炭的结合方式决定,此外,生物质炭基肥的缓释性能还受到选材、制备和应用3方面的影响,生物质炭基肥的生物质炭原料种类、制备方法、炭肥比等,都会影响炭基肥的缓释性能和肥效。

    生物质炭原材料是影响生物质炭基肥缓释性能的重要因素。

    生物质炭的原料来源主要包括农林废弃物[68]、动物粪便[69]和活性污泥[70]3大类,其成分、结构、元素种类等都有差异[71],制备的生物质炭的比表面积、孔隙率和阳离子交换量不同,包含的稳定碳、易分解碳和溶解性碳比例也不同,表现在物理化学性质上具有显著差异。

    生物质炭中的稳定碳含量越高,生物质炭稳定性越高。以松木、稻壳、猪粪和污泥为例,在300℃~500℃热解温度制备条件下,稳定碳含量依次为松木 > 稻壳 > 猪粪 > 污泥,易分解碳含量依次为污泥 > 猪粪 > 稻壳 > 松木。粪便和污泥类生物质中,有机组分主要包括蛋白质、微生物以及挥发性有机物,这些有机物在300℃~500℃热解条件下易分解,形成的生物质炭稳定性弱[72]

    原料的养分含量影响着生物质炭的养分特征及应用。富含硅的稻草、稻壳和玉米秆制成的生物质炭同样富含硅[73]。以香蕉梗制备的生物质炭的有效钾含量能够达到66.3 g/kg,可直接用做生物质炭基钾肥[74]。动物源类生物质炭,如猪粪制备的生物质炭基肥的氮素、磷素含量更加丰富[69]

    生物质炭原料的碳结构不同,制备的生物质炭基肥的缓释性能不同,肥效也不同。例如,以稻壳为原料制备的炭基肥比油茶壳制备的炭基肥具有更好的缓释性能,因为稻壳生物质炭具有更大的比表面积和更发达的孔隙结构,对尿素的负载能力更强[75]。小麦田间试验研究发现,花生壳、棉花秸秆、玉米秸秆和小麦秸秆为原料制备的炭基肥分别提高小麦产量 (20%~35.4%) 和氮肥偏生产力 (17.9%~34.4%),其中花生壳、棉花秸秆和玉米秸秆炭基肥的提高效果显著高于小麦秸秆炭基肥[76],这是由于花生壳生物质炭基肥的比表面积较大,玉米秸秆生物质炭基肥的阳离子交换量更高[77]。而水稻试验则表明,小麦秸秆炭基肥提高水稻产量和氮肥偏生产力的效果显著优于玉米秸秆炭基肥[78]。青椒田间试验表明,花生壳炭和稻壳炭为原料制备的炭基肥对青椒的品质提升效果更佳,但小麦秸秆炭基肥在提升青椒产量和化肥减施方面,更优于花生壳炭基肥和棉花秸秆炭基肥[79]

    生物质炭基肥的制备方法直接影响生物质炭基肥的机械性能、缓释性能等。生物质炭基肥的制备方法包括直接掺混法[80]、包膜法[81]、吸附法[82]、反应法[83]4种。

    直接掺混法是将制备好的生物质炭与土壤或植物所需要的肥料直接混合,即可制备出不同类型的生物质炭基肥[84],是最简单的生物质炭基肥的制备方法。炭基复合肥通过生物质炭与硫酸铵、氯化钾和过磷酸钙等直接混合造粒制备得到,能够显著提高土壤中可利用氮素、磷素、钾素的含量,并且延长了养分的供应时间,增加了养分利用率[41]

    包膜法是用一种难溶于水的材料或生物质炭对肥料进行包膜处理,提高生物质炭基肥的缓释性能,增强生物质炭基肥的机械强度,减少生物质炭基肥在施用过程中的损失[81]。通过盆栽试验发现,通过粘接剂包裹尿素制备的包膜生物质炭基肥,显著降低了氮素的淋失率,氮素利用率提高了10%~25%[85]。在实际中,多种材料可用于生物质炭基肥包膜,可分为有机高分子包膜材料[86]和无机包膜材料[87-88]。采用乙基纤维素作为包膜剂制备的包膜生物质炭基肥,实现80%的养分透过率需要98天,能够满足大部分作物生长周期所需的养分,抗拉强度达到16.72 MPa,断裂伸长率为3.35%,能够有效降低运输和施肥过程中的肥料损失[89]。将聚丙烯树脂包裹在尿素颗粒表面,再将竹炭粉包裹在颗粒表面形成尿素的双层包膜,通过试验发现,竹炭包膜中氮素的淋出率比普通尿素低9.93%~16.27%,施加到土壤中后,氨挥发量比普通尿素下降了16.66%~31.80%,玉米生物量和氮素利用率分别提高了12.8%~24.1%和10.50%~16.99%[90]。以无机材料作为包膜剂制备的包膜生物质炭基肥也取得了较好的缓释效果。例如,以膨润土混合生物质炭作为包膜材料包裹尿素,其NH4+-N和NO3-N的淋溶率分别比普通尿素降低了19.76%和16.74%[91]。针对包膜材料配比、成膜工艺、包膜工艺试验以及包膜材料对包膜生物质炭基肥性能的影响进行了深入的研究,优化了包膜生物质炭基肥的制备条件[81]

    吸附法是将生物质炭置于含氮素、磷素、钾素的溶液中,利用生物质炭的吸附性将溶液中养分固定在生物质炭中制备生物质炭基肥。首先将制备的生物质炭置于装有肥料溶液的容器中,待生物质炭浸渍完成后,将得到的固体烘干,即为吸附型生物质炭基肥[84]。该法制备的生物质炭基肥显著延长了养分在静置水和土壤淋洗溶液中的释放时间,提高了养分的缓释性能[84]

    反应法是通过矿物元素改性以优化生物质炭的性质,例如扩大比表面积、扩大孔隙率和提高官能团比例等。钾-铁生物质炭基肥是通过化学热解的方法,将钾和铁负载至生物质炭上制得,施用于土壤中后,能够有效结合硝酸根离子、磷酸根离子和铵根离子,减少土壤养分的流失,同时作为缓释肥能够分阶段的及时释放养分,以增加植物对养分的利用率[83]。反应法制备的生物质炭基肥流程相比于其他方法更复杂,但能够精确满足不同环境对生物质炭基肥的需求。

    生物质炭基肥的吸附性能和物理性状取决于生物质炭的比例,炭肥比越高,生物质炭的特性就越明显,包括官能团、孔隙率、比表面积、阳离子交换量,这些特性在生物质炭基肥中起到的作用越大[92]。例如,玉米秸秆生物质炭基肥中生物质炭与钾肥和氮肥比分别为1∶6、1∶5、1∶4、1∶3时,钾素释放率分别为64.45%、60.85%、54.11%、42.06%;氮素释放率分别为50.10%、49.09%、42.02%、40.32%[93]。生物质炭在炭基肥料中的比例直接影响着炭基肥的抗压性能。在炭肥比为1∶3时,炭基肥具有较强的抗压性能,可显著减少生物质炭基肥在运输处置过程中的肥料流失[94],因此,生物质炭基肥中的炭肥比一般在1∶4到1∶0.67之间[95]。大田试验还表明,生物质炭与复合肥的配比为1∶4或1∶2.3时,生物质炭基肥能够显著促进玉米植株生长,炭肥比过高或过低都不利于玉米的生长;当炭肥比小于1∶4时,复合肥占比高,不利于土壤呼吸,抑制土壤中养分元素的循环能力,容易造成因肥料流失引起的玉米生长期间养分不足,而炭肥比大于1∶2.3时,炭基肥中养分比例下降,植物对土壤中氮的利用具有一定局限性,不能满足玉米各个生长期的养分需求[96]。作物种类不同适宜的炭肥比也不同,炭肥比为1∶1.8时,显著提高了高粱的产量和品质[97],而炭肥比为1∶3时,促进了黄瓜的生长[95]。因此,作物不同的生长环境和作物类型是确定最优炭肥比的重要因素。田间调控获取最优炭肥比对促进植株生长具有重要意义。

    生物质炭基肥主要通过改善土壤理化性质和土壤微生物群落结构,实现改良土壤环境的目的。图3展示了典型生物质炭改良土壤的过程和机理。

    图  3  生物质炭基肥对土壤改良作用示意图
    Figure  3.  Diagram showing the effects of biochar-based fertilizers on soil improvement

    生物质炭基肥中生物质炭具有发达的孔隙度和良好的孔隙结构,可降低土壤的容重,提高土壤的松散程度和孔隙度,增加土壤中的气体循环,改善土壤的通气性,从而促进植物根系的发育和植物的生长[98-101]

    生物质炭基肥还能显著提高土壤的保水能力,因为生物质炭能够显著提高土壤毛管孔隙度,从而使得水分能够在孔隙中保存[101]。生物质炭基肥含有羟基、羧基等亲水基团,使得生物质炭表面吸持土壤中水分[102]。另外,还能够通过调节生物质炭基肥中O/C和 (N + O)/C比例,提高生物质炭基肥亲水性和保水能力[103]

    生物质炭基肥多呈碱性,能够改良酸性土壤[55]。另外,生物质炭基肥表面具有大量的阳离子吸附点位[104],并且生物质炭基肥制备的过程增加了羧基的数量,提高了生物质炭基肥单位表面积的电荷密度,从而提高土壤阳离子交换量[105]

    施用生物质炭基肥能够直接增加土壤养分的含量,生物质炭基肥还能够影响土壤中原有养分的迁移和转化。

    生物质炭基肥能够增加土壤中磷素的生物有效性。生物质炭基肥释放的溶解性有机碳 (dissolved organic carbon,DOC) 能够和土壤中不可利用磷素络合,使磷素能够被植物利用[106],还能够增加土壤pH,减少难溶的Al-P含量[107]。因此,生物质炭基肥能够维持土壤中磷素的平衡,提高磷素的生物有效性[108]

    炭基氮肥能够减缓土壤中氮素的流失,包括NH3、N2O、NO3和NH4+的流失。生物质炭基肥提高土壤的pH,能够增强对NH3等气体的吸附[109]。生物质炭基肥能够与N2O结合,N2O能够与生物质炭中嵌入的金属离子 (Fe或Cu) 结合,并在生物质炭表面形成N–N或N–O,避免氮素以N2O的形式损失[110]。在土壤硝化–反硝化反应过程中,NO3能够吸附在生物质炭的阴离子交换位点,从而降低了NO3的脱氮效率[111],避免了NO3转化为气体造成氮素的流失,同时还能够降低NO3–N的流失率。生物质炭基肥存在的酚羟基等基团,能够提高铵根离子在生物质炭表面的静电吸附作用,将铵根离子吸附在土壤中[111]

    生物质炭基肥能够促进养分向植物的迁移。生物质炭基肥能够提高植物根膜的离子电势,离子电势能够控制植物营养阳离子和阴离子 (尤其是硝酸根离子) 的吸收[112]。植物吸收硝酸根离子所需的能量来自三磷酸腺苷 (ATP),植物在硝酸根离子运输中消耗的ATP越多,植物的生长就越慢[113]。生物质炭基肥能够增加根膜和土壤之间的电势差 (称为根膜电势),进而降低营养物质运输的自由能,降低植物吸收硝酸根离子所需的ATP,促进植物根部对养分的吸收。此外,生物质炭基肥增加了土壤通量,使得根尖附近的氧含量增加,提高了氧化还原电位,进一步加大了根膜表面的电势差[114],降低植物养分吸收所需能量,促进了植物对养分的吸收。

    生物质炭基肥除了影响土壤理化性质和养分,还能显著促进土壤微生物的生长与繁殖,进而间接影响土壤中养分的生物利用度。炭基磷肥提供了细菌栖息地并改善土壤细菌和真菌的生长环境,从而增加土壤细菌和真菌的活性[115]。生物质炭基肥通过调节细菌生存环境的酸碱性变化能够改变细菌群落结构,生物质炭基肥施加至酸性土壤中使得土壤中的酸性功能基团 (主要是脂肪族羧酸) 逐渐丧失,有利于微生物的生长和繁殖[116]。生物质炭基肥能够降低微生物释放的磷酸单酯酶的活性,阻断了有机磷向磷酸盐沉淀的转变,提高了磷的生物有效性[117],这主要归因于两点,一是微生物释放的磷酸单酯酶能够吸附于生物质炭表面,降低其活性;二是生物质炭基肥上较高的盐度和无机磷浓度会引起离子毒性,对酶的活性产生负面影响[118]

    生物质炭基肥能够抑制微生物 (硝化细菌) 的活性,降低土壤中可提取的NO3–N的含量和氮气的释放量,从而降低氮素的流失[119]。在沙质土壤中施用生物质炭基肥可减少34.0%的NO3–N淋失;生物质炭基肥能够释放一些硝化抑制化合物,例如多酚、单宁和乙烯等,降低土壤氨氧化变形杆菌 (主要是Beta变形细菌) 的活性,使得NH4+–N较多的富集于生物质炭表面,阻碍氮气的产生,从而影响氮的硝化循环,降低了土壤中氮素的流失[120-121]

    生物质炭基肥提高了钾溶解细菌的活性,显著增加了土壤中速效钾的含量。生物质炭基肥 (高孔隙率、大的比表面积) 为钾溶解细菌提供了自然栖息地,促进了细菌的生长,并显著提高了细菌的α多样性,α多样性是局域均匀生活环境下的物种数目[122],随着生物质炭基肥用量的增加,钾溶解细菌的α多样性趋于增加,这归因于生物质炭基肥为钾溶解细菌提供了丰富的营养,从而减少细菌的内部竞争[123]。因此生物质炭基肥显著改善了钾溶解细菌的生存环境并提供细菌所需养分,促进了钾溶解细菌的活性,维持土壤中有效钾的含量,促进植物的生长。

    综上所述,生物质炭基肥能够同时满足养分缓释和土壤改良的需求,但在农业生产应用中,需要考虑生物质炭基肥的适用环境,以及对土壤长期的环境风险进行评估。

    1) 根据目前发布的生物质炭基肥养分含量和缓释标准可知,生物质炭基肥的作用不仅包括供给作物养分,还包括生物质炭基肥的缓释性能和土壤改良作用。因此,生物质炭基肥对土壤持续的、累加性的改良标准还需要进一步完善。

    2) 生物质炭基肥的作用效果受土壤环境的影响显著,因此,需要进一步开展生物质炭基肥的适用规律研究,建立生物质炭基肥与土壤环境的构效关系,对精确施肥调控和提高生物质炭基肥的利用效率具有重要指导意义。

    3) 生物质炭基肥施入土壤中后,能够改善土壤的理化性质,但生物质炭基肥老化的过程中会释放有机物,这些有机物在大尺度时间范围内是否会对土壤有危害,还需要进一步研究。

    4) 土壤微生物群落在土壤-作物系统中发挥着重要作用,需要进一步探讨长期施用生物质炭基肥对土壤微生物系统的影响和进一步评估对土壤微生物系统的环境风险。

    5) 生物质炭基肥被农业农村部推广作为秸秆还田的主要模式之一 (详见2017年农业农村部办公厅《关于推介发布秸秆农用十大模式的通知》),2020年10月11日发布的农作物秸秆炭化还田土壤改良项目运营管理规范 (GB/Z 39121—2020),进一步规范了生物质炭基肥在农业生产中的应用。但目前尚未形成生物质炭基肥的标准化应用体系,因此在生物质炭基肥推广应用方面还有待进一步完善。

  • 图  1   生物质炭基肥中元素与生物质炭作用机制示意图

    Figure  1.   Schematic diagram of mechanism between elements and biochar in biochar-based fertilizer

    图  2   炭基氮肥制备过程中生物质炭与尿素的反应机理[40]

    [注(Note):①—尿素 Urea;②—生物质炭上酸酐基团 Anhydride groups in biochar;③—羧基脲衍生物Carboxy urea derivatives;④—环化马来酰亚胺Cyclized maleimide]

    Figure  2.   Reaction mechanism between biochar and urea in the preparation of biochar-based nitrogen fertilizer

    图  3   生物质炭基肥对土壤改良作用示意图

    Figure  3.   Diagram showing the effects of biochar-based fertilizers on soil improvement

  • [1] 林李华, 支胡钰. 蚕沙土壤调理剂对酸性土壤改良及豆角生长的影响[J]. 中国农业科技导报, 2018, 20(4): 108–114. Lin L H, Zhi H Y. Influence of silkworm excrement soil amendments on acidic soil and growth of vigna unguiculata[J]. Journal of Agricultural Science and Technology, 2018, 20(4): 108–114.

    Lin L H, Zhi H Y. Influence of silkworm excrement soil amendments on acidic soil and growth of vigna unguiculata[J], Journal of Agricultural Science and Technology, 2018, 20(4): 108–114.

    [2] 叶丽君. 化肥零增长背景下化肥企业的转型方向[J]. 磷肥与复肥, 2016, 31(10): 2. Ye L J. The transformation direction of fertilizer enterprises under the background of zero growth of fertilizer[J]. Phosphate & Compound Fertilizer, 2016, 31(10): 2.

    Ye L J. The transformation direction of fertilizer enterprises under the background of zero growth of fertilizer[J], Phosphate & Compound Fertilizer, 2016, 31(10): 2.

    [3]

    Chew J, Zhu L L, Nielsen S, et al. Biochar-based fertilizer: Supercharging root membrane potential and biomass yield of rice[J]. Science of the Total Environment, 2020, 713: 136431. DOI: 10.1016/j.scitotenv.2019.136431

    [4]

    Topoliantz S, Ponge J F, Ballof S. Manioc peel and charcoal: A potential organic amendment for sustainable soil fertility in the tropics[J]. Biology and Fertility of Soils, 2005, 41(1): 15–21. DOI: 10.1007/s00374-004-0804-9

    [5]

    Liu X Y, Zhang A F, Ji C Y, et al. Biochar’s effect on crop productivity and the dependence on experimental conditions—a meta-analysis of literature data[J]. Plant and Soil, 2013, 373(1–2): 583–594.

    [6]

    Gwenzi W, Nyambishi T J, Chaukura N, et al. Synthesis and nutrient release patterns of a biochar-based N–P–K slow-release fertilizer[J]. International Journal of Environmental Science and Technology, 2018, 15(2): 405–414. DOI: 10.1007/s13762-017-1399-7

    [7]

    Li Y L, Cheng J Z, Lee X Q, et al. Effects of biochar-based fertilizers on nutrient leaching in a tobacco-planting soil[J]. Acta Geochimica, 2019, 38(1): 1–7. DOI: 10.1007/s11631-018-0307-2

    [8]

    Yeboah E, Ofori P, Quansah G, et al. Improving soil productivity through biochar amendments to soils[J]. African Journal of Environmental Science & Technology, 2009, 3(2): 34–41.

    [9]

    Qiao D L, Liu H S, Yu L, et al. Preparation and characterization of slow-release fertilizer encapsulated by starch-based superabsorbent polymer[J]. Carbohydrate Polymers, 2016, 147: 146–154. DOI: 10.1016/j.carbpol.2016.04.010

    [10]

    Sharpley A N, Bergström L, Aronsson H, et al. Future agriculture with minimized phosphorus losses to waters: Research needs and direction[J]. Ambio, 2015, 44(Supplement 2): 163–179.

    [11]

    Zama E F, Reid B J, Arp H P H, et al. Advances in research on the use of biochar in soil for remediation: A review[J]. Journal of Soils and Sediments, 2018, 18(7): 2433–2450. DOI: 10.1007/s11368-018-2000-9

    [12]

    Prakongkep N, Gilkes R J, Wiriyakitnateekul W. Forms and solubility of plant nutrient elements in tropical plant waste biochars[J]. Journal of Plant Nutrition and Soil Science, 2015, 178(5): 732–740. DOI: 10.1002/jpln.201500001

    [13]

    Dai L C, Li H, Tan F R, et al. Biochar: A potential route for recycling of phosphorus in agricultural residues[J]. Global Change Biology Bioenergy, 2016, 8(5): 852–858. DOI: 10.1111/gcbb.12365

    [14]

    Zhao L, Zheng W, Masek O, et al. Roles of phosphoric acid in biochar formation: Synchronously improving carbon retention and sorption capacity[J]. Journal of Environmental Quality, 2017, 46(2): 393–401. DOI: 10.2134/jeq2016.09.0344

    [15]

    Lustosa Filho J F, Penido E S, Castro P P, et al. Co-pyrolysis of poultry litter and phosphate and magnesium generates alternative slow-release fertilizer suitable for tropical soils[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(10): 9043–9052.

    [16]

    Carneiro J S D S, Lustosa Filho J F, Nardis B R O, et al. Carbon stability of engineered biochar-based phosphate fertilizers[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 14203–14212.

    [17]

    Fang L, Li J S, Donatello S, et al. Use of Mg/Ca modified biochars to take up phosphorus from acid-extract of incinerated sewage sludge ash (ISSA) for fertilizer application[J]. Journal of Cleaner Production, 2020, 244: 118853. DOI: 10.1016/j.jclepro.2019.118853

    [18]

    Uchimiya M, Hiradate S. Pyrolysis temperature-dependent changes in dissolved phosphorus speciation of plant and manure biochars[J]. Journal of Agricultural and Food Chemistry, 2014, 62(8): 1802–1809. DOI: 10.1021/jf4053385

    [19]

    Fang Q L, Chen B L, Lin Y J, et al. Aromatic and hydrophobic surfaces of wood-derived biochar enhance perchlorate adsorption via hydrogen bonding to oxygen-containing organic groups[J]. Environmental Science & Technology, 2014, 48(1): 279–288.

    [20]

    Uchimiya M. Applied manure and nutrient chemistry for sustainable agriculture and environment[M]. Berlin: Springer, 2014.53–68.

    [21]

    Zhao L, Cao X D, Wang Q, et al. Mineral constituents profile of biochar derived from diversified waste biomasses: Implications for agricultural applications[J]. Journal of Environmental Quality, 2013, 42(2): 545–552. DOI: 10.2134/jeq2012.0232

    [22]

    Wang T, Camps-Arbestain M, Hedley M, et al. Predicting phosphorus bioavailability from high-ash biochars[J]. Plant and Soil, 2012, 357(1–2): 173–187.

    [23]

    Khatiwada R, Hettiarachchi G M, Mengel D B, et al. Speciation of phosphorus in a fertilized, reduced-till soil system: In-field treatment incubation study[J]. Soil Science Society of America Journal, 2012, 76(6): 2006–2018. DOI: 10.2136/sssaj2011.0299

    [24]

    Kim J A, Vijayaraghavan K, Reddy D H K, et al. A phosphorus-enriched biochar fertilizer from bio-fermentation waste: A potential alternative source for phosphorus fertilizers[J]. Journal of Cleaner Production, 2018, 196: 163–171. DOI: 10.1016/j.jclepro.2018.06.004

    [25]

    Xu J Z, Chen L Z, Qu H Q, et al. Preparation and characterization of activated carbon from reedy grass leaves by chemical activation with H3PO4[J]. Applied Surface Science, 2014, 320: 674–680. DOI: 10.1016/j.apsusc.2014.08.178

    [26]

    Cui X Q, Dai X, Khan K Y, et al. Removal of phosphate from aqueous solution using magnesium-alginate/chitosan modified biochar microspheres derived from Thalia dealbata[J]. Bioresource Technology, 2016, 218: 1123–1132. DOI: 10.1016/j.biortech.2016.07.072

    [27]

    Loganathan P, Vigneswaran S, Kandasamy J, et al. Removal and recovery of phosphate from water using sorption[J]. Critical Reviews in Environmental Science and Technology, 2014, 44(8): 847–907. DOI: 10.1080/10643389.2012.741311

    [28]

    Wang Y, Lin Y X, Chiu P C, et al. Phosphorus release behaviors of poultry litter biochar as a soil amendment[J]. Science of the Total Environment, 2015, 512: 454–463.

    [29]

    Liang Y, Cao X D, Zhao L, et al. Phosphorus release from dairy manure, the manure-derived biochar, and their amended soil: Effects of phosphorus nature and soil property[J]. Journal of Environmental Quality, 2014, 43(4): 1504–1509. DOI: 10.2134/jeq2014.01.0021

    [30]

    Lustosa Filho J F, Barbosa C F, Da Silva Carneiro J S, et al. Diffusion and phosphorus solubility of biochar-based fertilizer: Visualization, chemical assessment and availability to plants[J]. Soil and Tillage Research, 2019, 194: 104298. DOI: 10.1016/j.still.2019.104298

    [31]

    Song C, Han X Z, Tang C. Changes in phosphorus fractions, sorption and release in Udic Mollisols under different ecosystems[J]. Biology and Fertility of Soils, 2007, 44(1): 37–47. DOI: 10.1007/s00374-007-0176-z

    [32]

    Zhang H Z, Chen C R, Gray E M, et al. Roles of biochar in improving phosphorus availability in soils: A phosphate adsorbent and a source of available phosphorus[J]. Geoderma, 2016, 276: 1–6. DOI: 10.1016/j.geoderma.2016.04.020

    [33]

    Von Tucher S, Hörndl D, Schmidhalter U. Interaction of soil pH and phosphorus efficacy: Long-term effects of P fertilizer and lime applications on wheat, barley, and sugar beet[J]. Ambio, 2018, 47(1): 41–49.

    [34]

    Parfitt R L, Atkinson R J, Smart R S C. The mechanism of phosphate fixation by iron oxides[J]. Soil Science Society of America Journal, 1975, 39(5): 837–841. DOI: 10.2136/sssaj1975.03615995003900050017x

    [35]

    Kim P, Hensley D, Labbé N. Nutrient release from switchgrass-derived biochar pellets embedded with fertilizers[J]. Geoderma, 2014, 232–224: 341–351.

    [36]

    Shi W, Ju Y, Bian R, et al. Biochar bound urea boosts plant growth and reduces nitrogen leaching[J]. Science of the Total Environment, 2020, 701: 134424. DOI: 10.1016/j.scitotenv.2019.134424

    [37]

    Borchard N, Prost K, Kautz T, et al. Sorption of copper (II) and sulphate to different biochars before and after composting with farmyard manure[J]. European Journal of Soil Science, 2012, 63(3): 399–409. DOI: 10.1111/j.1365-2389.2012.01446.x

    [38]

    Joseph S, Graber E, Chia C, et al. Shifting paradigms: Development of high-efficiency biochar fertilizers based on nano-structures and soluble components[J]. Carbon Management, 2013, 4(3): 323–343. DOI: 10.4155/cmt.13.23

    [39] 任奕林,魏春辉,苑晓辰,等. 柱状生物炭基肥成型机的设计与试验[J]. 沈阳农业大学学报, 2017, 48(3): 311–319. Ren Y L, Wei C H, Yuan X C, et al. Design and experiment of columnar biochar-based fertilizer forming machine[J]. Journal of Shenyang Agricultural University, 2017, 48(3): 311–319.

    Ren Y L, Wei C H, Yuan X C , et al. Design and experiment of columnar biochar-based fertilizer forming machine[J]. Journal of Shenyang Agricultural University, 2017, 48(3): 311–319.

    [40]

    Zhang A F, Bian R J, Pan G X, et al. Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: A field study of 2 consecutive rice growing cycles[J]. Field Crops Research, 2012, 127: 153–160. DOI: 10.1016/j.fcr.2011.11.020

    [41]

    Woods W I, Teixeira W G, Lehmann J , et al. Amazonian dark earths: Wim Sombroek's vision[M]. Berlin: Springer, 2009. 325–338.

    [42]

    Wu C, Shi L Z, Xue S G, et al. Effect of sulfur-iron modified biochar on the available cadmium and bacterial community structure in contaminated soils[J]. Science of the Total Environment, 2019, 647: 1158–1168. DOI: 10.1016/j.scitotenv.2018.08.087

    [43]

    Liang B Q, Lehmann J, Solomon D, et al. Black carbon increases cation exchange capacity in soils[J]. Soil Science Society of America Journal, 2006, 70(5): 1719–1730. DOI: 10.2136/sssaj2005.0383

    [44]

    Kameyama K, Miyamoto T, Shiono T, et al. Influence of sugarcane bagasse-derived biochar application on nitrate leaching in calcaric dark red soil[J]. Journal of Environmental Quality, 2012, 41(4): 1131–1137. DOI: 10.2134/jeq2010.0453

    [45]

    Shaaban A, Se S M, Dimin M, et al. Influence of heating temperature and holding time on biochars derived from rubber wood sawdust via slow pyrolysis[J]. Journal of Analytical & Applied Pyrolysis, 2014, 107: 31–39.

    [46]

    Novak J M, Busscher W J, Laird D L, et al. Impact of biochar amendment on fertility of a southeastern coastal plain soil[J]. Soil Science, 2009, 174(2): 105–112. DOI: 10.1097/SS.0b013e3181981d9a

    [47]

    Yang J, Li H, Zhang D, et al. Limited role of biochars in nitrogen fixation through nitrate adsorption[J]. Science of the Total Environment, 2017, 592: 758–765. DOI: 10.1016/j.scitotenv.2016.10.182

    [48]

    Sanford J, Larson R, Runge T. Nitrate sorption to biochar following chemical oxidation[J]. Science of the Total Environment, 2019, 669: 938–947. DOI: 10.1016/j.scitotenv.2019.03.061

    [49]

    Cai Y X, Qi H J Y, Liu Y J, et al. Sorption/desorption behavior and mechanism of NH4+ by biochar as a nitrogen fertilizer sustained-release material[J]. Journal of Agricultural and Food Chemistry, 2016, 64(24): 4958–4964. DOI: 10.1021/acs.jafc.6b00109

    [50]

    Khajavi Shojaei S, Moezzi A, Masir M N, et al. Synthesis modified biochar-based slow-release nitrogen fertilizer increases nitrogen use efficiency and corn (Zea mays L.) growth[J]. Biomass Conversion and Biorefinery, 2020. DOI: org/10.1007/s13399-020-01137-7

    [51]

    Öborn I, Andrist Rangel Y, Askekaard M, et al. Critical aspects of potassium management in agricultural systems[J]. Soil Use and Management, 2005, 21(1): 102–112. DOI: 10.1079/SUM2005297

    [52]

    Simonsson M, Hillier S, Öborn I. Changes in clay minerals and potassium fixation capacity as a result of release and fixation of potassium in long-term field experiments[J]. Geoderma, 2009, 151(3–4): 109–120.

    [53]

    Johannes L, Joseph S. Biochar for environmental management: Science and technology[M]. London: Earthscan, 2009.67–84.

    [54]

    Johnston A, Goulding K. Potassium concentrations in surface and ground waters and the loss of potassium in relation to land use[J]. Potassium in Ecosystems, 1992: 135–158.

    [55]

    Uchimiya M, Bannon D I, Wartelle L H. Retention of heavy metals by carboxyl functional groups of biochars in small arms range soil[J]. Journal of Agricultural and Food Chemistry, 2012, 60(7): 1798–1809. DOI: 10.1021/jf2047898

    [56]

    Rivera Utrilla J, Sanchez Polo M. Adsorption of Cr(III) on ozonised activated carbon. Importance of Cπ—cation interactions[J]. Water Research, 2003, 37(14): 3335–3340. DOI: 10.1016/S0043-1354(03)00177-5

    [57]

    Lei L C, Li X J, Zhang X W. Ammonium removal from aqueous solutions using microwave-treated natural Chinese zeolite[J]. Separation and Purification Technology, 2008, 58(3): 359–366. DOI: 10.1016/j.seppur.2007.05.008

    [58]

    Wahab M A, Jellali S, Jedidi N. Ammonium biosorption onto sawdust: FTIR analysis, kinetics and adsorption isotherms modeling[J]. Bioresource Technology, 2010, 101(14): 5070–5075. DOI: 10.1016/j.biortech.2010.01.121

    [59]

    Cho D W, Chon C M, Kim Y, et al. Adsorption of nitrate and Cr(VI) by cationic polymer-modified granular activated carbon[J]. Chemical Engineering Journal, 2011, 175: 298–305. DOI: 10.1016/j.cej.2011.09.108

    [60]

    Li R H, Wang J J, Zhou B Y, et al. Simultaneous capture removal of phosphate, ammonium and organic substances by MgO impregnated biochar and its potential use in swine wastewater treatment[J]. Journal of Cleaner Production, 2017, 147: 96–107. DOI: 10.1016/j.jclepro.2017.01.069

    [61]

    Lalley J, Han C, Li X, et al. Phosphate adsorption using modified iron oxide-based sorbents in lake water: Kinetics, equilibrium, and column tests[J]. Chemical Engineering Journal, 2016, 284: 1386–1396. DOI: 10.1016/j.cej.2015.08.114

    [62]

    Li R H, Wang J J, Zhou B Y, et al. Enhancing phosphate adsorption by Mg/Al layered double hydroxide functionalized biochar with different Mg/Al ratios[J]. Science of the Total Environment, 2016, 559: 121–129. DOI: 10.1016/j.scitotenv.2016.03.151

    [63]

    Wang Z H, Guo H Y, Shen F, et al. Biochar produced from oak sawdust by Lanthanum (La)-involved pyrolysis for adsorption of ammonium (NH4+), nitrate (NO3), and phosphate (PO43–)[J]. Chemosphere, 2015, 119: 646–653. DOI: 10.1016/j.chemosphere.2014.07.084

    [64]

    Zhang G S, Liu H J, Liu R P, et al. Removal of phosphate from water by a Fe–Mn binary oxide adsorbent[J]. Journal of Colloid and Interface Science, 2009, 335(2): 168–174. DOI: 10.1016/j.jcis.2009.03.019

    [65]

    Lv J B, Liu H J, Liu R P, et al. Adsorptive removal of phosphate by a nanostructured Fe–Al–Mn trimetal oxide adsorbent[J]. Powder Technology, 2013, 233: 146–154. DOI: 10.1016/j.powtec.2012.08.024

    [66]

    El Sharkawi H M, Tojo S, Chosa T, et al. Biochar-ammonium phosphate as an uncoated-slow release fertilizer in sandy soil[J]. Biomass and Bioenergy, 2018, 117: 154–160. DOI: 10.1016/j.biombioe.2018.07.007

    [67]

    Spokas K A, Novak J M, Venterea R T. Biochar’s role as an alternative N-fertilizer: Ammonia capture[J]. Plant and Soil, 2012, 350(1–2): 35–42.

    [68]

    Dunnigan L, Ashman P J, Zhang X, et al. Production of biochar from rice husk: Particulate emissions from the combustion of raw pyrolysis volatiles[J]. Journal of Cleaner Production, 2018, 172: 1639–1645. DOI: 10.1016/j.jclepro.2016.11.107

    [69]

    Cantrell K B, Hunt P G, Uchimiya M, et al. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar[J]. Bioresource Technology, 2012, 107: 419–428. DOI: 10.1016/j.biortech.2011.11.084

    [70]

    Hossain M K, Strezov V, Chan K Y, et al. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar[J]. Journal of Environmental Management, 2011, 92(1): 223–228. DOI: 10.1016/j.jenvman.2010.09.008

    [71]

    Rego F, Soares Dias A P, Casquilho M, et al. Fast determination of lignocellulosic composition of poplar biomass by thermogravimetry[J]. Biomass & Bioenergy, 2019, 122: 375–380.

    [72]

    Wei S Y, Zhu M B, Song J Z. Comprehensive characterization of biochars produced from three major crop straws of China[J]. BioResources, 2017, 12(2): 3316–3330.

    [73]

    Xiao X, Chen B L, Chen Z M, et al. Insight into multiple and multilevel structures of biochars and their potential environmental applications: A critical review[J]. Environmental Science & Technology, 2018, 52(9): 5027–5047.

    [74]

    Karim A A, Kumar M, Singh S K, et al. Potassium enriched biochar production by thermal plasma processing of banana peduncle for soil application[J]. Journal of Analytical & Applied Pyrolysis, 2017, 123: 165–172.

    [75] 易从圣, 宗同强, 杜衍红, 等. 生物炭基复混肥缓释特性研究[J]. 广州化学, 2018, 3(13): 60–64. Yi C S, Zong T Q, Du Y H, et al. Study on shaping and mechanics property of compound fertilizers based on biochar[J]. Guangzhou Chemical Industry, 2018, 3(13): 60–64.

    Yi C S, Zong T Q, Du Y H, et al. Study on shaping and mechanics property of compound fertilizers based on biochar[J], Guangzhou Chemical Industry, 2018, 3(13): 60–64.

    [76] 李正东, 陶金沙, 李恋卿, 等. 生物质炭复合肥对小麦产量及温室气体排放的影响[J]. 土壤通报, 2016, 46(1): 177–183. Li Z D, Tao J S, Li L Q, et al. Effects of biochar-based fertilizers on wheat yield and greenhouse gases emissions[J]. Chinese Journal of Soil Science, 2016, 46(1): 177–183.

    Li Z D, Tao J S, Li L Q, et al. Effects of biochar-based fertilizers on wheat yield and greenhouse gases emissions[J]. Chinese Journal of Soil Science, 2016, 46(01): 177–183.

    [77] 高海英. 一种生物炭基氮肥的特征及其对土壤作物的效应研究[D]. 咸阳: 西北农林科技大学硕士学位论文, 2012.

    Gao H Y. Research on charateristics of a biochar-based nitrogenous fertilizer and its effects on soils and crops[D]. Xianyang: MS Thesis of Northwest A&F University, 2012.

    [78] 陈琳, 乔志刚, 李恋卿, 等. 施用生物质炭基肥对水稻产量及氮素利用的影响[J]. 生态与农村环境学报, 2013, 29(5): 671–675. Chen L, Qiao Z G, Li L Q, et al. Effects of biochar-based fertilizers on rice yield and nitrogen use efficiency[J]. Journal of Ecology and Rural Environment, 2013, 29(5): 671–675.

    Chen L, Qiao Z G, Li L Q, et al. Effects of biochar-based fertilizers on rice yield and nitrogen use efficiency[J]. Journal of Ecology and Rural Environment, 2013, 29(5): 671–675.

    [79] 乔志刚. 不同生物质炭基肥对不同作物生长、产量及氮肥利用率的影响研究[D]. 南京: 南京农业大学硕士学位论文, 2013.

    Qiao Z G. Effects of different biochar fertilizer on growth, yield and nitrogen utilizing rate of different crops[D]. Naijing: MS Thesis of Nanjing Agricultural University, 2013.

    [80] 乔志刚, 陈琳, 李恋卿, 等. 生物质炭基肥对水稻生长及氮素利用率的影响[J]. 中国农学通报, 2014, 30(5): 175–180. Qiao Z G, Chen L, Li L Q, et al. Effects of biochar fertilizer on growth and nitrogen utilizing rate of rice[J]. Chinese Agricultural Science Bulletin, 2014, 30(5): 175–180.

    Qiao Z G, Chen L, Li L Q, et al. Effects of biochar fertilizer on growth and nitrogen utilizing rate of rice[J]. Chinese Agricultural Science Bulletin, 2014, 30(5): 175–180.

    [81] 苑晓辰. 包膜生物炭基肥的制备及特性研究[D]. 武汉: 华中农业大学硕士学位论文, 2018.

    Yuan X C. Preparation and properties of coated biochar-based fertilizer[D]. Wuhan: MS Thesis of Huazhong Agricultural University, 2018.

    [82]

    Khan M A, Kim K W, Mingzhi W, et al. Nutrient-impregnated charcoal: An environmentally friendly slow-release fertilizer[J]. The Environmentalist, 2008, 28(3): 231–235. DOI: 10.1007/s10669-007-9133-5

    [83]

    Chandra S, Medha I, Bhattacharya J. Potassium-iron rice straw biochar composite for sorption of nitrate, phosphate, and ammonium in soil for timely and controlled release[J]. Science of the Total Environment, 2020, 712: 136337. DOI: 10.1016/j.scitotenv.2019.136337

    [84] 张雯. 新型生物炭基氮肥的研制及田间应用研究[D]. 陕西杨凌: 西北农林科技大学硕士学位论文, 2014.

    Zhang W. Development and application of biochar-based slow released nitrogenous fertilizer[D]. Yangling, Shaanxi: MS Thesis of Northwest A&F University, 2014.

    [85] 钟雪梅, 朱义年, 刘杰, 等. 竹炭包膜对肥料氮淋溶和有效性的影响[J]. 农业环境科学学报, 2006, 25(1): 154–157.

    Zhong X M, Zhu Y N, Liu J, et al. Influence of bamboo-charcoal coating on N leaching and effectiveness of fertilizers[J]. Journal of Agro-Environment Science, 2006, 25(Supplement 1): 154–157.

    [86] 沈一丁, 赖小娟, 王磊. 聚乳酸/乙基纤维素复合膜的制备及其性能[J]. 复合材料学报, 2007, 24(3): 40–44. Shen Y D, Lai X J, Wang L. Preparation and properties of poly (lactic acid)/ethyl cellulose composite films[J]. Acta Materiae Compositae Sinica, 2007, 24(3): 40–44.

    Shen Y D, Lai X J, Wang L. Preparation and properties of poly (lactic acid) /ethyl cellulose composite films[J]. Acta Materiae Compositae Sinica, 2007, 24(3): 40–44.

    [87]

    Rashidzadeh A, Olad A, Reyhanitabar A. Hydrogel/clinoptilolite nanocomposite-coated fertilizer: Swelling, water-retention and slow-release fertilizer properties[J]. Polymer Bulletin, 2015, 72(10): 2667–2684. DOI: 10.1007/s00289-015-1428-y

    [88]

    Rindt D, Blouin G, Getsinger J. Sulfur coating on nitrogen fertilizer to reduce dissolution rate[J]. Journal of Agricultural and Food Chemistry, 1968, 16(5): 773–778. DOI: 10.1021/jf60159a015

    [89] 苑晓辰, 任奕林, 彭春晖, 等. 一种生物炭基肥包膜材料的制备及特性研究[J]. 安徽农业大学学报, 2018, 45(1): 110–116. Yan X C, Ren Y L, Peng C H, et al. Preparation of the coating material for a biochar-based fertilizer and analysis of its property[J]. Journal of Anhui Agricultural University, 2018, 45(1): 110–116.

    Yan X C, Ren Y L, Peng C H, et al. Preparation of the coating material for a biochar-based fertilizer and analysis of its property[J]. Journal of Anhui Agricultural University, 2018, 45(1): 110–116.

    [90] 纪锐琳. 氮肥包膜及固氮吸附实验研究[D]. 桂林: 桂林工学院硕士学位论文, 2007.

    Ji R L. Studies on coated nitrogen fertilizers and nitrogen fixation adsorption experiment[D]. Guilin: MS Thesis of Guilin University of Technology, 2007.

    [91] 王思源, 宁建凤, 王荣辉, 等. 黏土矿物混合生物炭包膜尿素的制备及其氮素污染减排潜力[J]. 水土保持研究, 2019, 26(5): 151–157. Wang S Y, Ning J F, Wang R H, et al. Clay mineral and biochar mixture coated urea preparation and its nitrogen pollution reduction potential[J]. Research of Soil and Water Conservation, 2019, 26(5): 151–157.

    Wang S Y, Ning J F, Wang R H, et al. Clay mineral and biochar mixture coated urea preparation and its nitrogen pollution reduction potential[J]. Research of Soil and Water Conservation, 2019, 26(5): 151–157.

    [92] 吕娟, 任永志, 王明峰, 等. 淀粉胶生物质炭基氮肥制备及其缓释特性分析[J]. 农机化研究, 2019, 41(6): 175–180. Lü J, Ren Y Z, Wang M F, et al. Biochar based nitrogen fertilizer preparation with starch as adhesive and its release property analysis[J]. Journal of Agricultural Mechanization Research, 2019, 41(6): 175–180.

    Lv J, Ren Y Z, Wang M F, et al. Biochar based nitrogen fertilizer preparation with starch as adhesive and its release property analysis[J]. Journal of Agricultural Mechanization Research, 2019, 41(6): 175–180.

    [93] 牛智有, 刘鸣, 牛文娟, 等. 炭肥比和膨润土粘结剂对炭基肥颗粒理化及缓释特性的影响[J]. 农业工程学报, 2020, 36(2): 219–227. Niu Z Y, Liu M, Niu W J, et al. Effects of biochar fertilizer ratio and bentonite binder on physicochemical properties and slow release properties of biochar fertilizer particles[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(2): 219–227.

    Niu Z Y, Liu M, Niu W J, et al. Effects of biochar fertilizer ratio and bentonite binder on physicochemical properties and slow release properties of biochar fertilizer particles[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(2): 219–227.

    [94]

    González M, Cea M, Medina J, et al. Evaluation of biodegradable polymers as encapsulating agents for the development of a urea controlled-release fertilizer using biochar as support material[J]. Science of the Total Environment, 2015, 505: 446–453. DOI: 10.1016/j.scitotenv.2014.10.014

    [95] 王鹏. 生物炭与有机肥不同配比对设施黄瓜生长及根际环境影响研究[D]. 呼和浩特: 内蒙古农业大学硕士学位论文, 2019.

    Wang P. Effects of different proportions of biochar and organic fertilizer on growth and rhizosphere environment of cucumber in greenhouse[D]. Hohhot: MS Thesis of Inner Mongolia Agricultural University, 2019.

    [96] 王智慧, 唐春双, 范博文, 等. 不同配比炭基肥对玉米生长、土壤养分及呼吸的影响[J]. 黑龙江八一农垦大学学报, 2017, 29(3): 1–4. Wang Z H, Tang C S, Fan B W, et al. Effects of different ratio of carbon basal fertilizer on maize growth, soil nutrient and respiration[J]. Journal of Heilongjiang Bayi Agricultural University, 2017, 29(3): 1–4.

    Wang Z H, Tang C S, Fan B W, et al. Effects of different ratio of carbon basal fertilizer on maize growth, soil nutrient and respiration[J]. Journal of Heilongjiang Bayi Agricultural University, 2017, 29(3): 1–4.

    [97] 王素贞. 不同炭基肥料对高粱产量与品质的影响[J]. 现代农业科技, 2012, (8): 65, 67. Wang S Z. Effects of different carbon based fertilizers on the yield and quality ofSorghum[J]. Modern Agricultural Science and Technology, 2012, (8): 65, 67.

    Wang S Z. Effects of different carbon based fertilizers on the yield and quality of Sorghum[J]. Modern Agricultural Science and Technology, 2012, (8): 65–67.

    [98] 卢广远, 张艳, 王祥福, 等. 炭基肥料种类对土壤物理性质及玉米产量的影响[J]. 河北农业科学, 2011, 15(5): 50–53. Lu G Y, Zhang Y, Wang X F, et al. Effects of carbon base fertilizers on soil physical properties and maize yield[J]. Journal of Hebei Agricultural Sciences, 2011, 15(5): 50–53.

    Lu G Y, Zhang Y, Wang X F, et al. Effects of carbon base fertilizers on soil physical properties and maize yield[J]. Journal of Hebei Agricultural Sciences, 2011, 15(5): 50–53.

    [99] 杨武娟, 高文川, 徐芦, 等. 炭基肥及不同施肥方式对甘薯产量影响的研究[J]. 安徽农学通报, 2018, 24(21): 104–105. Yang W J, Gao W C, Xu L, et al. Effect of carbon based fertilizer and different fertilization methods on yield of sweet potato[J]. Anhui Agricultural Science Bulletin, 2018, 24(21): 104–105.

    Yang W J, Gao W C, Xu L, et al. Effect of carbon based fertilizer and different fertilization methods on yield of sweet potato[J]. Anhui Agricultural Science Bulletin, 2018, 24(21): 104–105.

    [100] 李鸿博, 钟怡, 张昊楠, 等. 生物炭修复重金属污染农田土壤的机制及应用研究进展[J]. 农业工程学报, 2020, 36(13): 173–185. Li H B, Zhong Y, Zhang H N, et al. Mechanism for the application of biochar in remediation of heavy metal contaminated farmland and its research advances[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(13): 173–185.

    Li H B, Zhong Y, Zhang H N, et al. Mechanism for the application of biochar in remediation of heavy metal contaminated farmland and its research advances[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(13): 173–185.

    [101] 万海涛. 烤烟发育和产量品质及植烟土壤理化性状对生物炭的响应研究[D]. 郑州: 河南农业大学硕士学位论文, 2014.

    Wan H T. Responses of Flue-cured tobacco development yield quality and tobacco-planting soil properties to biochar rates[D]. Zhengzhou: MS Thesis of Henan Agricultural University, 2014.

    [102] 潘全良, 陈坤, 宋涛, 等. 生物炭及炭基肥对棕壤持水能力的影响[J]. 水土保持研究, 2017, 24(1): 115–121. Pan Q L, Chen Q, Song T, et al. Influences of biochar and biochar-based compound fertilizer on soil water retention in brown soil[J]. Research of Soil and Water Conservation, 2017, 24(1): 115–121.

    Pan Q L, Chen Q, Song T, et al. Influences of biochar and biochar-based compound fertilizer on soil water retention in brown soil[J]. Research of Soil and Water Conservation, 2017, 24(1): 115–121.

    [103] 刘长涛, 侯建伟, 索全义, 等. 玉米秸秆生物质炭基肥的结构与性质表征[J]. 土壤, 2019, 51(3): 465–469. Liu C T, Hou J W, Suo Q Y, et al. Structure and performance characterization of maize straw biochar-based fertilizer[J]. Soils, 2019, 51(3): 465–469.

    Liu C T, Hou J W, Suo Q Y, et al. Structure and performance characterization of maize straw biochar-based fertilizer[J]. Soils, 2019, 51(3): 465–469.

    [104] 张明月. 生物炭对土壤性质及作物生长的影响研究[D]. 泰安: 山东农业大学硕士学位论文, 2012.

    Zhang M Y. Effects of biochar on soil properties and crop growth[D]. Tai'an: MS Thesis of Shandong Agricultural University, 2012.

    [105]

    Li Z M, Unzué Belmonte D, Cornelis J T, et al. Effects of phytolithic rice-straw biochar, soil buffering capacity and pH on silicon bioavailability[J]. Plant and Soil, 2019, 438(1–2): 187–203.

    [106]

    Zhou C F, Heal K, Tigabu M, et al. Biochar addition to forest plantation soil enhances phosphorus availability and soil bacterial community diversity[J]. Forest Ecology and Management, 2020, 455: 117635. DOI: 10.1016/j.foreco.2019.117635

    [107]

    Chintala R, Schumacher T E, Mcdonald L M, et al. Phosphorus sorption and availability from biochars and soil/biochar mixtures[J]. CLEAN–Soil, Air, Water, 2014, 42(5): 626–634. DOI: 10.1002/clen.201300089

    [108]

    Barber S A, Soil nutrient bioavailability: A mechanistic approach[M]. New Jersey: John Wiley & Sons, 1995.

    [109]

    Yadav V, Karak T, Singh S, et al. Benefits of biochar over other organic amendments: Responses for plant pro-ductivity (Pelargonium graveolens L.) and nitrogen and phosphorus losses[J]. Industrial Crops and Products, 2019, 131: 96–105. DOI: 10.1016/j.indcrop.2019.01.045

    [110]

    Singh B P, Hatton B J, Singh B, et al. Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils[J]. Journal of Environmental Quality, 2010, 39(4): 1224–1235. DOI: 10.2134/jeq2009.0138

    [111]

    Mandal S, Thangarajan R, Bolan N S, et al. Biochar-induced concomitant decrease in ammonia volatilization and increase in nitrogen use efficiency by wheat[J]. Chemosphere, 2016, 142: 120–127. DOI: 10.1016/j.chemosphere.2015.04.086

    [112]

    Yan M, Fan X R, Feng H M, et al. Rice OsNAR2.1 interacts with OsNRT2.1, OsNRT2.2 and OsNRT2.3a nitrate transporters to provide uptake over high and low concentration ranges[J]. Plant, Cell & Environment, 2011, 34(8): 1360–1372.

    [113]

    Schachtman D P, Reid R J, Ayling S M. Phosphorus uptake by plants: From soil to cell[J]. Plant Physiology, 1998, 116(2): 447–453. DOI: 10.1104/pp.116.2.447

    [114]

    Joseph S, Anawar H M, Storer P, et al. Effects of enriched biochars containing magnetic iron nanoparticles on mycorrhizal colonisation, plant growth, nutrient uptake and soil quality improvement[J]. Pedosphere, 2015, 25(5): 749–760. DOI: 10.1016/S1002-0160(15)30056-4

    [115]

    Rousk J, Bååth E, Brookes P C, et al. Soil bacterial and fungal communities across a pH gradient in an arable soil[J]. The ISME Journal, 2010, 4(10): 1340–1351. DOI: 10.1038/ismej.2010.58

    [116]

    Mukherjee A, Zimmerman A, Harris W. Surface chemistry variations among a series of laboratory-produced biochars[J]. Geoderma, 2011, 163(3–4): 247–255.

    [117]

    Foster E J, Hansen N, Wallenstein M, et al. Biochar and manure amendments impact soil nutrients and microbial enzymatic activities in a semi-arid irrigated maize cropping system[J]. Agriculture, Ecosystems & Environment, 2016, 233: 404–414.

    [118]

    Zhai L M, Caiji Z M, Liu J, et al. Short-term effects of maize residue biochar on phosphorus availability in two soils with different phosphorus sorption capacities[J]. Biology and Fertility of Soils, 2015, 51(1): 113–122. DOI: 10.1007/s00374-014-0954-3

    [119]

    Zhang Q Q, Song Y F, Wu Z, et al. Effects of six-year biochar amendment on soil aggregation, crop growth, and nitrogen and phosphorus use efficiencies in a rice-wheat rotation[J]. Journal of Cleaner Production, 2020, 242: 118435. DOI: 10.1016/j.jclepro.2019.118435

    [120]

    Berglund L, Deluca T, Zackrisson O. Activated carbon amendments to soil alters nitrification rates in Scots pine forests[J]. Soil Biology and Biochemistry, 2004, 36(12): 2067–2073. DOI: 10.1016/j.soilbio.2004.06.005

    [121]

    Deluca T, Mackenzie M, Gundale M, et al. Wildfire-produced charcoal directly influences nitrogen cycling in ponderosa pine forests[J]. Soil Science Society of America Journal, 2006, 70(2): 448–453. DOI: 10.2136/sssaj2005.0096

    [122]

    Lehmann J, Rillig M C, Thies J, et al. Biochar effects on soil biota—a review[J]. Soil Biology and Biochemistry, 2011, 43(9): 1812–1836. DOI: 10.1016/j.soilbio.2011.04.022

    [123]

    Rousk J, Dempster D, Jones D. Transient biochar effects on decomposer microbial growth rates: Evidence from two agricultural case-studies[J]. European Journal of Soil Science, 2013, 64(6): 770–776. DOI: 10.1111/ejss.12103

  • 期刊类型引用(36)

    1. 赵希梅,严如玉,向风云,李绪勋,高沁匀,李紫旭,李书月,李继福. 中国玉米优势产区生产格局及施肥现状研究. 玉米科学. 2025(01): 93-103 . 百度学术
    2. 李禹,段斌,杨代云,周艳宾,朱宏强,刘凯义,褚建忠,王戈,王娜,白羽祥,杜宇,代惠娟,周鹏. 有机肥配施微生物菌剂对土壤理化特性及烤烟产质量的影响. 江苏农业科学. 2025(02): 81-87 . 百度学术
    3. 亚力昆江·吐尔逊,张凯悦,高志伟,王珂,钟梅,代正华,李建,刘洋. 棉秆和油页岩共热解生物炭的氨氮吸附性能研究. 化学试剂. 2024(05): 39-46 . 百度学术
    4. 常康,李明堂,杨晋霞,吴迪. 炭基磷肥对黑土和红壤磷素有效性及形态变化的影响. 中国土壤与肥料. 2024(03): 40-48 . 百度学术
    5. 王子豪,梁红怡,张冬寒,李龙城,魏露露,万亚男,陈清. 中国设施土壤重金属累积特征与污染阻控技术研究进展. 农业工程学报. 2024(09): 1-14 . 百度学术
    6. 沈铮,黄乐煜,徐军,陈卫,赵东方,张帅,姚鹏伟. 炭基肥对植烟土壤理化特性及烟叶生产的影响研究进展. 中南农业科技. 2024(07): 217-222 . 百度学术
    7. 杨盼,李建武. 玄武岩对农田土壤、农作物生长及固碳的影响研究进展. 农业工程. 2024(07): 111-120 . 百度学术
    8. 兰宇,孟军,韩晓日,陈温福. 生物炭基产品及其对土壤培肥改良效应的研究进展. 植物营养与肥料学报. 2024(07): 1396-1412 . 本站查看
    9. 叶小敏,高冠女,张文,尤业明,黄雪蔓. 添加生物质炭对桉树人工林土壤磷组分及转化的影响. 广西植物. 2024(07): 1257-1268 . 百度学术
    10. 傅志强,刘祯,马春花,温梦玲,奚如春. 生物炭及炭基肥对土壤质量与植物生长的影响. 浙江农业学报. 2024(07): 1634-1645 . 百度学术
    11. 张福建,姚文武. 生物炭和腐植酸对唐菖蒲生长及根际土壤环境的影响. 核农学报. 2024(11): 2211-2218 . 百度学术
    12. 陈大江,杨青云,朱宏强,吕鹏辉,刘远上,石成广,宋文峰,王戈,王娜,杜宇,白羽祥,代惠娟,周鹏. 不同肥料运筹模式对烤烟生长及产质量的影响. 山西农业科学. 2024(05): 107-113 . 百度学术
    13. 杨英连,梁俭,李知来,冯群. 生物炭对土壤淹水过程氮释放的影响. 农村科学实验. 2024(19): 193-195 . 百度学术
    14. 李璞君,唐丽,赵博,邸东柳,陈岩,肖江,陈光才. 生物炭基土壤改良剂对锑矿区土壤质量及亮叶桦生长的影响. 生态环境学报. 2024(12): 1953-1963 . 百度学术
    15. 毛忆莲,葛晓改,周军刚,周本智,高歌,徐耀文,邱磊. 生物质炭配施氮肥对雷竹林土壤微生物碳氮利用效率的影响. 生态学报. 2024(24): 11220-11228 . 百度学术
    16. 宋旭燕,罗鹤松,杨帅,王东梅. 生物炭基缓释肥的制备及其对土壤理化性质的影响. 环境监测管理与技术. 2023(01): 48-50+63 . 百度学术
    17. 魏宁宁,蒋子丹,张琳,张庆. 改性炭基肥的研究进展及展望. 当代化工研究. 2023(03): 5-8 . 百度学术
    18. 张毅,杨文浩,周碧青,杨静,邢世和. 炭基肥对酸化茶园土壤细菌和真菌数量及群落结构的影响. 福建农林大学学报(自然科学版). 2023(02): 247-257 . 百度学术
    19. 刘芳,罗婷,马悦阳,舒倩,夏栋. 生物炭对粗放型绿色屋顶出流水质的影响. 三峡大学学报(自然科学版). 2023(02): 1-6+29 . 百度学术
    20. 何晓冰,李俊营,许跃奇,王晓强,阎海涛,王明鑫,杨楠,常栋. 减氮配施炭基肥对植烟土壤微生物群落多样性的影响. 土壤通报. 2023(02): 400-406 . 百度学术
    21. 郑风英,蔡宗明,韩永振,荣俊冬,郑郁善,陈礼光. 施肥与带宽对采伐带毛竹生长及土壤特性的影响. 福建农林大学学报(自然科学版). 2023(03): 317-322 . 百度学术
    22. 朱德伦,周文瑾,贾孟,朱宣全,杜宇,王娜,周鹏,杨焕文,白羽祥,王戈. 烟秆生物质炭基肥对烤烟生理特性及土壤主要环境因子的影响. 南方农业学报. 2023(03): 867-876 . 百度学术
    23. 傅建舟,谢博伊,庄海峰,卢云鹏. 猪粪炭基肥替代化肥对土壤肥力与水稻产量的影响. 中国资源综合利用. 2023(08): 18-20 . 百度学术
    24. 程运龙,郑文魁,高强,王淳,郭新送. 磺化炭基复合肥对盐化潮土小麦生长及土壤养分的影响. 中国土壤与肥料. 2023(07): 32-39 . 百度学术
    25. 叶菁,王义祥,刘岑薇,林怡,黄家庆,翁伯琦. 连续炭基肥替代化肥对菜园土壤性质和细菌群落结构的影响. 热带亚热带植物学报. 2023(04): 494-502 . 百度学术
    26. 刘威帆,王晓港,苏泽晖,刘昊,麻仲花,刘吉利,吴娜. 生物质炭基肥对旱区玉米土壤养分及酶活性的影响. 农业现代化研究. 2023(05): 903-911 . 百度学术
    27. 方远鹏,谢晏芬,赵宇婷,张艳艳,张国洪,方志鹏,王文波,韩家宝,王娜. 不同生物质炭基肥施用量对土壤养分及烤烟产质量的影响. 江西农业学报. 2023(10): 14-20+25 . 百度学术
    28. 朱青和,马壮,裘立,董达. 竹炭和竹炭包膜复合肥对毛竹林土壤磷有效性的影响及其微生物学机理. 植物营养与肥料学报. 2022(03): 450-459 . 本站查看
    29. 黄家庆,叶菁,陈彪,翁伯琦,王义祥. 餐厨垃圾生物炭、炭基肥对种植芥菜土壤细菌群落结构的影响. 中国土壤与肥料. 2022(03): 182-192 . 百度学术
    30. 白玉超,朱婧,王宗抗,崔国贤,佘玮,王辉. 利用稻壳炭提高复合肥料在土壤中的磷素有效性. 植物营养与肥料学报. 2022(04): 664-674 . 本站查看
    31. 任依,姜培坤,鲁长根,邵建均,周雪娥,陈俊辉. 炭基肥与有机肥替代部分化肥对青紫泥水稻土微生物丰度及酶活性的影响. 浙江农林大学学报. 2022(04): 860-868 . 百度学术
    32. 李明,徐涛,俞湾青,苏甜,刘方平,杨士红. 不同灌溉模式和施肥处理对受涝稻田土壤酶活性的影响. 节水灌溉. 2022(09): 24-29 . 百度学术
    33. 阎淑滑,白怀瑾,张雪平,陈建芳. 生物质炭基肥在辣椒上的应用效果初报. 农业科技通讯. 2022(09): 69-70+154 . 百度学术
    34. 徐赛,张锦韬,盘文政,高志豪,张惠林,唐应勇,夏凯. 微生物菌剂不同施肥方法对烤烟生长及烟叶产质量的影响. 安徽农业科学. 2022(21): 166-169 . 百度学术
    35. 张金峰,谭小兵,吕世保,合云宇,李云川,施定国,王戈,白羽祥. 化肥减量配施炭基肥对烤烟产质量及土壤酶活性的影响. 南方农业学报. 2022(11): 3079-3087 . 百度学术
    36. 江来,任树鹏,郭欣,王琳玲,陈静,李鸿博,周念来,周驰,苗滕. 生物炭基人工湿地的水体净化作用及其机制. 环境科学与技术. 2021(08): 47-54 . 百度学术

    其他类型引用(29)

图(3)
计量
  • 文章访问数:  2511
  • HTML全文浏览量:  1447
  • PDF下载量:  259
  • 被引次数: 65
出版历程
  • 收稿日期:  2020-09-08
  • 录用日期:  2020-12-29
  • 网络出版日期:  2021-05-05
  • 刊出日期:  2021-05-24

目录

/

返回文章
返回