Combining application of ammonium persulfate with different forms of Trichoderma fertilizer alleviates apple replant disease
-
摘要:目的
研究肥料形态及土壤条件对木霉菌肥改善苹果土壤连作障碍的影响,以期为缓解苹果连作障碍提供有效的理论依据和技术支持。
方法试验以苹果砧木—平邑甜茶 (Malus hupehensis Rehd.) 幼苗为试材,设置4个处理:连作土 (CK)、过硫酸铵处理 (T1)、过硫酸铵加颗粒状木霉菌肥 (T2)、过硫酸铵加粉末状木霉菌肥 (T3)。通过土壤微生物高通量测序、实时荧光定量PCR等技术研究了各处理对土壤微生物群落结构和土壤有害真菌数量的影响,并对各处理的平邑甜茶幼苗生理特性 (植株生物量、根系呼吸速率、根系保护酶活性) 进行了测定。
结果颗粒状与粉末状木霉菌肥不同程度地促进了平邑甜茶幼苗的生长,改善了连作土壤微生物环境,提高了根系保护酶及土壤酶活性,颗粒状菌肥的促进效果好于粉末状菌肥。与对照相比,T1处理显著提高了连作平邑甜茶幼苗的生长,T2和T3处理促进平邑甜茶幼苗生长的效果又显著高于T1处理。T1处理的土壤蔗糖酶、磷酸酶、过氧化氢酶、脲酶活性显著低于对照,而T2、T3处理显著高于对照,T2处理的蔗糖酶、磷酸酶、过氧化氢酶、脲酶的活性分别比对照提高45.41%、92.85%、56.32%、186.67%,T3处理分别比对照提高32.96%、83.89%、43.68%、165.56%。平邑甜茶幼苗的根系活力及根系氧化酶活性4个处理间均差异显著,由高到低的顺序为T2 > T3 > T1 > CK,T2处理的根系活力及根系氧化酶活性分别是对照的1.41和2.80倍。实时荧光定量PCR分析结果表明,T1、T2和T3处理都能优化土壤微生物环境,增加土壤细菌数量,降低土壤有害真菌腐皮镰孢菌 (Fusarium solani) 数量,T2与T3处理土壤细菌分别是对照的2.18、2.55倍,放线菌数量分别是对照的1.71、1.53倍。土壤高通量测序检测数据显示,相较于连作对照,T2处理木霉属相对丰度明显增加58.8%,链格孢属相对丰度显著下降92.87%,T3处理的镰孢属相对丰度与连作对照相比降低了64.18%。
结论在过硫酸铵处理的连作土壤上施用木霉菌肥,可进一步提高土壤中细菌数量,降低有害真菌数量,优化土壤微生物环境,提高平邑甜茶幼苗的根系活力和植株生长。过硫酸铵联用颗粒状木霉菌肥的效果优于联用粉末状木霉菌肥。
Abstract:ObjectivesWe studied the effects of fertilizer forms and soil conditions on apple replant soil disease by using Trichoderma fertilizer to provide effective theoretical basis and technical support for alleviating apple replant disease.
MethodsThis experiment, using apple rootstock (Malus hupehensis Rehd.) seedlings as the test material, involved four treatments: replant soil (CK), ammonium persulfate (T1), ammonium persulfate plus granular Trichoderma fertilizer (T2), and ammonium persulfate plus powdery Trichoderma fertilizer (T3). Through high-throughput sequencing of soil microorganisms, quantitative real-time PCR and other technologies, the effects of each treatment on soil microbial community structure and number of soil harmful fungi were studied. Physiological characteristics of Malus hupehensis Rehd. seedlings (plant biomass, root respiration rate, and root protective enzyme activity) were determined.
ResultsGranular and powdery Trichoderma fertilizers promoted the growth of Malus hupehensis Rehd. seedlings in different degrees, improved soil microbial environment, and increased the activities of root protection enzymes and soil enzymes. The promotion effect of granular fertilizer was better than that of powdery fertilizer. Compared with control, T1 treatment significantly improved the growth of M. hupehensis Rehd. seedlings, while T2 and T3 treatments showed significantly higher promoting effects than T1 did. Compared with CK, T1 significantly decreased the activities of sucrase, phosphatase, catalase and urease, while T2 increased those by 45.41%, 92.85%, 56.32% and 186.67%, T3 increased those by 32.96%, 83.89%, 43.68% and 165.56%, respectively. The root activity and root oxidase activity of M. hupehensis Rehd. seedlings were in order of T2 > T3 > T1 > CK, those in T2 treatment were 1.41 and 2.80 times respectively higher than those in CK. Real-time fluorescence quantitative results showed that both ammonium persulfate and Trichoderma fertilizer application could optimize soil microbial environment, increase the number of soil bacteria, and reduce the number of soil harmful fungus (Fusarium solani). Compared with CK, the number of soil bacteria was 2.18 and 2.55 times of hat in CK under T2 and T3 treatment, and the number of soil actinomycetes was 1.71 and 1.53 times under T2 and T3, respectively. Soil high-throughput sequencing data showed that T2 significantly increased the relative abundance of Trichoderma by 58.8%, decreased the relative abundance of Alternaria by 92.87%, while T3 decreased the relative abundance of Fusarium by 64.18%.
ConclusionsAmmonium persulfate plus Trichoderma fertilizer could significantly reduce the number of harmful soil fungi, increase the number of soil bacteria, optimize the soil microbial environment, and promote the root activities and growth of M. hupehensis Rehd. seedlings. The effect of ammonium persulfate plus with granular Trichoderma fertilizer is better than that of ammonium persulfate plus powder Trichoderma fertilizer.
-
Keywords:
- replant disease /
- Malus hupehensis Rehd /
- (NH4)2S2O8 /
- Trichoderma fertilizer /
- fertilizer form /
- soil microorganism /
- soil enzyme
-
-
图 1 不同处理对根系呼吸速率及根系保护酶活性的影响
[注 (Note):CK—连作果园土壤 Replanted orchard soil;T1—过硫酸铵处理 Applying (NH4)2S2O8 in soil;T2—过硫酸铵加颗粒状木霉菌肥 Applying (NH4)2S2O8 and granular Trichoderma fertilizer;T3—过硫酸铵加粉末状木霉菌肥 Applying (NH4)2S2O8 plus powdered Trichoderma fertilizer;柱上不同字母表示处理间差异显著 (P < 0.05) Different letters above the bars indicate significant difference among treatments (P < 0.05).]
Figure 1. Protective enzyme activity and respiration rate of root under different treatments
图 2 不同处理条件下属水平土壤真菌群落的相对丰度
[注(Note):CK—连作果园土壤 Replanted orchard soil;T1—过硫酸铵处理Applying (NH4)2S2O8 in soil;T2—过硫酸铵加颗粒状木霉菌肥 Applying (NH4)2S2O8 and granular Trichoderma fertilizer;T3—过硫酸铵加粉末状木霉菌肥 Applying (NH4)2S2O8 plus powdered Trichoderma fertilizer.]
Figure 2. Relative abundance of soil fungi communities under different treatments
图 3 不同处理土壤真菌群落主坐标分析 (PCoA) 和非度量多维尺度分析 (NMDS)
[注(Note):CK—连作果园土壤 Replanted orchard soil;T1—过硫酸铵处理 Applying (NH4)2S2O8 in soil;T2—过硫酸铵加颗粒状木霉菌肥 Applying (NH4)2S2O8 and granular Trichoderma fertilizer;T3—过硫酸铵加粉末状木霉菌肥 Applying (NH4)2S2O8 plus powdered Trichoderma fertilizer.]
Figure 3. PCoA and NMDS analysis of soil fungal communities under different treatments
表 1 不同处理对平邑甜茶幼苗生物量的影响
Table 1 Plant biomass of Malus hupehensis Rehd. under different orchard soil treatments
处理 Treatment 株高 Plant height (cm) 地径 Stem diameter (mm) 鲜质量 Fresh weight (g/plant) 干质量 Dry weight (g/plant) CK 62.30 ± 0.98 c 5.58 ± 0.18 c 32.61 ± 1.32 c 13.31 ± 0.60 c T1 79.00 ± 1.50 b 10.18 ± 0.26 b 70.82 ± 0.36 b 29.35 ± 0.76 b T2 84.43 ± 0.83 a 10.75 ± 0.13 a 76.00 ± 1.99 a 31.67 ± 1.82 a T3 82.60 ± 1.85 a 10.60 ± 0.23 a 73.91 ± 0.77 a 30.55 ± 0.31 ab 注(Note):CK—连作果园土壤 Replanted orchard soil; T1—过硫酸铵处理 Applying (NH4)2S2O8 in soil; T2—过硫酸铵加颗粒状木霉菌肥 Applying (NH4)2S2O8 and granular Trichoderma fertilizer; T3—过硫酸铵加粉末状木霉菌肥 Applying (NH4)2S2O8 plus powdered Trichoderma fertilizer; 同列数据后不同字母表示处理间差异显著 (P < 0.05) Values followed by different letters indicate significant difference among treatments (P < 0.05). 表 2 不同处理土壤酶活性
Table 2 Soil enzyme activities of different treatments
处理 Treatment 过氧化氢酶 Catalase (mL/g) 磷酸酶 Phosphatase [mg/(g·d)] 脲酶 Urease [mg/(g·d)] 蔗糖酶 Sucrase [mg/(g·d)] CK 0.174 ± 0.002 c 8.792 ± 0.590 b 0.090 ± 0.003 c 6.778 ± 0.098 c T1 0.160 ± 0.002 d 7.612 ± 0.295 c 0.076 ± 0.002 d 6.413 ± 0.057 d T2 0.272 ± 0.006 a 16.955 ± 0.742 a 0.258 ± 0.001 a 9.856 ± 0.152 a T3 0.250 ± 0.005 b 16.168 ± 0.511 a 0.239 ± 0.002 b 9.012 ± 0.043 b 注(Note):CK—连作果园土壤 Replanted orchard soil; T1—过硫酸铵处理 Applying (NH4)2S2O8 in soil; T2—过硫酸铵加颗粒状木霉菌肥 Applying (NH4)2S2O8 and granular Trichoderma fertilizer; T3—过硫酸铵加粉末状木霉菌肥 Applying (NH4)2S2O8 plus powdered Trichoderma fertilizer; 同列数据后不同字母表示处理间差异显著 (P < 0.05) Values followed by different letters indicate significant difference among treatments (P < 0.05). 表 3 不同处理的土壤微生物数量
Table 3 The quantity of soil microorganisms under different treatments
处理
Treatment细菌
Bacteria
(× 105 cfu/g)放线菌
Actinomyces
(× 105 cfu/g)腐皮镰孢菌拷贝数
F. solani copies
(× 1011)CK 7.33 ± 0.58 c 12.67 ± 1.53 c 0.82 ± 0.02 a T1 4.33 ± 0.58 d 9.00 ± 1.00 d 0.46 ± 0.01 b T2 16.00 ± 1.00 b 21.67 ± 0.58 a 0.13 ± 0.01 c T3 18.67 ± 0.58 a 19.33 ± 0.58 b 0.14 ± 0.03 c 注(Note):CK—连作果园土壤 Replanted orchard soil; T1—过硫酸铵处理 Applying (NH4)2S2O8 in soil; T2—过硫酸铵加颗粒状木霉菌肥 Applying (NH4)2S2O8 and granular Trichoderma fertilizer; T3—过硫酸铵加粉末状木霉菌肥 Applying (NH4)2S2O8 plus powdered Trichoderma fertilizer; 同列数据后不同字母表示处理间差异显著 (P < 0.05) Values followed by different letters indicate significant difference among treatments (P < 0.05). 表 4 不同处理下土壤真菌群落在属水平的相对丰度 (%)
Table 4 Relative abundance of soil fungal communities at genus level under different treatments
处理 Treatment 链格孢属 Alternaria 镰孢菌属 Fusarium 芽枝霉属 Cladosporium 木霉属 Trichoderma CK 9.68 ± 3.25 a 9.66 ± 2.09 a 6.42 ± 2.44 a 3.30 ± 0.62 b T1 0.99 ± 0.09 b 6.72 ± 0.57 b 0.64 ± 0.19 b 3.43 ± 0.87 b T2 0.69 ± 0.08 b 8.33 ± 1.98 ab 0.70 ± 0.16 b 5.24 ± 0.21 a T3 0.90 ± 0.05 b 3.46 ± 0.24 c 0.63 ± 0.17 b 4.74 ± 0.71 a 注(Note):CK—连作果园土壤 Replanted orchard soil; T1—过硫酸铵处理 Applying (NH4)2S2O8 in soil; T2—过硫酸铵加颗粒状木霉菌肥 Applying (NH4)2S2O8 and granular Trichoderma fertilizer; T3—过硫酸铵加粉末状木霉菌肥 Applying (NH4)2S2O8 plus powdered Trichoderma fertilizer; 同列数据后不同字母表示处理间差异显著 (P < 0.05) Values followed by different letters indicate significant difference among treatments (P < 0.05). -
[1] 陈学森, 韩明玉, 苏桂林, 等. 当今世界苹果产业发展趋势及我国苹果产业优质高效发展意见[J]. 果树学报, 2010, 27(4): 598–604. Chen X S, Han M Y, Su G L, et al. Discussion on today’s world apple industry trends and the suggestions on sustainable and efficient development of apple industry in China[J]. Journal of Fruit Science, 2010, 27(4): 598–604.
[2] Mazzola M, Manici L M. Apple replant disease: Role of microbial ecology in cause and control[J]. Annual Review of Phytopathology, 2012, 50: 45–65. DOI: 10.1146/annurev-phyto-081211-173005
[3] Hoestra H. General remarks on replant disease[J]. Acta Horticulture, 1988, 233: 11–16.
[4] 毛志泉, 尹承苗, 陈学森, 等. 我国苹果产业节本增效关键技术Ⅴ: 苹果连作障碍防控技术[J]. 中国果树, 2017, (5): 1–4, 14. Mao Z Q, Yin C M, Chen X S, et al. Prevention and control technology of apple replant disease[J]. China Fruits, 2017, (5): 1–4, 14.
[5] 尹承苗, 王玫, 王嘉艳, 等. 苹果连作障碍研究进展[J]. 园艺学报, 2017, 44(11): 2215–2230. Yin C M, Wang M, Wang J Y, et al. The research advance on apple replant disease[J]. Acta Horticulturae Sinica, 2017, 44(11): 2215–2230.
[6] 冯翠娥, 岳思君, 简阿妮, 等. 硒砂瓜连作对土壤真菌群落结构的影响[J]. 中国生态农业学报, 2019, 27(4): 537–544. Feng C E, Yue S J, Jian A N, et al. The effect of continuous cropping of selenium melon on soil fungal community structure[J]. Chinese Journal of Eco-Agriculture, 2019, 27(4): 537–544.
[7] Nguvo K J, Gao X Q. Weapons hidden underneath: Bio control agents and their potentials to activate plant induced systemic resistance in controlling crop Fusarium diseases[J]. Journal of Plant Diseases and Protection, 2019, 126(3): 177–190. DOI: 10.1007/s41348-019-00222-y
[8] 华菊玲, 刘光荣, 黄劲松. 连作对芝麻根际土壤微生物群落的影响[J]. 生态学报, 2012, 32(9): 2936–2942. DOI: 10.5846/stxb201104010422 Hua J L, Liu G R, Huang J S. Effect of continuous cropping of sesame on rhizospheric microbial communities[J]. Acta Ecologica Sinica, 2012, 32(9): 2936–2942. DOI: 10.5846/stxb201104010422
[9] 王功帅. 环渤海连作土壤真菌群落结构分析及混作葱减轻苹果连作障碍的研究[D]. 山东泰安: 山东农业大学博士学位论文, 2018. Wang G S. Studies on fungal community in replanted soil around Bohai Gulf and alleviation apple replanted disease by mixed cropping with Allium fistulosum L.[D]. Tai’an, Shandong: PhD Dissertation of Shandong Agricultural University, 2018.
[10] Kelderer M, Manici L M, Caputo F, et al. Planting in the‘inter–row’to overcome replant disease in apple orchards: A study on the effectiveness of the practice based on microbial indicators[J]. Plant and Soil, 2012, 357: 381–393. DOI: 10.1007/s11104-012-1172-0
[11] 崔迪, 王继华, 陈捷, 等. 链格孢属真菌对农作物的危害[J]. 哈尔滨师范大学自然科学学报, 2005, 21(3): 87–91. Cui D, Wang J H, Chen J, et al. The danger of alternaria to the crops[J]. Natural Science Journal of Harbin Normal University, 2005, 21(3): 87–91.
[12] 姜伟涛, 陈冉, 王海燕, 等. 棉隆熏蒸处理对平邑甜茶幼苗生长和生物学特性及土壤环境的影响[J]. 应用生态学报, 2020, 31(9): 3085–3092. Jiang W T, Chen R, Wang H Y, et al. Effects of dazomet fumigation on growth, biological characteristics of Malus hupehensis seedlings and soil environment[J]. Chinese Journal of Applied Ecology, 2020, 31(9): 3085–3092.
[13] Anipsitakis G P, Dionysiou D D. Degradation of organic contaminants in water with sulfate redicals generated by the conjunction of peroxymonosulfate with cobalt[J]. Environmental Science and Technology, 2003, 37(20): 4790–4797. DOI: 10.1021/es0263792
[14] Tsitonaki A, Petri B, Crimi M, et al. In situ chemical oxidation of contaminated soil and groundwater using persulfate: A review[J]. Critical Reviews in Environmental Science and Technology, 2010, 40(1): 55–91. DOI: 10.1080/10643380802039303
[15] 谭筱. 过硫酸铵结合催化剂对三种农药的氧化降解研究[D]. 湖南: 湖南农业大学硕士学位论文, 2013. Tan X. Studies on the oxidation degradation of three pesticides by the ammonium persulfate combination with catalysts[D]. Hu’nan: MS Thesis of Hunan Agricultural University, 2013.
[16] Michael-Kordatou I, Iacovou M, Frontistis Z, et al. Erythromycin oxidation and ERY–resistant Escherichia coli inactivation in urban wastewater by sulfate radical-based oxidation process under UV-C irradiation[J]. Water Research, 2015, 85: 346–358. DOI: 10.1016/j.watres.2015.08.050
[17] 周佳欣, 姚春霞, 孙明星, 等. 过硫酸盐降解土壤中氯霉素、甲砜霉素和氟甲砜霉素的研究[J]. 上海农业学报, 2018, 34(3): 11–15. Zhou J X, Yao C X, Sun M X, et al. Degradation of chloramphenicol, thiamphenicol and florfenicol with persulfate in soil system[J]. Acta Agriculturae Shanghai, 2018, 34(3): 11–15.
[18] 徐源洲, 张力浩, 魏志敏, 等. 硫酸根自由基高级氧化技术对污染场地多环芳烃的修复效果研究[J]. 土壤, 2020, 52(3): 532–538. Xu Y Z, Zhang L H, Wei Z M, et al. Effects of sulfate radical advanced oxidation technology on PAHs remediation in contaminated sites[J]. Soils, 2020, 52(3): 532–538.
[19] 田给林, 严婷婷, 毕艳孟, 等. 草莓连作土壤灭菌与施用有机肥对根际土壤酚酸及土壤酶活性的影响[J]. 园艺学报, 2015, 42(10): 2039–2048. Tian G L, Yan T T, Bi Y M, et al. Effects of continuous cropping soil sterilization and applying of different fertilizer on phenolic acids in rhizosphere soil of the strawberry plants and soil enzyme activities[J]. Acta Horticulturae Sinica, 2015, 42(10): 2039–2048.
[20] 庄敬华, 陈捷, 杨长成, 等. 生防木霉菌生物安全性评价[J]. 中国农业科学, 2006, 39(4): 715–720. DOI: 10.3321/j.issn:0578-1752.2006.04.010 Zhuang J H, Chen J, Yang C C, et al. Evaluation of biocontrol Trichoderma on biology security[J]. Scientia Agricultura Sinica, 2006, 39(4): 715–720. DOI: 10.3321/j.issn:0578-1752.2006.04.010
[21] 徐少卓, 王晓芳, 陈学森, 等. 高锰酸钾消毒后增施木霉菌肥对连作土壤微生物环境及再植平邑甜茶幼苗生长的影响[J]. 植物营养与肥料学报, 2018, 24(5): 1285–1293. DOI: 10.11674/zwyf.17459 Xu S Z, Wang X F, Chen X S, et al. Effect of Trichoderma fertilizer applied after disinfected with KMnO4 on the soil microbial environment and replantation of Malus hupehensis Rehd.[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(5): 1285–1293. DOI: 10.11674/zwyf.17459
[22] 王义坤, 孙琪然, 段亚楠, 等. 三种菌肥对苹果连作土壤环境及平邑甜茶幼苗生长的影响[J]. 植物营养与肥料学报, 2019, 25(4): 630–638. DOI: 10.11674/zwyf.18109 Wang Y K, Sun Q R, Duan Y N, et al. Effect of three microbial fertilizers on environmental improvement of apple replanted soil and growth of Malus hupehensis Rehd. seedlings[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(4): 630–638. DOI: 10.11674/zwyf.18109
[23] 刘会. 不同基质和粒径微生物菌肥对苹果生长发育和氮素利用的影响[D]. 山东泰安: 山东农业大学硕士学位论文, 2017. Liu H. Effects of different substrates and particle size of microbial fertilizer on the growth of apple and nitrogen utilization[D]. Tai’an, Shandong: MS Thesis of Shandong Agricultural University, 2017.
[24] 蔡树美, 于斌, 吴景, 等. 造粒工艺对商品有机肥养分释放动态的影响[J]. 天津农业科学, 2008, (4): 30–33. DOI: 10.3969/j.issn.1006-6500.2008.04.010 Cai S M, Yu B, Wu J, et al. Effects of granulation process on nutirent release of organic fertilizers[J]. Tianjin Agricultural Sciences, 2008, (4): 30–33. DOI: 10.3969/j.issn.1006-6500.2008.04.010
[25] 毛志泉, 王丽琴, 沈向, 等. 有机物料对平邑甜茶实生苗根系呼吸强度的影响[J]. 植物营养与肥料学报, 2004, 10(2): 171–175. DOI: 10.3321/j.issn:1008-505X.2004.02.012 Mao Z Q, Wang L Q, Shen X, et al. Effect of organic materials on respiration intensity of annual Malus hupehensis Rehd. root system[J]. Journal of Plant Nutrition and Fertilizers, 2004, 10(2): 171–175. DOI: 10.3321/j.issn:1008-505X.2004.02.012
[26] Singh B K, Sharma S R, Singh B. Antioxidant enzymes in cabbage: Variability and inheritance of superoxide dismutase, peroxidase and catalase[J]. Scientia Horticulturae, 2010, 124(1): 9–13. DOI: 10.1016/j.scienta.2009.12.011
[27] 关松荫. 土壤酶及其研究法[M]. 北京: 中国农业出版社, 1986. 274–340. Guan S Y. Soil enzymes and their research methods[M]. Beijing: China Agriculture Press, 1986. 274–340.
[28] 程丽娟, 薛泉宏. 微生物学实验技术[M]. 西安: 世界图书出版公司, 2000. Cheng L J, Xue Q H. Microbiology laboratory experiment technology[M]. Xi’an: World Publishing Corporation, 2000.
[29] 李家家, 相立, 潘凤兵, 等. 平邑甜茶幼苗与葱混作对苹果连作土壤环境的影响[J]. 园艺学报, 2016, 43(10): 1853–1862. Li J J, Xiang L, Pan F B, et al. Effects of Malus hupehensis seedlings and Allium fistulosum mixed cropping on replanted soil environment[J]. Acta Horticulturae Sinica, 2016, 43(10): 1853–1862.
[30] 王义坤, 苏厚文, 段亚楠, 等. 三种菌肥对连作平邑甜茶根系生长和土壤真菌群落多样性的促进效应[J]. 植物营养与肥料学报, 2020, 26(2): 316–324. DOI: 10.11674/zwyf.19122 Wang Y K, Su H W, Duan Y N, et al. Improvement of root development of Malus hupehensis Rehd. seedlings and soil fungal diversity under replant condition by three kinds of biofertilizers[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(2): 316–324. DOI: 10.11674/zwyf.19122
[31] 周开胜. 厌氧土壤灭菌修复西瓜连作退化土壤[J]. 浙江农业学报, 2017, 29(7): 1179–1188. DOI: 10.3969/j.issn.1004-1524.2017.07.17 Zhou K S. Remediation of watermelon continuous cropping soil by anaerobic soil disinfestation[J]. Acta Agriculturae Zhejiangensis, 2017, 29(7): 1179–1188. DOI: 10.3969/j.issn.1004-1524.2017.07.17
[32] Harman G E. Overview of mechanisms and uses of Trichoderma spp.[J]. Phytopathologym, 2006, 96(2): 190–194. DOI: 10.1094/PHYTO-96-0190
[33] Zhang F G, Xu X X, Huo Y Q, et al. Trichoderma-inoculation and mowing synergistically altered soil available nutrients, rhizosphere chemical compounds and soil microbial community, potentially driving alfalfa growth[J]. Frontiers in Microbiology, 2018, 9: 3241.
[34] 吴晓儒, 陈硕闻, 杨玉红, 等. 木霉菌颗粒剂对玉米茎腐病防治的应用[J]. 植物保护学报, 2015, 42(6): 1030–1035. Wu X R, Chen S W, Yang Y H, et al. Application of Trichoderma granules in the control of corn stalk rot[J]. Journal of Plant Protection, 2015, 42(6): 1030–1035.
[35] 李春杰, 许艳丽, 赵志权, 等. 木霉颗粒剂对大豆根腐病的防治作用[J]. 大豆科学, 2009, 28(3): 499–506. Li C J, Xu Y L, Zhao Z Q, et al. Control effect of Trichoderma spp. granules on soybean root rot[J]. Soybean Science, 2009, 28(3): 499–506.
[36] 翁锦周. 粉状和粒状甘蔗专用有机复混肥肥效比较[J]. 福建农业科技, 1998, (6): 3–5. Weng J Z. Comparison of fertilizer efficiency of powdered and granular organic compound fertilizers[J]. Fujian Agricultural Science and Technology, 1998, (6): 3–5.
[37] 汪建妹, 叶静, 马军伟, 等. 有机无机复混肥的含水量及形状对其贮存性能及肥效的影响[J]. 浙江农业学报, 2005, 17(5): 307–310. DOI: 10.3969/j.issn.1004-1524.2005.05.016 Wang J M, Ye J, Ma J W, et al. Effects of water content and shape of organic-inorganic compound fertilizer on its storage quality[J]. Acta Agriculturae Zhejiangensis, 2005, 17(5): 307–310. DOI: 10.3969/j.issn.1004-1524.2005.05.016
[38] 曹慧, 孙辉, 杨浩, 等. 土壤酶活性及其对土壤质量的指示研究进展[J]. 应用与环境生物学报, 2003, 9(1): 105–109. DOI: 10.3321/j.issn:1006-687X.2003.01.025 Cao H, Sun H, Yang H, et al. A review of soil enzyme activity and its indication for soil quality[J]. Chinese Journal of Applied Environmental Biology, 2003, 9(1): 105–109. DOI: 10.3321/j.issn:1006-687X.2003.01.025
[39] 王涛, 乔卫花, 李玉奇, 等. 轮作和微生物菌肥对黄瓜连作土壤理化性状及生物活性的影响[J]. 土壤通报, 2011, 42(3): 578–583. Wang T, Qiao W H, Li Y Q, et al. Effects of rotation and microbial fertilizers on the properties of continuous cucumber cropping soil[J]. Chinese Journal of Soil Science, 2011, 42(3): 578–583.
[40] 李嘉怡, 隋铭皓, 盛力, 等. H2O2催化氧化杀菌消毒的发展前景[J]. 水处理技术, 2015, 41(1): 9–14. Li J Y, Sui M H, Sheng L, et al. Development prospect of H2O2 catalytic oxidation sterilization[J]. Technology of Water Treatment, 2015, 41(1): 9–14.
[41] 毛志泉, 项安頔, 姜伟涛, 等. 一种利用过硫酸铵复合剂防控苹果、桃重茬障碍方法[P]. 中国专利: 111418605A, 2020–07–17. Mao Z Q, Xiang A D, Jiang W T, et al. A method of using (NH4)2S2O8 compound agent to prevent and control apple and peach continuous cropping obstacle[P]. China Patent: 111418605A, 2020–07–17.
[42] 徐文, 黄媛媛, 黄亚丽, 等. 木霉–植物互作机制的研究进展[J]. 中国生物防治学报, 2017, 33(3): 408–414. Xu W, Huang Y Y, Huang Y L, et al. Advances on mechanism of Trichoderma-plant interaction[J]. Chinese Journal of Biological Control, 2017, 33(3): 408–414.
-
期刊类型引用(8)
1. 许倩. 烤烟氯离子通道抑制剂研究进展. 中南农业科技. 2024(01): 236-240 . 百度学术
2. 高子婷,罗菲,杨建新,刘玲玲,刘新源,夏茂林,李俊营,许跃奇,姬小明. 氯胁迫下水凝胶用量对烟苗生长发育和抗氧化酶活性的影响. 山东农业科学. 2024(10): 80-85 . 百度学术
3. 柳雪,王西娜,李雪芳,郝雯悦,霍庆柱,谭军利. 氯盐品种及其浓度对西瓜生长与根系活力的影响. 河南农业科学. 2023(03): 118-126 . 百度学术
4. 马瑞,王西娜,谭军利,柳雪,王湘银. 氯对西瓜幼苗生长的影响及毒害阈值. 中国瓜菜. 2022(09): 31-37 . 百度学术
5. 马瑞,王西娜,田里,余顺博,魏照清,杨宗凯,谭军利. 施氯量对压砂西瓜生长、产量及品质的影响. 东北农业大学学报. 2022(09): 58-66 . 百度学术
6. 魏明月,云菲,刘国顺,宋亮. CaCl_2对强光胁迫下烤烟光合特性的影响. 中国烟草学报. 2016(03): 37-43 . 百度学术
7. 李春雷. 氯胁迫对幼龄茶树叶绿素含量及抗氧化系统的影响. 河南农业科学. 2014(09): 56-59+65 . 百度学术
8. 戚冰洁,曹月阳,张珮琪,汪吉东,张永春,徐阳春. 外源氯对甘薯幼苗生长及养分吸收的影响. 江苏农业学报. 2014(01): 80-86 . 百度学术
其他类型引用(10)