Potential of pyrolysis for agricultural application of different biowastes: Biochar yield, properties and their crop growth effects
-
摘要:目的
中国农业生物质废弃物种类多、数量大,且存在病原菌、农药和抗生素残留等潜在生态和环境风险。热解炭化作为一种废弃物的安全处理方法,其生物质炭的循环得率、性质及其土壤改良和促进作物生长的效应还需系统的比较研究。
方法本研究选取作物生产来源的原生生物质、养殖业来源的次生生物质、食品加工处理的残余生物质等共26种生物质废弃物原料,在同一条件下炭化,分析不同来源原料热解后生物质炭产出率与性质。以小白菜 (Brassica campestris L. ssp.) 为试材进行盆栽试验,研究生物质炭对作物生长及土壤改良效应,进而评估这些废弃物炭化农业循环的应用潜力。
结果供试26种废弃物炭化后的生物质炭产出率介于22%~71%,有机碳循环回收率介于22%~81%,氮素循环回收率介于21%~67%。26种废弃物生物质炭的pH和阳离子交换量差异较小 (变异系数10%左右),总有机碳、氮、水分、灰分含量等差异较大,变异系数在60%~70%;而不同原料生物质炭的电导率和溶解性有机碳含量变化极大,变异系数大于90%。生物质炭盆栽试验中,生物炭添加1%,小白菜生物量提升效应介于–34%~314%,变异系数大于100%;小白菜品质提升效应介于–14%~228%,变异系数为59%;土壤肥力提升效应介于20%~360%,特别是土壤有效磷含量提升幅度在0~24倍,均值为359%。同时,生物质炭产出率与生物质炭中灰分呈显著正相关,生物质炭的碳氮回收率与原料中碳氮含量呈显著正相关;不同原料热解炭化的质量回收率、碳氮回收率与小白菜产量及品质等指标间变化差异较大,在小白菜产量效应和品质效应间,部分生物质炭存在抵消作用,而另一部分生物质炭表现为协同作用。
结论综合考虑热解炭化的生物质炭化循环率及碳氮回收循环率和土壤质量–植物生长协同提升效应,供试26种原料中,蚕砂、稻壳牛粪、骨粉、双孢菇渣、兔粪、羊粪和玉米渣的炭化循环率和土壤质量–植物生长协同提升幅度较高 (> 50%),为优先炭化农业利用的生物质废弃物;而木糖渣、稻壳粉、椰渣、高粱酒渣、核桃皮、蚓粪和红茶渣等废弃物热解炭化,因炭化循环率较低,或者土壤质量–植物生长提升的不一致效应,认为不宜炭化农业利用;而其余废弃物热解炭化后的效应介于上述两类之间,具有较高的炭化循环率和一定程度的土壤质量–植物生长协同提升效应,属于可炭化农业利用的生物质废弃物。
Abstract:ObjectivesBiowastes from agricultural production exist in various forms. These wastes are produced in large quantities, having consequent environmental risks due to antibiotics, plant pathogens, and pesticide residues in them. Producing biochar by pyrolysis is an environmentally friendly way of dealing with biowastes. This study assessed the efficacy of different biowastes for biochar production and their effects on crop yield and quality.
MethodsA pot experiment was conducted using pakchoi as test crop materials. A total of 26 types of agro-biowastes were collected from primary biowastes (e.g. straws), secondary biowastes (e.g. livestock dung) and by-products from food processing. All the feedstocks were pyrolyzed under the same condition to make biochar. We analyzed the biochar yield of different feedstocks and their physicochemical properties. The feasibility of pyrolysis and the effect of biochar on crop production were assessed.
ResultsThe yield of biochar from the tested biowastes ranged in 22%–71%. The biochar recovery of carbon and nitrogen ranged in 22%–81% and in 21%–67%, respectively. The coefficient of variation (CV) of the pH and cation exchange capacity of the biochars was 10%; that for total organic carbon, total nitrogen, moisture, and ash contents were 60%–70%; and that for electrical conductivity, dissolved organic carbon and total P contents were > 90%. In the pot experiment, biochar was amended to 1%. The pakchoi biomass increase ranged from –34% to 314% compared to the no biochar control, with a CV of 100%. However, the quality index increase of pakchoi ranged in –14%–228%, with a CV of 59%. Meanwhile, soil fertility improvement ranged in 20%–360%, significantly increased by 0–24 folds (359% on average). Moreover, changes in biochar yield and carbon and nitrogen recovery were found inconsistent with the improvements in biomass and quality of pakchoi across the biochars from different feedstocks. Some biochars showed tradeoffs between biomass production and pakchoi quality, while a few showed synergism, in the pot experiment. Significant positive correlations were found between biochar yield and ash content and between biochar recovery of organic carbon and nitrogen and their content in the feedstock.
ConclusionsThe biochar yield, recovery of organic carbon and nitrogen, and the synergistic improvement of the soil-plant system were synthesized. Of the 26 biowastes tested, silkworm residue, rice husk dung, bone powder, agaricus bisporus residue, rabbit manure, sheep manure and corn residue had higher yield for biochar recovery and had a high synergistic improvement of the soil-plant system (> 50%). These biowastes should be prioritized for pyrolysis and biochar application in agriculture. On the other hand, xlose residue, rice husk powder, coconut residue, brewery sorghum residue, walnut residue, wormcast, and black tea residue were not recommended for pyrolysis and biochar use in agriculture due to either low biochar yield and element recovery or inconsistent improvement of the soil-plant system. The others could be considered conditionally potential for biochar production and application in agriculture due to acceptable resource recovery and soil-plant improvement of their pyrolyzed biochar.
-
Keywords:
- biowaste /
- biochar /
- recycling via pyrolysis /
- soil-plant effect /
- Brassica campestris L.
-
随着粮食需求快速增长,化肥和农药高投入的集约化农业在促进粮食生产的同时,往往导致土壤退化,影响作物生长和品质健康[1-2]。与此同时,农业废弃物产生量与日俱增,其资源化处理及农田循环的产业化途径是当前农业环保和土壤肥料科技急需解决的问题[3-5]。
已有的生物质废弃物资源化利用技术包括生物质固体成型技术,生物质直接燃烧技术和生物质液化、气化和热裂解技术以及好氧和厌氧生物发酵技术[6-8]。其中,热裂解技术得到生物质气、生物质炭和生物质热解液 (俗称木醋液) 等三相产物,其中生物质炭能够改善土壤和提高肥料效益[9-15],而生物质热解液含有丰富的有机成分,对于植物生长具有促进作用[16],可以制成液体营养制剂用于农业生产[17]。生物质废弃物通过热解炭化可以成为生物质炭和木醋液循环于农业,而在农业废弃物处理和生态农业发展中得到推广应用[18-19]。通过将作物废弃物管理、生物质燃料生产及生物质炭的农业应用相结合,热解炭化可以构建一个生物质炭从农业到经济和环境效益相结合的生态链[20-21]。因而,生物废弃物热裂解炭化是改良土壤、化肥替代和环境治理的新型循环农业方式,能够服务于农业绿色发展[19,22]。
依据来源和途径,可以将生物质废弃物分为原生生物质、次生生物质和加工生物质[18]。原生生物质多为植物残体,具有高热值、富含结构有机质的特性;次生生物质是动物源废弃物,其热值较低、含水量及养分含量较高;而加工生物质是经过农产品工业加工的剩余物,其特性与原料来源及生产加工工艺有关。由于生物质原料的来源复杂、炭化工艺多样,不同废弃物的生物质炭性质和功能差异较大[8,23-25]。例如,养殖废弃物因饲料中高蛋白含量[26],热解炭化后的生物质炭氮含量和其他养分含量往往较作物源废弃物的要高[27-28]。当然,作物源生物质炭的钾含量会高于养殖废弃物的生物质炭[29]。作物源废弃物-生物质炭含碳量一般较高且/或含有其他养分元素。例如,禾本科作物源生物质炭含有硅素而有机碳含量可能较低[28]。有研究表明,在同样炭化条件下,生物质炭的pH、含钾量及阳离子交换量在水稻、玉米和小麦等作物秸秆来源间存在显著差异[30]。而木本作物或者来源于树木的生物质炭有机碳含量较高但养分含量较低[23],同时他们的吸附性能显著高于秸秆类生物质炭[31]。然而,农业及食物供应链管理中,生物质废弃物种类繁多,其热解炭化的循环潜力及其炭化产物性质与作物效应还未有系统的比较分析。
本研究选取食物生产供应链中常见的生物质废弃物类型,进行同一热解工艺和生产条件的炭化处理,比较其热解炭化的生物质炭得率及其性质与作物生产效应,通过评价生物质炭的碳氮养分的回收循环及作物产量与品质的改善幅度,探讨不同废弃物热解炭化还田促进农业生产的潜力,为生物质废弃物的大规模炭化利用及农业生产提质增效提供科学依据。
1. 材料与方法
1.1 供试生物质原料
本研究选取三大类来源共26种生物质废弃物原料,分别是属于原生生物质的核桃皮、烟梗粉、稻壳粉、花生壳、椰渣5种,属于次生生物质的牛粪、羊粪、兔粪、蚓粪、稻壳牛粪、蚕砂、骨粉7种和属于加工生物质的草菇渣、杏鲍菇渣、金针菇渣、双孢菇渣、甘蔗渣、红茶渣、木薯渣、中药渣、稻壳灰、木糖渣、玉米渣、高粱酒糟、咖啡渣、醋渣等14种。所有原料通过苏丰农业科技公司 (江苏省溧阳市) 收集得到。将收集到的原料自然风干,磨碎过2 mm筛,保存备用。原料的基本性质见表1。
表 1 供试生物质废弃物原料基本性质Table 1. Basic properties of bio-waste feedstocks used for pyrolysis in this study原料
Feedstock进料重 (kg)
Feed stocks weight含水量 (%)
Moisture content有机碳 (g/kg)
Organic carbon氮 (g/kg)
Nitrogen蚕砂 Silkworm litter 4.0 21.7 308.2 33.2 草菇渣 Mushroom residue 3.1 16.1 359.0 27.8 醋渣 Vinegar dreg 1.5 9.0 330.0 20.2 稻壳粉 Rice husk powder 3.4 8.6 416.2 5.0 稻壳灰 Rice husk ash 3.1 22.9 30.9 3.9 稻壳牛粪 Rice husk dung 2.3 13.9 230.3 25.1 甘蔗渣 Sugarcane residue 1.2 10.9 421.0 6.6 高粱酒糟 Brewery sorghum residue 3.1 8.8 450.6 57.1 骨粉 Bone chips 7.2 18.4 52.4 8.3 核桃皮 Walnut residue 4.1 12.4 286.2 8.6 红茶渣 Black tea residue 2.7 15.2 337.6 55.3 花生壳 Peanut husk 1.1 9.8 444.3 8.7 金针菇渣 Enoki mushroom residue 2.2 15.2 388.4 18.9 咖啡渣 Coffee residue 4.7 9.8 552.5 21.7 木薯渣 Cassava residue 4.8 13.2 272.8 23.7 木糖渣 Xlose residue 4.4 40.4 465.4 10.8 牛粪 Cattle dung 2.7 11.0 259.9 18.4 双孢菇渣 Agaricus bisporus residue 6.9 17.2 168.7 25.3 兔粪 Rabbit dung 2.5 15.9 286.2 22.2 杏鲍菇渣 Pleurotus eryngii residue 2.2 24.3 323.4 30.7 烟梗粉 Tobacco stem 3.4 15.7 327.5 23.0 羊粪 Lamp dung 3.6 13.0 310.1 23.7 椰渣 Coconut residue 1.6 8.2 426.8 15.1 蚓粪 Wormcast 7.0 8.5 167.0 13.1 玉米渣 Corn residue 1.8 18.4 899.1 12.7 中药渣 Herb residue 2.6 9.1 438.6 22.5 1.2 生物质热裂解炭化
生物质废弃物的热解炭化均使用便捷式生物质炭化机 (SSBP 5000由淮安华电环保机械制造有限公司与南京农业大学合作研制),该设备模拟了工业炭化生产条件,其结构原理及操作程序已有介绍[30]。基于前期对生物质炭农业应用的研究基础[32-34],本研究设定同一热解条件如下:炭化控制温度450℃,升温速率5℃/min,炭化滞留时间1 h。由炭化机进料口投入一定量原料 (因原料的堆积密度不同,进料量按体积计量,分别称重),关闭进料口后设备缓慢升温,至炉内温度升到450℃,保持1 h,热解炭化过程中释放的生物质气和木醋液由排出口分别收集计量。停止加热,自然缓慢降温,生物质炭待热解炭化完成后由出炭口排出,自然冷却后收集并称重。
1.3 生物质炭蔬菜盆栽试验
试验土壤为蔬菜地表土,采自南京市六合区 (32°24′54″N、118°48′20″E) 某农户菜地,土壤为黄棕壤,质地为壤土。采集土壤150 kg,风干磨碎后过2 mm (10目)筛备用。供试土壤的基本性质如下:pH (H2O) 4.0、容重1.3 g/cm3、电导率150 µS/cm,有机碳8.5 g/kg、全氮1.1 g/kg、有效磷4.5 mg/kg和速效钾89.5 mg/kg。
盆栽试验采用生物质炭单因素试验设计,参照农业试验的常规做法[32-34] ,生物质炭质量添加率为1%,将各种来源生物质炭按质量比添加于蔬菜盆栽土中。同时设置不施加生物质炭的对照处理,共27个处理。每个处理设置4次重复。盆栽用塑料盆 (底部直径9 cm、上部直径13 cm、高12 cm)。按干重计,每盆装土1.0 kg,加入生物质炭10.0 g,每盆按 N 0.2 g、P2O5 0.15 g和K2O 0.2 g加入尿素、磷酸二氢铵和硫酸钾作为肥料。将土壤与所加入的生物质炭和肥料充分混匀后装盆,沿盆壁加水使土壤充分湿润,达到田间持水量。静置24 h后,每盆播种小白菜 (Brassica campestris L. spp) 苏州青种子20粒。出苗1周后间苗,每盆保留蔬菜2株。每日傍晚根据盆重变化加水调节土壤含水量,使之保持在田间持水量的70%左右。盆栽中所有处理盆采取随机区组排列,每天补水后重新调整摆放位置,减少因光照温度导致的误差[35]。盆栽试验在作者单位的玻璃温室中进行,温室温度控制在20℃~30℃。蔬菜于2018年10月13日播种,11月23日收获。
1.4 分析项目与方法
生物质炭基本性质及养分含量,按照国际生物质炭协会 (IBI) 推荐的方法 (IBI-STD-2.1) 进行测定[36]。采用炭水比1∶20 (w/v) 制备悬液,浸提,分别采用PHS-3C pH计电位法、DDS-307A电导率仪和Jena Multi N/C 3100TOC仪测定生物质炭pH (H2O)、电导率和可溶性有机碳含量;重铬酸钾容量法测定有机碳含量;马弗炉750℃灼烧损失法测定灰分含量;采用乙酸铵淋洗法测定阳离子交换量;浓硫酸消解制备待测液,采用半微量凯氏法、钼黄比色法和火焰光度法分别测定生物质炭中氮、磷和钾等养分含量。
土壤和植物样品分析按鲁如坤[37]记载的方法进行。盆栽试验中小白菜生长30天后按盆分别收获并迅即称重。各盆新鲜样品采后置于冰箱中–4℃保存,1周内完成品质测定。具体分析方法:水杨酸比色法测定硝酸盐含量;2,6-二氯酚吲哚酚滴定法测定维生素C含量;蒽酮比色法测定可溶性糖含量;考马斯亮蓝比色法测定可溶性蛋白含量。收集盆栽土壤进行分析,具体方法为:采用土水比1∶2.5(w/v) 制备悬液,浸提,分别采用PHS-3CpH计电位法和DDS-307A电导率仪测定土壤pH (H2O) 和电导率;重铬酸钾容量法测定有机碳含量;浓硫酸消解—半微量凯氏法测定土壤全氮含量;碳酸氢钠浸提—钼蓝比色法测定土壤有效磷含量;醋酸铵浸提—火焰光度法测定土壤速效钾含量。
收集得到热解产物的木醋液和生物质炭分别测量总体积或质量。生物质废弃物原料和生物质炭分别在烘箱105℃烘干6小时,测定其含水量。
1.5 数据处理及统计分析
原料热解炭化后生物质炭物质质量得率用下式计算:
BCp(%)=BCtFSt×100 (1) 式中:BCp是生物质炭得率 (%);FSt是原料的风干重 (kg);BCt是生物质炭的干重 (kg)。由此可进一步计算热解炭化后生物质炭中碳、氮的元素回收率,其计算公式为:
Recovery(%)=EBC×BCpEFS (2) 式中:Recovery是元素的回收率 (%);EFS和EBC分别是原料和生物质炭中有机碳或氮含量。
采用多属性决策法对生物质炭性质及土壤质量进行归一化处理[38],首先将所有生物质炭或土壤样本性质指标分别进行归一化,得到单个样本归一化的土壤质量值,其计算公式为:
A′i=Ai∑ni=1Ai (3) 式中:A′i表示单个性质指标归一化值;Ai表示单个性质指标实际值;∑ni=1Ai表示将某一指标的所有样本值加权。通过将每个样本均一化的所有指标值与权重相乘后相加得到单个样本归一化质量指标,生物质炭的综合指标选取的生物质炭的性质(权重)分别为pH (1)、电导率 (–3)、总有机碳含量 (3)、灰分 (1)、阳离子交换量 (1)、可溶性有机碳含量 (3)、氮 (1)、磷 (2)、钾 (2);其中,土壤肥力的综合指标选取的土壤指标和权重分别为pH (1)、电导率 (–3)、土壤有机质 (3)、全氮 (1)、有效磷 (2)、有效钾 (2)[39]。
参照土壤质量评价法和蔬菜品质评价法进行生物质炭质量的综合评价和蔬菜品质提升评价[29]。其中,蔬菜品质综合评价采用下式计算[40]:
Qi=∑(XiXmax)×0.5−∑(YiYmax)×0.5 (4) 式中:Qi表示蔬菜品质综合评价值;Xi为营养品质项 (包括维生素C、可溶性糖、可溶性蛋白含量),Xmax为该项最大值;Yi为卫生品质项 (硝酸盐含量);Ymax为该项最大值;0.5为各指标的权重。
生物质炭的作物生长效应及土壤肥力提升采用相对于对照的增幅来表示,其计算公式为:
Impi=(Zi−Zck)Zck (5) 式中:Impi表示生物质炭对小白菜某性质或土壤肥力的效应值;Zi表示i处理下指标Z的实际值;Zck表示对照的指标Z实际值。
此外,考虑农业生产中产量和品质的相对重要性,分析生物质炭对小白菜产量和品质的协同效应,其中产量效益取权重0.4,品质效益取权重0.6;进行生物质炭化循环效率及炭化农业循环综合潜力分析,对所选指标进行加权平均计算,其计算公式为:
Co=∑ni=1Iin (6) 式中:Co为综合指标;Ii表示样本的i指标;∑ni=1Ii表示将样本的n个指标加权计算。
所有试验数据采用Microsoft Excel 2019软件进行统计分析;使用SPSS 25.0进行多重比较,采用图基检验作统计检验,显著性概率定义为P < 0.05;使用Origin 2018进行条形图绘制;使用R4.0.2中corrplot程序包进行指标间相关性分析及绘图,显著性概率分别定义为显著 (P < 0.05) 和极显著 (P < 0.01)。
2. 结果与分析
2.1 热解炭化的生物质炭得率、性质及主要养分回收率
表2显示,26种原料热解炭化后的生物质炭得率 (质量回收率) 在22%~71%,平均为53.39% ± 13.82%。其中骨粉产炭率最高 (71%),其次是蚓粪 (67%),稻壳灰 (65%) 和双孢菇渣 (62%);有8种废弃物 (稻壳粉、高粱酒糟、红茶渣、金针菇渣、咖啡渣、木糖渣、杏鲍菇渣、中药渣) 产炭率低于40%,其中木糖渣产炭率最低 (22%)。
表 2 不同原料热解炭化产出的生物质炭的基本性质Table 2. Basic properties of biochar derived from different biowastes生物质炭
Biochar炭得率
Yield
(%)pH
(H2O)EC
(mS/cm)TOC
(g/kg)CEC
(cmol/kg)N
(g/kg)P
(g/kg)K
(g/kg)DOC
(g/kg)水分
Moisture
(%)灰分
Ash
(%)蚕砂炭 Silkworm litter biochar 54.48 10.14 4.93 292.46 73.38 22.32 5.49 27.45 23.68 5.37 12.09 草菇渣炭 Mushroom residue biochar 46.99 8.71 4.49 227.78 64.52 13.93 9.44 7.95 13.20 5.77 33.32 醋渣炭 Vinegar dreg biochar 50.86 9.63 4.31 205.28 63.85 17.09 8.39 18.80 3.47 4.25 42.92 稻壳粉炭 Rice husk powder biochar 38.46 9.07 0.94 340.33 73.17 8.43 2.08 12.22 1.75 4.50 26.26 稻壳灰炭 Rice husk ash biochar 64.89 10.43 0.75 30.26 71.42 1.04 5.03 12.47 1.59 1.52 97.42 稻壳牛粪炭 Rice husk-dung biochar 44.03 9.15 1.66 240.70 67.45 16.61 5.58 8.98 7.56 5.06 38.50 甘蔗渣炭 Sugarcane residue biochar 50.00 8.42 0.27 531.34 78.13 8.23 1.72 4.29 3.53 4.83 19.32 高粱酒糟炭 Brewery sorghum residue biochar 36.52 7.99 0.10 557.77 63.99 48.86 7.34 3.21 0.54 4.80 10.43 骨粉炭 Bone chips biochar 70.81 9.44 2.23 35.59 67.72 6.49 44.81 3.31 3.22 3.05 80.00 核桃皮炭 Walnut residue biochar 45.88 8.71 1.85 262.59 81.60 8.79 0.50 0.01 7.02 6.45 46.42 红茶渣炭 Black tea residue biochar 34.62 7.94 1.30 496.39 71.20 41.64 4.54 5.04 8.94 6.68 12.66 花生壳炭 Peanut husk biochar 55.90 8.72 1.00 165.88 91.94 9.25 7.23 7.59 3.68 4.98 29.98 金针菇渣炭 Enoki mushroom residue biochar 33.26 9.38 1.33 330.00 78.59 16.05 30.29 10.47 2.57 4.00 28.00 咖啡渣炭 Coffee residue biochar 32.35 8.54 0.24 689.98 69.66 33.98 2.31 11.86 2.63 4.41 6.15 木薯渣炭 Cassava residue biochar 53.58 8.41 1.07 184.13 66.49 16.39 16.40 3.55 4.89 3.29 64.24 木糖渣炭 Xylose residue biochar 22.38 5.98 0.77 423.92 66.34 12.48 1.47 2.00 4.32 5.71 7.85 牛粪炭 Cattle dung biochar 50.85 10.81 1.98 134.43 75.55 7.07 3.91 11.84 2.05 3.04 70.46 双孢菇渣炭 Agaricus bisporus residue biochar 62.08 8.50 2.73 147.31 76.71 14.72 35.80 10.39 3.80 3.02 71.82 兔粪炭 Rabbit dung biochar 52.30 9.19 3.66 252.12 69.86 19.87 26.30 20.77 8.08 4.70 34.16 杏鲍菇渣炭 Pleurotus eryngii residue biochar 36.30 9.61 2.35 267.40 82.79 22.39 20.04 10.78 7.87 6.57 26.06 烟梗粉炭 Tobacco stem biochar 41.58 10.08 10.37 280.54 78.72 13.14 5.91 57.64 48.49 4.87 34.18 羊粪炭 Lamp dung biochar 54.74 8.59 3.72 165.99 72.16 9.43 10.76 11.50 4.05 6.08 50.78 椰渣炭 Coconut residue biochar 61.35 9.86 1.98 370.87 76.69 6.70 1.28 12.18 1.90 15.92 15.86 蚓粪炭 Wormcast biochar 67.29 8.18 0.82 129.99 63.13 7.37 5.77 4.65 5.64 2.18 73.68 玉米渣炭 Corn residue biochar 42.30 9.53 1.36 882.46 84.57 15.56 19.49 12.75 2.38 4.34 30.90 中药渣炭 Herb residue biochar 38.00 10.32 2.57 316.81 75.60 21.52 4.55 20.23 10.77 4.72 26.43 注(Note):EC—电导率 Electrical conductivity; TOC—总有机碳 Total organic carbon; CEC—阳离子交换量 Cation exchange capacty; DOC—溶解性有机碳 Dissolved organic carbon. 不同原料热解后的生物质炭性质有不同程度的差异。差异较小的pH和阳离子交换量平均值分别为9.05 ± 0.98和73.31 ± 7.03 cmol/kg,变异系数均在10%左右。总有机碳 、氮、水分、灰分等含量以及C/N为中等程度变异 (变异系数在60%~70%),而电导率、溶解性有机碳及磷钾养分含量高度变异 (变异系数 > 90%)。有机碳含量以稻壳灰炭最低 (30 g/kg),玉米渣生物炭最高 (883 g/kg),而溶解性有机碳 含量介于0.54 g/kg (高粱酒糟炭) ~48.49 g/kg (烟梗粉炭),相应的溶解性有机碳/总有机碳比值介于0.10~0.30。依据土壤质量评估法得到的归一化相对质量指数,将这些原料炭化的生物质炭可分为三类 (图1):肥力品质较高的兔粪炭、红茶渣炭、金针菇渣炭、咖啡渣炭、蚕砂炭、玉米渣炭和烟梗粉炭 (相对质量指数大于0.5);品质中等的稻壳牛粪炭、甘蔗渣炭、木薯渣炭、骨粉碳、双孢菇渣炭、杏鲍菇渣炭、中药渣炭、核桃皮炭和高粱酒糟炭 (相对质量指数介于0.35~0.50);以及其他的品质稍差的炭 (相对质量指数小于0.35)。
根据质量平衡原理,依据表2的养分含量及上述的质量回收率估计出的不同原料炭化后有机碳和氮素的生物质炭回收率分布(图2)。与质量回收率相比,废弃物热解炭化的生物质炭有机碳和总氮的回收率略低,分别为45.0% ± 14.0%和41.4% ± 14.5%。其中,蚕砂、稻壳灰、稻壳牛粪、甘蔗渣、骨粉、红茶渣、双孢菇渣、兔粪及蚓粪炭化后生物质炭有机碳回收率在50%以上,而氮素回收率以稻壳粉、甘蔗渣、骨粉、核桃皮、花生壳、咖啡渣、兔粪和玉米渣炭化后在50%以上。不同原料热解炭化后的炭得率和碳氮回收率并不一致,质量回收率及碳氮回收率均在50%以上的原料仅有骨粉和兔粪。
2.2 热解炭化生物质炭的作物效应
盆栽试验土壤添加1%不同原料生物质炭处理下的小白菜产量及品质调查结果(表3)显示,与对照相比小白菜生物量提升幅度介于–34%~314%,平均为103%,但变异系数达100%以上。其中,蚕砂炭、骨粉炭、双胞菇渣炭、兔粪炭及羊粪炭对于产量提升达2倍以上;而稻壳粉炭、核桃皮炭、木糖渣炭和椰渣炭、甘蔗渣炭和红茶渣炭处理小白菜减产或不增产。添加生物质炭对品质的提升效应介于–14%~228%,平均为102%,变异系数为59%。其中,稻壳灰炭、高粱酒糟炭、花生壳炭、木糖渣炭、椰渣炭、蚓粪炭和中药渣炭7种炭不提升或小幅提升小白菜的品质。而蚕砂炭、稻壳牛粪炭、牛粪炭、双孢菇渣炭、烟梗粉炭和玉米渣炭6种炭对小白菜品质提升效应高于150%。将产量效应与品质效应综合为协同效应,计算出的产量-品质协同提升效应介于1%~210%,平均提升幅度为102%,变异系数为59%。其中,稻壳灰炭、高粱酒糟炭、核桃皮炭、木糖渣炭、椰渣炭和蚓粪炭表现为弱协同提升效应 (协同提升幅度 < 50%),而蚕砂炭、稻壳牛粪炭、骨粉炭、双孢菇渣炭、兔粪炭、羊粪炭和玉米渣炭的协同提升幅度 > 150%,极大地协同提升了小白菜的产量和品质 (图3)。
表 3 不同原料生物质炭对小白菜产量及品质的影响 (盆栽试验)Table 3. Biomass and quality of pakchoi under the amendment of biochar derived from different feedstocks生物质炭
Biochar生物量
Biomass
(g/pot)维生素C
Vc
(g/kg)可溶性糖
Soluble sugar
(g/kg)可溶性蛋白
Soluble protein
(g/kg)硝酸盐
Nitrate
(g/kg)品质指数
Quality
indexCK 6.96 ± 2.39 5.05 ± 1.10 0.37 ± 0.06 14.31 ± 0.45 0.39 ± 0.06 0.21 ± 0.08 蚕砂炭 Silkworm litter biochar 27.32 ± 2.73 10.37 ± 0.62 0.49 ± 0.24 14.77 ± 1.58 0.30 ± 0.02 0.54 ± 0.15 草菇渣炭 Mushroom residue biochar 11.76 ± 0.77 8.21 ± 2.41 0.31 ± 0.11 15.54 ± 1.46 0.31 ± 0.04 0.40 ± 0.10 醋渣炭 Vinegar dreg biochar 16.44 ± 3.64 7.93 ± 1.24 0.47 ± 0.25 14.62 ± 0.80 0.38 ± 0.06 0.37 ± 0.18 稻壳粉炭 Rice husk powder biochar 6.52 ± 1.86 10.11 ± 2.09 0.25 ± 0.01 15.24 ± 0.78 0.32 ± 0.04 0.42 ± 0.12 稻壳灰炭 Rice husk ash biochar 10.61 ± 3.43 6.62 ± 0.28 0.33 ± 0.02 19.58 ± 1.80 0.43 ± 0.03 0.29 ± 0.06 稻壳牛粪炭 Rice husk-dung biochar 20.57 ± 4.69 9.76 ± 2.11 0.33 ± 0.12 28.97 ± 3.64 0.38 ± 0.05 0.60 ± 0.04 甘蔗渣炭 Sugarcane residue biochar 7.07 ± 0.88 9.08 ± 1.33 0.35 ± 0.11 17.24 ± 2.48 0.29 ± 0.02 0.48 ± 0.11 高粱酒糟炭 Brewery sorghum residue biochar 8.91 ± 4.41 6.16 ± 1.36 0.36 ± 0.06 15.09 ± 2.08 0.48 ± 0.00 0.18 ± 0.10 骨粉炭 Bone chips biochar 28.82 ± 4.22 8.71 ± 1.28 0.38 ± 0.13 23.01 ± 1.58 0.44 ± 0.04 0.44 ± 0.12 核桃皮炭 Walnut residue biochar 5.79 ± 2.88 7.17 ± 1.88 0.38 ± 0.08 13.42 ± 2.50 0.27 ± 0.07 0.38 ± 0.12 红茶渣炭 Black tea residue biochar 7.09 ± 2.06 8.91 ± 1.53 0.34 ± 0.08 18.56 ± 1.53 0.31 ± 0.03 0.48 ± 0.11 花生壳炭 Peanut husk biochar 18.08 ± 0.90 7.55 ± 1.44 0.44 ± 0.29 13.70 ± 1.59 0.42 ± 0.05 0.29 ± 0.20 金针菇渣炭 Enoki mushroom residue biochar 10.75 ± 2.59 6.90 ± 1.73 0.37 ± 0.03 20.16 ± 2.30 0.29 ± 0.04 0.46 ± 0.07 咖啡渣炭 Coffee residue biochar 15.76 ± 4.30 7.49 ± 2.52 0.51 ± 0.23 16.60 ± 2.95 0.46 ± 0.06 0.33 ± 0.12 木薯渣炭 Cassava residue biochar 9.50 ± 1.17 8.59 ± 1.69 0.34 ± 0.08 16.13 ± 2.01 0.29 ± 0.02 0.44 ± 0.05 木糖渣炭 Xylose residue biochar 6.05 ± 0.38 7.12 ± 0.94 0.22 ± 0.06 14.16 ± 1.13 0.32 ± 0.05 0.29 ± 0.11 牛粪炭 Cattle dung biochar 10.21 ± 2.10 9.24 ± 1.18 0.22 ± 0.04 24.09 ± 2.81 0.27 ± 0.09 0.56 ± 0.15 双孢菇渣炭 Agaricus bisporus residue biochar 23.32 ± 2.30 9.24 ± 1.12 0.57 ± 0.25 21.41 ± 2.02 0.40 ± 0.10 0.55 ± 0.15 兔粪炭 Rabbit dung biochar 24.61 ± 3.66 8.19 ± 1.93 0.58 ± 0.07 13.30 ± 1.85 0.28 ± 0.08 0.50 ± 0.08 杏鲍菇渣炭 Pleurotus eryngii residue biochar 11.23 ± 2.03 8.42 ± 1.32 0.40 ± 0.03 18.49 ± 0.40 0.27 ± 0.06 0.52 ± 0.11 烟梗粉炭 Tobacco stem biochar 12.40 ± 2.39 7.99 ± 1.05 0.25 ± 0.06 19.35 ± 1.27 0.15 ± 0.03 0.56 ± 0.09 羊粪炭 Lamp dung biochar 25.41 ± 2.84 9.24 ± 1.12 0.63 ± 0.37 12.11 ± 1.24 0.34 ± 0.06 0.49 ± 0.17 椰渣炭 Coconut residue biochar 4.58 ± 1.65 5.33 ± 1.36 0.24 ± 0.04 17.94 ± 3.01 0.34 ± 0.05 0.26 ± 0.14 蚓粪炭 Wormcast biochar 15.96 ± 3.99 7.76 ± 0.67 0.44 ± 0.15 12.61 ± 1.92 0.52 ± 0.02 0.20 ± 0.08 玉米渣炭 Corn residue biochar 9.87 ± 2.25 10.43 ± 0.87 0.40 ± 0.10 26.63 ± 1.61 0.30 ± 0.07 0.69 ± 0.04 中药渣炭 Herb residue biochar 18.71 ± 2.38 7.23 ± 0.15 0.52 ± 0.29 13.20 ± 1.50 0.45 ± 0.06 0.29 ± 0.06 2.3 热解炭化生物质炭的土壤改良效应
表4表明,与对照相比,各种生物质炭几乎都提升了土壤pH,平均提升0.34,其中蚕砂炭、草渣菇炭、骨粉炭、杏鲍菇渣炭、烟梗粉炭和玉米渣炭提升pH在0.5以上。与溶解性成分有关的电导率显示土壤没有盐积累 (电导率 < 1 mS/cm),除花生壳炭和羊粪炭外,生物质炭处理下都不同程度增加了土壤电导率。在养分属性中,全氮平均提升了32%,且处理间变异较小。有机碳和速效钾含量平均提升50%左右。提升程度变异极大的是土壤有效磷,提升幅度介于0 (稻壳灰炭) 到24倍 (骨粉炭),平均是359%。所有指标的非权重评价,土壤肥力质量平均提升105%,甘蔗渣炭、核桃皮炭和蚓粪炭平均提升幅度在50%以下,而蚕砂炭、草菇渣炭、稻壳牛粪炭、骨粉炭、花生壳炭、金针菇渣炭、咖啡渣炭、牛粪炭、兔粪炭、杏鲍菇渣炭、烟梗粉炭、羊粪炭、玉米渣炭和中药渣炭的土壤肥力提升效应在100%以上。
表 4 不同生物质炭处理下小白菜收获时盆栽土壤肥力性质Table 4. Soil fertility properties in the pakchoi harvested soil under the amendment of the biochars生物质炭
BiocharpH
(H2O)电导率
EC
(µS/cm)有机碳
Organic C
(g/kg)全氮
Total N
(g/kg)有效磷
Available P
(mg/kg)速效钾
Available K
(mg/kg)肥力提升
Improvement of fertility (%)CK 3.73 ± 0.07 612 ± 4 9.02 ± 0.07 0.89 ± 0.05 19.38 ± 2.66 87.96 ± 2.61 蚕砂炭 Silkworm litter biochar 4.75 ± 0.05 728 ± 35 15.44 ± 0.84 1.17 ± 0.06 174.20 ± 6.66 127.86 ± 6.55 193.19 草菇渣炭 Mushroom residue biochar 4.56 ± 0.14 927 ± 7 12.96 ± 2.45 1.08 ± 0.10 149.51 ± 1.52 100.11 ± 12.33 110.32 醋渣炭 Vinegar dreg biochar 3.87 ± 0.13 988 ± 25 15.08 ± 0.17 1.16 ± 0.10 57.15 ± 5.45 139.19 ± 2.61 60.94 稻壳粉炭 Rice husk powder biochar 3.84 ± 0.06 654 ± 11 11.91 ± 0.05 1.08 ± 0.10 42.20 ± 1.16 112.32 ± 2.32 54.86 稻壳灰炭 Rice husk ash biochar 3.54 ± 0.06 640 ± 7 9.01 ± 0.14 0.96 ± 0.05 18.39 ± 0.09 217.66 ± 15.38 63.48 稻壳牛粪炭 Rice husk-dung biochar 4.05 ± 0.15 724 ± 31 14.85 ± 0.40 1.15 ± 0.07 81.85 ± 5.35 122.26 ± 5.64 107.99 甘蔗渣炭 Sugarcane residue biochar 3.79 ± 0.11 1141 ± 10 15.29 ± 1.99 1.17 ± 0.10 46.41 ± 3.61 115.15 ± 3.25 19.60 高粱酒糟炭
Brewery sorghum residue biochar3.76 ± 0.14 738 ± 6 14.47 ± 0.02 1.14 ± 0.10 43.19 ± 2.08 116.30 ± 5.64 65.02 骨粉炭 Bone chips biochar 5.44 ± 0.06 910 ± 30 10.42 ± 0.57 0.93 ± 0.10 476.02 ± 3.78 109.71 ± 4.62 360.32 核桃皮炭 Walnut residue biochar 3.88 ± 0.12 939 ± 7 13.13 ± 0.26 1.09 ± 0.06 59.30 ± 1.69 130.00 ± 2.33 46.20 红茶渣炭 Black tea residue biochar 3.85 ± 0.15 861 ± 15 14.40 ± 0.31 1.13 ± 0.18 55.01 ± 3.98 127.30 ± 20.36 64.50 花生壳炭 Peanut husk biochar 3.74 ± 0.06 560 ± 25 12.12 ± 0.36 1.02 ± 0.10 34.48 ± 0.70 197.46 ± 4.90 103.44 金针菇渣炭
Enoki mushroom residue biochar4.09 ± 0.11 775 ± 7 18.59 ± 0.37 1.29 ± 0.50 86.15 ± 2.33 127.86 ± 6.33 139.14 咖啡渣炭 Coffee residue biochar 3.85 ± 0.15 589 ± 20 16.64 ± 0.18 1.22 ± 0.10 55.01 ± 0.36 118.67 ± 2.33 116.35 木薯渣炭 Cassava residue biochar 3.94 ± 0.06 719 ± 16 11.54 ± 1.39 1.03 ± 0.13 66.82 ± 6.56 111.45 ± 3.98 60.96 木糖渣炭 Xylose residue biochar 3.83 ± 0.07 676 ± 6 14.77 ± 0.21 1.15 ± 0.08 52.86 ± 6.23 85.65 ± 3.67 69.27 牛粪炭 Cattle dung biochar 3.99 ± 0.11 748 ± 7 13.93 ± 0.60 1.12 ± 0.10 73.26 ± 3.66 187.90 ± 3.65 121.71 双孢菇渣炭
Agaricus bisporus residue biochar3.73 ± 0.07 787 ± 4 10.44 ± 0.12 1.08 ± 0.10 74.21 ± 4.23 147.63 ± 17.77 67.93 兔粪炭 Rabbit dung biochar 4.05 ± 0.15 617 ± 6 15.71 ± 0.02 1.18 ± 0.15 81.85 ± 10.25 96.61 ± 6.99 115.55 杏鲍菇渣炭
Pleurotus eryngii residue biochar4.21 ± 0.09 849 ± 8 17.24 ± 0.05 1.24 ± 0.06 103.33 ± 3.65 115.15 ± 2.68 125.33 烟梗粉炭 Tobacco stem biochar 4.26 ± 0.14 834 ± 22 17.75 ± 0.25 1.26 ± 0.10 109.77 ± 2.65 146.35 ± 3.22 154.69 羊粪炭 Lamp dung biochar 3.96 ± 0.14 533 ± 12 12.94 ± 0.12 1.05 ± 0.10 55.33 ± 1.53 221.31 ± 2.65 147.66 椰渣炭 Coconut residue biochar 3.80 ± 0.10 725 ± 5 13.56 ± 1.62 1.10 ± 0.10 48.56 ± 5.33 125.81 ± 12.33 68.89 蚓粪炭 Wormcast biochar 3.83 ± 0.07 782 ± 3 10.32 ± 0.02 0.99 ± 0.10 51.78 ± 8.65 125.39 ± 3.68 36.00 玉米渣炭 Corn residue biochar 4.24 ± 0.06 618 ± 34 12.06 ± 2.92 1.07 ± 0.10 117.46 ± 1.01 106.53 ± 8.43 121.10 中药渣炭 Herb residue biochar 4.09 ± 0.11 644 ± 13 16.46 ± 0.17 1.21 ± 0.06 87.22 ± 0.66 148.40 ± 1.05 149.99 3. 讨论
3.1 不同原料的热解炭化产物分异
生物质炭的性质与生物质炭的原料、热解条件等因素关系密切[7]。通过不同来源的生物质废弃物炭化分析,发现不同类型的生物质原料性质差异较大。不同来源的生物质炭的性质差异幅度不同。所有生物质炭的pH变异较小,除了木糖渣炭pH小于7外,其余原料炭pH均在7.9~10.8间,因此本研究所选废弃物炭化产物生物质炭大都具有提升土壤pH的作用,能够用于酸性土壤改良[7]。由于木糖渣原料在加工生产过程中添加了额外的酸性物质,而在炭化过程中这类物质仍然保留在生物质炭中,从而使得炭化产物呈现酸性[41-42]。炭化产物生物质炭的有机碳含量相对较高,其中有5种生物质炭 (甘蔗渣、红茶渣、玉米渣、高粱酒糟和咖啡渣) 有机碳含量高达50%~88%;可溶性有机碳富含活性有机分子[43],在大多数生物质炭中含量小于10 g/kg,而在烟梗粉炭、蚕砂炭、草菇渣炭、红茶渣炭和中药渣炭中富集均大于10 g/kg,可用于促进作物生长。蚕砂炭、杏鲍菇渣炭、红茶渣炭、中药渣炭、高粱酒糟炭、咖啡渣炭含氮量超过2%;兔粪炭、骨粉炭、杏鲍菇渣炭、金针菇渣炭、双孢菇渣炭含磷量超过2%,以及核桃皮炭、烟梗粉炭、兔粪炭、蚕砂炭和中药渣炭含钾量超过2%,它们可以作为潜在氮、磷和钾源用于有机肥的生产。特别是兔粪炭、蚕砂炭和杏鲍菇渣炭 (至少两种养分元素高于2%) 具有生产加工炭基有机肥的潜在产业利用价值。经过动物或微生物转化的养殖和食品加工废弃物自身养分含量较高[33-44],炭化过程在杀灭其携带的病原菌、疫病生物、抗生素等物质[12]的同时,富集保留了较高的磷和钾素,并提高了其生物有效性,满足了其循环和安全利用的条件[18],可以安全地作为矿质养分补充剂施用于土壤[45]。相较于矿质肥料,生物质炭基肥不但能够补充土壤矿质养分、促进作物生长,同时在土壤培肥、土壤结构改良等方面起到重要作用[18, 22]。
农业行业标准 (NY/T 3618—2020)[46]中规定生物炭基有机肥料中碳的质量分数应大于20%,总养分 (N+P2O5+K2O) 的质量分数应大于5%。本研究中共8种炭 (花生壳炭、牛粪炭、羊粪炭、蚓粪炭、骨粉炭、双孢菇渣炭、木薯渣炭、稻壳灰炭) 的碳质量分数小于20%,12种炭 (草菇渣炭、稻壳粉炭、稻壳灰炭、稻壳牛粪炭、甘蔗渣炭、核桃皮炭、花生壳炭、木糖渣炭、牛粪炭、羊粪炭、椰渣炭、蚓粪炭) 的总养分含量低于5%,这些废弃物在炭化生产制肥的过程中可以采取多种原料配比方法以提高炭化产物的碳含量以及养分总量。通过对生物质热解循环质量产率、氮回收率、碳回收率进行归一化分析 (图4),其综合炭化循环率为32%~65%。蚕砂、稻壳灰、甘蔗渣、骨粉、双孢菇渣、兔粪、蚓粪及玉米渣的综合炭化循环率大于50%,这些废弃物具有炭化循环巨大潜在价值[19],更符合废弃物炭化农业循环的生物质材料产业的理论基础[18]。而其中金针菇渣和木糖渣的炭化循环产率小于33%。
为了优化热解生产,需找到影响生物质炭化循环产率及生物质炭产物主要性质的因子,本研究通过相关性分析比较生物质原料和产物性质之间的关系 (图5),结果表明,热解炭化的生物质炭产率与原料和生物质炭的有机碳含量 (r = –0.62,P < 0.01) 及氮含量 (r = –0.54,P < 0.01) 呈显著负相关,而与生物质炭中灰分含量呈显著正相关 (r = 0.72,P < 0.01)。这说明在热解炭化中,炭得率与生物质炭的有机碳和养分回收间可能存在抵消作用。生物质炭热解过程主要是其中的有机物质的分解,在厌氧环境中有机碳物质分解产生二氧化碳或者甲烷等气体,有机氮物质分解产生N2O等,从而使得生物质炭产率下降[47];灰分主要为难挥发态无机盐,这类物质在热解炭化过程中难以挥发而保留在生物质炭中[48]。生物质炭pH与其阳离子交换量呈正比,与钾含量呈显著正相关 (r = 0.50,P < 0.01)。生物质原料尤其植物秸秆类原料含有大量阳离子,这类无机阳离子在炭化后被固持在矿物质中不被损耗,使得生物质炭呈现碱性[49]。而生物质炭中碳及氮含量都与原料中碳氮含量呈显著正相关。
图 5 生物质原料及生物质炭性质相关性[注(Note):Mois—含水率Moisture content;Fed_OC—原料有机碳Feedstock organic carbon;Fed_N—原料氮Feedstock nitrogen;Yield—生物炭产出率Biochar yield;OC_Cycle—有机碳回收率Organic carbon recovery;N_Cycle—氮回收率Nitrogen recovery;EC—电导率Electronic conductivity;TOC—总有机碳Total organic carbon;Ash—灰分;DOC—可溶性有机碳Dissolved organic carbon;Bio_index—生物质炭相对质量指数Normalized relative quality index of biochars. **—P < 0.01;*—P < 0.05.]Figure 5. Biochar properties correlated to feedstock3.2 生物质炭的土壤–植物系统效应
生物质炭的施加能有效提升小白菜作物产量、品质[35,50-51],同时可提升土壤肥力[13,52-53]。通过对作物产量和品质进行归一化处理,再结合土壤肥力提升对生物质炭的土壤和植物综合效益进行分析 (图4),其中蚕砂炭、稻壳牛粪炭、骨粉炭、金针菇渣炭、咖啡渣炭、牛粪炭、双孢菇渣炭、兔粪炭、杏鲍菇渣炭、烟梗粉炭、羊粪炭、玉米渣炭、中药渣炭对土壤肥力和植物生长的协同效益提升均大于100%,可作为优质的土壤改良及植物生长促进的添加物质;而高粱酒糟炭、核桃皮炭、木糖渣炭、椰渣炭和蚓粪炭这些生物质废弃物炭化后的农业效益提升较低,对植物和土壤的协同效应小于50%。
由生物质炭的性质与盆栽土壤和植物的相关性分析结果(图6)可以看出,从植物及土壤的综合效益来看,生物质炭的电导率和磷含量对于其农业效益起重要作用。小白菜产量与生物质炭的有机碳含量呈显著负相关,与可溶性有机碳含量有一定正相关关系。这可能是由于生物质炭中的高碳含量会提高土壤碳氮比,使得微生物的矿化过程受到氮含量的限制,导致微生物和植物之间对于无机氮吸收的竞争,限制植物的生长[54-55]。相较于其他处理,蚕砂炭处理下小白菜的作物产量及品质均处于一个较高水平,通过对比生物质炭的性质可以发现,蚕砂炭可溶性有机碳含量较高,而这类物质对于作物生长起到重要作用。Bian等[43]研究表明,生物质炭中的有机组分是植物生长的生物活性剂,生物量随着可溶性有机碳的增加而增加。施加生物质炭能够降低作物体内硝酸盐含量,从而提升作物品质。烟梗粉炭处理下作物硝酸盐含量降幅最大 (61%),而烟梗粉炭处理的小白菜钾含量为所有生物炭中的最高值。相关性分析结果 (图6)显示,生物质炭中的钾含量与作物体内的硝酸盐含量呈显著负相关。研究认为,植物体内的钾离子能够诱导硝酸还原酶的合成,增强其活性,进而促进硝酸盐的还原[35,56]。生物质炭施加下土壤中有效磷含量与生物质炭中磷含量呈显著正相关,同时相关性分析结果表明小白菜的生物量与生物质炭的磷含量呈显著正相关关系 (P < 0.01)。骨粉炭处理下的小白菜产量处于一个较高的水平,通过对比其炭性质发现:骨粉炭的磷含量也远超其他生物质炭。骨粉炭中含有大量无机磷组分,这些组分能够影响土壤磷素的转化与有效性,从而影响作物对于磷素的吸收[57-58]。研究表明,牛骨粉炭化后能够显著增加土壤磷酸酶活性,进而增加磷素利用率和作物产量[45]。本研究所选土壤为酸性土壤,生物质炭的碱性特征对于酸性土壤有较好的缓冲作用;同时本研究中土壤有效磷较为缺乏,生物质炭中的高磷含量对于土壤中磷素的补充起到重要作用[45]。同时土壤中有机碳的提升与生物质炭中有机碳含量呈显著正相关,与灰分含量呈负相关。
图 6 盆栽相关指标与生物质炭性质相关性图[注(Note):SpH—土壤pH Soil pH;SEC—土壤电导率Soil electronic conductivity;SOC—土壤有机碳Soil organic carbon;SN—土壤氮Soil nitrogen;SAP—土壤有效磷Soil available phosphorus;SAK—土壤有效钾Soil available potassium;Fertility—土壤肥力Soil fertility;Biomass—生物量;Vc—植物维生素C Vitamin C;Nitrate—植物硝酸盐;Sugar—植物可溶性糖Soluble sugar;Protein—植物可溶性蛋白Soluble protein;Quality_index—作物总品质;Pla_index—植物总指标Plant index;Soil_plant—土壤–植物综合效益Soil plant combined benefit;Bio_index—生物质炭相对质量指数Normalized relative quality index of the biochars.]Figure 6. Correlation diagram between biochar properties and pot experiment indices3.3 不同原料的热解炭化农业循环综合潜力分析
综合生物质炭产出率、碳氮循环回收、土壤改良、作物产量及品质计算出不同废弃物热解炭化农业循环综合潜力 (图4),其中蚕砂、稻壳牛粪、骨粉、双孢菇渣、兔粪、羊粪和玉米渣得分大于80,属于炭化优势利用废弃物,其产物炭化循环率及土壤植物综合效益较好;而花生壳、金针菇渣、咖啡渣、牛粪、杏鲍菇渣、烟梗粉及中药渣得分在60~80,其产物有一定炭化潜力,炭化处理可作为这些废弃物农业循环的途径;草菇渣、醋渣、稻壳粉、稻壳灰、甘蔗渣、高粱酒糟、核桃皮、红茶渣、木薯渣、木糖渣、椰渣及蚓粪得分小于60,这些废弃物存在炭化循环率较低或其炭化产物对作物及土壤效益较差的问题,炭化可行性较差。
4. 结论
供试26种原料中,蚕砂、稻壳牛粪、骨粉、双孢菇渣、兔粪、羊粪和玉米渣的炭化循环率和土壤质量–植物生长协同提升幅度均在50%以上,为优先炭化农业利用的生物质废弃物;而木糖渣、稻壳粉、椰渣、高粱酒渣、核桃皮、蚓粪和红茶渣等废弃物热解炭化循环率较低,或者土壤质量–植物生长提升的不一致效应,认为不宜炭化农业利用;而其余废弃物热解炭化后的效应介于上述两类,具有较高的炭得率和一定程度的土壤质量–植物生长协同提升效应,属于可炭化农业利用的生物质废弃物。
-
图 5 生物质原料及生物质炭性质相关性
[注(Note):Mois—含水率Moisture content;Fed_OC—原料有机碳Feedstock organic carbon;Fed_N—原料氮Feedstock nitrogen;Yield—生物炭产出率Biochar yield;OC_Cycle—有机碳回收率Organic carbon recovery;N_Cycle—氮回收率Nitrogen recovery;EC—电导率Electronic conductivity;TOC—总有机碳Total organic carbon;Ash—灰分;DOC—可溶性有机碳Dissolved organic carbon;Bio_index—生物质炭相对质量指数Normalized relative quality index of biochars. **—P < 0.01;*—P < 0.05.]
Figure 5. Biochar properties correlated to feedstock
图 6 盆栽相关指标与生物质炭性质相关性图
[注(Note):SpH—土壤pH Soil pH;SEC—土壤电导率Soil electronic conductivity;SOC—土壤有机碳Soil organic carbon;SN—土壤氮Soil nitrogen;SAP—土壤有效磷Soil available phosphorus;SAK—土壤有效钾Soil available potassium;Fertility—土壤肥力Soil fertility;Biomass—生物量;Vc—植物维生素C Vitamin C;Nitrate—植物硝酸盐;Sugar—植物可溶性糖Soluble sugar;Protein—植物可溶性蛋白Soluble protein;Quality_index—作物总品质;Pla_index—植物总指标Plant index;Soil_plant—土壤–植物综合效益Soil plant combined benefit;Bio_index—生物质炭相对质量指数Normalized relative quality index of the biochars.]
Figure 6. Correlation diagram between biochar properties and pot experiment indices
表 1 供试生物质废弃物原料基本性质
Table 1 Basic properties of bio-waste feedstocks used for pyrolysis in this study
原料
Feedstock进料重 (kg)
Feed stocks weight含水量 (%)
Moisture content有机碳 (g/kg)
Organic carbon氮 (g/kg)
Nitrogen蚕砂 Silkworm litter 4.0 21.7 308.2 33.2 草菇渣 Mushroom residue 3.1 16.1 359.0 27.8 醋渣 Vinegar dreg 1.5 9.0 330.0 20.2 稻壳粉 Rice husk powder 3.4 8.6 416.2 5.0 稻壳灰 Rice husk ash 3.1 22.9 30.9 3.9 稻壳牛粪 Rice husk dung 2.3 13.9 230.3 25.1 甘蔗渣 Sugarcane residue 1.2 10.9 421.0 6.6 高粱酒糟 Brewery sorghum residue 3.1 8.8 450.6 57.1 骨粉 Bone chips 7.2 18.4 52.4 8.3 核桃皮 Walnut residue 4.1 12.4 286.2 8.6 红茶渣 Black tea residue 2.7 15.2 337.6 55.3 花生壳 Peanut husk 1.1 9.8 444.3 8.7 金针菇渣 Enoki mushroom residue 2.2 15.2 388.4 18.9 咖啡渣 Coffee residue 4.7 9.8 552.5 21.7 木薯渣 Cassava residue 4.8 13.2 272.8 23.7 木糖渣 Xlose residue 4.4 40.4 465.4 10.8 牛粪 Cattle dung 2.7 11.0 259.9 18.4 双孢菇渣 Agaricus bisporus residue 6.9 17.2 168.7 25.3 兔粪 Rabbit dung 2.5 15.9 286.2 22.2 杏鲍菇渣 Pleurotus eryngii residue 2.2 24.3 323.4 30.7 烟梗粉 Tobacco stem 3.4 15.7 327.5 23.0 羊粪 Lamp dung 3.6 13.0 310.1 23.7 椰渣 Coconut residue 1.6 8.2 426.8 15.1 蚓粪 Wormcast 7.0 8.5 167.0 13.1 玉米渣 Corn residue 1.8 18.4 899.1 12.7 中药渣 Herb residue 2.6 9.1 438.6 22.5 表 2 不同原料热解炭化产出的生物质炭的基本性质
Table 2 Basic properties of biochar derived from different biowastes
生物质炭
Biochar炭得率
Yield
(%)pH
(H2O)EC
(mS/cm)TOC
(g/kg)CEC
(cmol/kg)N
(g/kg)P
(g/kg)K
(g/kg)DOC
(g/kg)水分
Moisture
(%)灰分
Ash
(%)蚕砂炭 Silkworm litter biochar 54.48 10.14 4.93 292.46 73.38 22.32 5.49 27.45 23.68 5.37 12.09 草菇渣炭 Mushroom residue biochar 46.99 8.71 4.49 227.78 64.52 13.93 9.44 7.95 13.20 5.77 33.32 醋渣炭 Vinegar dreg biochar 50.86 9.63 4.31 205.28 63.85 17.09 8.39 18.80 3.47 4.25 42.92 稻壳粉炭 Rice husk powder biochar 38.46 9.07 0.94 340.33 73.17 8.43 2.08 12.22 1.75 4.50 26.26 稻壳灰炭 Rice husk ash biochar 64.89 10.43 0.75 30.26 71.42 1.04 5.03 12.47 1.59 1.52 97.42 稻壳牛粪炭 Rice husk-dung biochar 44.03 9.15 1.66 240.70 67.45 16.61 5.58 8.98 7.56 5.06 38.50 甘蔗渣炭 Sugarcane residue biochar 50.00 8.42 0.27 531.34 78.13 8.23 1.72 4.29 3.53 4.83 19.32 高粱酒糟炭 Brewery sorghum residue biochar 36.52 7.99 0.10 557.77 63.99 48.86 7.34 3.21 0.54 4.80 10.43 骨粉炭 Bone chips biochar 70.81 9.44 2.23 35.59 67.72 6.49 44.81 3.31 3.22 3.05 80.00 核桃皮炭 Walnut residue biochar 45.88 8.71 1.85 262.59 81.60 8.79 0.50 0.01 7.02 6.45 46.42 红茶渣炭 Black tea residue biochar 34.62 7.94 1.30 496.39 71.20 41.64 4.54 5.04 8.94 6.68 12.66 花生壳炭 Peanut husk biochar 55.90 8.72 1.00 165.88 91.94 9.25 7.23 7.59 3.68 4.98 29.98 金针菇渣炭 Enoki mushroom residue biochar 33.26 9.38 1.33 330.00 78.59 16.05 30.29 10.47 2.57 4.00 28.00 咖啡渣炭 Coffee residue biochar 32.35 8.54 0.24 689.98 69.66 33.98 2.31 11.86 2.63 4.41 6.15 木薯渣炭 Cassava residue biochar 53.58 8.41 1.07 184.13 66.49 16.39 16.40 3.55 4.89 3.29 64.24 木糖渣炭 Xylose residue biochar 22.38 5.98 0.77 423.92 66.34 12.48 1.47 2.00 4.32 5.71 7.85 牛粪炭 Cattle dung biochar 50.85 10.81 1.98 134.43 75.55 7.07 3.91 11.84 2.05 3.04 70.46 双孢菇渣炭 Agaricus bisporus residue biochar 62.08 8.50 2.73 147.31 76.71 14.72 35.80 10.39 3.80 3.02 71.82 兔粪炭 Rabbit dung biochar 52.30 9.19 3.66 252.12 69.86 19.87 26.30 20.77 8.08 4.70 34.16 杏鲍菇渣炭 Pleurotus eryngii residue biochar 36.30 9.61 2.35 267.40 82.79 22.39 20.04 10.78 7.87 6.57 26.06 烟梗粉炭 Tobacco stem biochar 41.58 10.08 10.37 280.54 78.72 13.14 5.91 57.64 48.49 4.87 34.18 羊粪炭 Lamp dung biochar 54.74 8.59 3.72 165.99 72.16 9.43 10.76 11.50 4.05 6.08 50.78 椰渣炭 Coconut residue biochar 61.35 9.86 1.98 370.87 76.69 6.70 1.28 12.18 1.90 15.92 15.86 蚓粪炭 Wormcast biochar 67.29 8.18 0.82 129.99 63.13 7.37 5.77 4.65 5.64 2.18 73.68 玉米渣炭 Corn residue biochar 42.30 9.53 1.36 882.46 84.57 15.56 19.49 12.75 2.38 4.34 30.90 中药渣炭 Herb residue biochar 38.00 10.32 2.57 316.81 75.60 21.52 4.55 20.23 10.77 4.72 26.43 注(Note):EC—电导率 Electrical conductivity; TOC—总有机碳 Total organic carbon; CEC—阳离子交换量 Cation exchange capacty; DOC—溶解性有机碳 Dissolved organic carbon. 表 3 不同原料生物质炭对小白菜产量及品质的影响 (盆栽试验)
Table 3 Biomass and quality of pakchoi under the amendment of biochar derived from different feedstocks
生物质炭
Biochar生物量
Biomass
(g/pot)维生素C
Vc
(g/kg)可溶性糖
Soluble sugar
(g/kg)可溶性蛋白
Soluble protein
(g/kg)硝酸盐
Nitrate
(g/kg)品质指数
Quality
indexCK 6.96 ± 2.39 5.05 ± 1.10 0.37 ± 0.06 14.31 ± 0.45 0.39 ± 0.06 0.21 ± 0.08 蚕砂炭 Silkworm litter biochar 27.32 ± 2.73 10.37 ± 0.62 0.49 ± 0.24 14.77 ± 1.58 0.30 ± 0.02 0.54 ± 0.15 草菇渣炭 Mushroom residue biochar 11.76 ± 0.77 8.21 ± 2.41 0.31 ± 0.11 15.54 ± 1.46 0.31 ± 0.04 0.40 ± 0.10 醋渣炭 Vinegar dreg biochar 16.44 ± 3.64 7.93 ± 1.24 0.47 ± 0.25 14.62 ± 0.80 0.38 ± 0.06 0.37 ± 0.18 稻壳粉炭 Rice husk powder biochar 6.52 ± 1.86 10.11 ± 2.09 0.25 ± 0.01 15.24 ± 0.78 0.32 ± 0.04 0.42 ± 0.12 稻壳灰炭 Rice husk ash biochar 10.61 ± 3.43 6.62 ± 0.28 0.33 ± 0.02 19.58 ± 1.80 0.43 ± 0.03 0.29 ± 0.06 稻壳牛粪炭 Rice husk-dung biochar 20.57 ± 4.69 9.76 ± 2.11 0.33 ± 0.12 28.97 ± 3.64 0.38 ± 0.05 0.60 ± 0.04 甘蔗渣炭 Sugarcane residue biochar 7.07 ± 0.88 9.08 ± 1.33 0.35 ± 0.11 17.24 ± 2.48 0.29 ± 0.02 0.48 ± 0.11 高粱酒糟炭 Brewery sorghum residue biochar 8.91 ± 4.41 6.16 ± 1.36 0.36 ± 0.06 15.09 ± 2.08 0.48 ± 0.00 0.18 ± 0.10 骨粉炭 Bone chips biochar 28.82 ± 4.22 8.71 ± 1.28 0.38 ± 0.13 23.01 ± 1.58 0.44 ± 0.04 0.44 ± 0.12 核桃皮炭 Walnut residue biochar 5.79 ± 2.88 7.17 ± 1.88 0.38 ± 0.08 13.42 ± 2.50 0.27 ± 0.07 0.38 ± 0.12 红茶渣炭 Black tea residue biochar 7.09 ± 2.06 8.91 ± 1.53 0.34 ± 0.08 18.56 ± 1.53 0.31 ± 0.03 0.48 ± 0.11 花生壳炭 Peanut husk biochar 18.08 ± 0.90 7.55 ± 1.44 0.44 ± 0.29 13.70 ± 1.59 0.42 ± 0.05 0.29 ± 0.20 金针菇渣炭 Enoki mushroom residue biochar 10.75 ± 2.59 6.90 ± 1.73 0.37 ± 0.03 20.16 ± 2.30 0.29 ± 0.04 0.46 ± 0.07 咖啡渣炭 Coffee residue biochar 15.76 ± 4.30 7.49 ± 2.52 0.51 ± 0.23 16.60 ± 2.95 0.46 ± 0.06 0.33 ± 0.12 木薯渣炭 Cassava residue biochar 9.50 ± 1.17 8.59 ± 1.69 0.34 ± 0.08 16.13 ± 2.01 0.29 ± 0.02 0.44 ± 0.05 木糖渣炭 Xylose residue biochar 6.05 ± 0.38 7.12 ± 0.94 0.22 ± 0.06 14.16 ± 1.13 0.32 ± 0.05 0.29 ± 0.11 牛粪炭 Cattle dung biochar 10.21 ± 2.10 9.24 ± 1.18 0.22 ± 0.04 24.09 ± 2.81 0.27 ± 0.09 0.56 ± 0.15 双孢菇渣炭 Agaricus bisporus residue biochar 23.32 ± 2.30 9.24 ± 1.12 0.57 ± 0.25 21.41 ± 2.02 0.40 ± 0.10 0.55 ± 0.15 兔粪炭 Rabbit dung biochar 24.61 ± 3.66 8.19 ± 1.93 0.58 ± 0.07 13.30 ± 1.85 0.28 ± 0.08 0.50 ± 0.08 杏鲍菇渣炭 Pleurotus eryngii residue biochar 11.23 ± 2.03 8.42 ± 1.32 0.40 ± 0.03 18.49 ± 0.40 0.27 ± 0.06 0.52 ± 0.11 烟梗粉炭 Tobacco stem biochar 12.40 ± 2.39 7.99 ± 1.05 0.25 ± 0.06 19.35 ± 1.27 0.15 ± 0.03 0.56 ± 0.09 羊粪炭 Lamp dung biochar 25.41 ± 2.84 9.24 ± 1.12 0.63 ± 0.37 12.11 ± 1.24 0.34 ± 0.06 0.49 ± 0.17 椰渣炭 Coconut residue biochar 4.58 ± 1.65 5.33 ± 1.36 0.24 ± 0.04 17.94 ± 3.01 0.34 ± 0.05 0.26 ± 0.14 蚓粪炭 Wormcast biochar 15.96 ± 3.99 7.76 ± 0.67 0.44 ± 0.15 12.61 ± 1.92 0.52 ± 0.02 0.20 ± 0.08 玉米渣炭 Corn residue biochar 9.87 ± 2.25 10.43 ± 0.87 0.40 ± 0.10 26.63 ± 1.61 0.30 ± 0.07 0.69 ± 0.04 中药渣炭 Herb residue biochar 18.71 ± 2.38 7.23 ± 0.15 0.52 ± 0.29 13.20 ± 1.50 0.45 ± 0.06 0.29 ± 0.06 表 4 不同生物质炭处理下小白菜收获时盆栽土壤肥力性质
Table 4 Soil fertility properties in the pakchoi harvested soil under the amendment of the biochars
生物质炭
BiocharpH
(H2O)电导率
EC
(µS/cm)有机碳
Organic C
(g/kg)全氮
Total N
(g/kg)有效磷
Available P
(mg/kg)速效钾
Available K
(mg/kg)肥力提升
Improvement of fertility (%)CK 3.73 ± 0.07 612 ± 4 9.02 ± 0.07 0.89 ± 0.05 19.38 ± 2.66 87.96 ± 2.61 蚕砂炭 Silkworm litter biochar 4.75 ± 0.05 728 ± 35 15.44 ± 0.84 1.17 ± 0.06 174.20 ± 6.66 127.86 ± 6.55 193.19 草菇渣炭 Mushroom residue biochar 4.56 ± 0.14 927 ± 7 12.96 ± 2.45 1.08 ± 0.10 149.51 ± 1.52 100.11 ± 12.33 110.32 醋渣炭 Vinegar dreg biochar 3.87 ± 0.13 988 ± 25 15.08 ± 0.17 1.16 ± 0.10 57.15 ± 5.45 139.19 ± 2.61 60.94 稻壳粉炭 Rice husk powder biochar 3.84 ± 0.06 654 ± 11 11.91 ± 0.05 1.08 ± 0.10 42.20 ± 1.16 112.32 ± 2.32 54.86 稻壳灰炭 Rice husk ash biochar 3.54 ± 0.06 640 ± 7 9.01 ± 0.14 0.96 ± 0.05 18.39 ± 0.09 217.66 ± 15.38 63.48 稻壳牛粪炭 Rice husk-dung biochar 4.05 ± 0.15 724 ± 31 14.85 ± 0.40 1.15 ± 0.07 81.85 ± 5.35 122.26 ± 5.64 107.99 甘蔗渣炭 Sugarcane residue biochar 3.79 ± 0.11 1141 ± 10 15.29 ± 1.99 1.17 ± 0.10 46.41 ± 3.61 115.15 ± 3.25 19.60 高粱酒糟炭
Brewery sorghum residue biochar3.76 ± 0.14 738 ± 6 14.47 ± 0.02 1.14 ± 0.10 43.19 ± 2.08 116.30 ± 5.64 65.02 骨粉炭 Bone chips biochar 5.44 ± 0.06 910 ± 30 10.42 ± 0.57 0.93 ± 0.10 476.02 ± 3.78 109.71 ± 4.62 360.32 核桃皮炭 Walnut residue biochar 3.88 ± 0.12 939 ± 7 13.13 ± 0.26 1.09 ± 0.06 59.30 ± 1.69 130.00 ± 2.33 46.20 红茶渣炭 Black tea residue biochar 3.85 ± 0.15 861 ± 15 14.40 ± 0.31 1.13 ± 0.18 55.01 ± 3.98 127.30 ± 20.36 64.50 花生壳炭 Peanut husk biochar 3.74 ± 0.06 560 ± 25 12.12 ± 0.36 1.02 ± 0.10 34.48 ± 0.70 197.46 ± 4.90 103.44 金针菇渣炭
Enoki mushroom residue biochar4.09 ± 0.11 775 ± 7 18.59 ± 0.37 1.29 ± 0.50 86.15 ± 2.33 127.86 ± 6.33 139.14 咖啡渣炭 Coffee residue biochar 3.85 ± 0.15 589 ± 20 16.64 ± 0.18 1.22 ± 0.10 55.01 ± 0.36 118.67 ± 2.33 116.35 木薯渣炭 Cassava residue biochar 3.94 ± 0.06 719 ± 16 11.54 ± 1.39 1.03 ± 0.13 66.82 ± 6.56 111.45 ± 3.98 60.96 木糖渣炭 Xylose residue biochar 3.83 ± 0.07 676 ± 6 14.77 ± 0.21 1.15 ± 0.08 52.86 ± 6.23 85.65 ± 3.67 69.27 牛粪炭 Cattle dung biochar 3.99 ± 0.11 748 ± 7 13.93 ± 0.60 1.12 ± 0.10 73.26 ± 3.66 187.90 ± 3.65 121.71 双孢菇渣炭
Agaricus bisporus residue biochar3.73 ± 0.07 787 ± 4 10.44 ± 0.12 1.08 ± 0.10 74.21 ± 4.23 147.63 ± 17.77 67.93 兔粪炭 Rabbit dung biochar 4.05 ± 0.15 617 ± 6 15.71 ± 0.02 1.18 ± 0.15 81.85 ± 10.25 96.61 ± 6.99 115.55 杏鲍菇渣炭
Pleurotus eryngii residue biochar4.21 ± 0.09 849 ± 8 17.24 ± 0.05 1.24 ± 0.06 103.33 ± 3.65 115.15 ± 2.68 125.33 烟梗粉炭 Tobacco stem biochar 4.26 ± 0.14 834 ± 22 17.75 ± 0.25 1.26 ± 0.10 109.77 ± 2.65 146.35 ± 3.22 154.69 羊粪炭 Lamp dung biochar 3.96 ± 0.14 533 ± 12 12.94 ± 0.12 1.05 ± 0.10 55.33 ± 1.53 221.31 ± 2.65 147.66 椰渣炭 Coconut residue biochar 3.80 ± 0.10 725 ± 5 13.56 ± 1.62 1.10 ± 0.10 48.56 ± 5.33 125.81 ± 12.33 68.89 蚓粪炭 Wormcast biochar 3.83 ± 0.07 782 ± 3 10.32 ± 0.02 0.99 ± 0.10 51.78 ± 8.65 125.39 ± 3.68 36.00 玉米渣炭 Corn residue biochar 4.24 ± 0.06 618 ± 34 12.06 ± 2.92 1.07 ± 0.10 117.46 ± 1.01 106.53 ± 8.43 121.10 中药渣炭 Herb residue biochar 4.09 ± 0.11 644 ± 13 16.46 ± 0.17 1.21 ± 0.06 87.22 ± 0.66 148.40 ± 1.05 149.99 -
[1] Farmer B H. Perspectives on the "Green Revolution" in South Asia[J]. Modern Asian Studies, 1986, 20(1): 175–199. DOI: 10.1017/S0026749X00013627
[2] 向晶, 唐亚. 集约化农业及其环境效应[J]. 世界科技研究与发展, 2005, 27(6): 81–87. DOI: 10.3969/j.issn.1006-6055.2005.06.014 Xiang J, Tang Y. Intensive agriculture and its environmental consequences[J]. World Sci-Tech R& D, 2005, 27(6): 81–87. DOI: 10.3969/j.issn.1006-6055.2005.06.014
[3] Singh R, Babu J N, Kumar R, et al. Multifaceted application of crop residue biochar as a tool for sustainable agriculture: An ecological perspective[J]. Ecological Engineering, 2015, 77: 324–347. DOI: 10.1016/j.ecoleng.2015.01.011
[4] 韩鲁佳, 闫巧娟, 刘向阳, 等. 中国农作物秸秆资源及其利用现状[J]. 农业工程学报, 2002, 18(3): 87–91. DOI: 10.3321/j.issn:1002-6819.2002.03.022 Han L J, Yan Q J, Liu X Y, et al. Straw resources and their utilization in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2002, 18(3): 87–91. DOI: 10.3321/j.issn:1002-6819.2002.03.022
[5] 孙永明, 李国学, 张夫道, 等. 中国农业废弃物资源化现状与发展战略[J]. 农业工程学报, 2005, 21(8): 169–173. DOI: 10.3321/j.issn:1002-6819.2005.08.037 Sun Y M, Li G X, Zhang F D, et al. Status quo and developmental strategy of agricultural residues resources in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2005, 21(8): 169–173. DOI: 10.3321/j.issn:1002-6819.2005.08.037
[6] 丁素珍. 生物质能的开发与利用[J]. 农业工程学报, 1993, 9(4): 51–57. DOI: 10.3321/j.issn:1002-6819.1993.04.008 Ding S Z. Development and utility of biomass energy[J]. Transactions of the Chinese Society of Agricultural Engineering, 1993, 9(4): 51–57. DOI: 10.3321/j.issn:1002-6819.1993.04.008
[7] 张应桂, 周勇. 生物质能转化技术利用现状与环境评价[J]. 化学工程师, 2007, (11): 33–36. DOI: 10.3969/j.issn.1002-1124.2007.11.013 Zhang Y G, Zhou Y. Current condition and environmental evaluation of transformation of biomass technology[J]. Chemical Engineer, 2007, (11): 33–36. DOI: 10.3969/j.issn.1002-1124.2007.11.013
[8] 王群. 生物质源和制备温度对生物炭构效的影响[D]. 上海: 上海交通大学硕士学位论文, 2013. Wang Q. Influence of biomass feedstocks and production temperatures on the structure-activities of biochar[D]. Shanghai: MS Thesis of Shanghai Jiaotong University, 2013.
[9] Ji C, Cheng K, Nayak D, et al. Environmental and economic assessment of crop residue competitive utilization for biochar, briquette fuel and combined heat and power generation[J]. Journal of Cleaner Production, 2018, 192: 916–923. DOI: 10.1016/j.jclepro.2018.05.026
[10] 刘铭龙, 刘晓雨, 潘根兴. 生物质炭对植物表型及其相关基因表达影响的研究进展[J]. 植物营养与肥料学报, 2017, 23(3): 789–798. DOI: 10.11674/zwyf.16309 Liu M L, Liu X Y, Pan G X. Advance in effect of biochar on plant phenotype and gene expression[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(3): 789–798. DOI: 10.11674/zwyf.16309
[11] 袁金华, 徐仁扣. 生物质炭的性质及其对土壤环境功能影响的研究进展[J]. 生态环境学报, 2011, 20(4): 779–785. DOI: 10.3969/j.issn.1674-5906.2011.04.034 Yuan J H, Xu R K. Progress of the research on the properties of biochars and their influence on soil environmental functions[J]. Ecology and Environmental Sciences, 2011, 20(4): 779–785. DOI: 10.3969/j.issn.1674-5906.2011.04.034
[12] Zhang A F, Cui L Q, Pan G X, et al. Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Taihu Lake plain, China[J]. Agriculture, Ecosystems & Environment, 2010, 139(4): 469–475.
[13] Zhang A F, Bian R J, Pan G X, et al. Effect of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: A field study of 2 consecutive rice growing cycles[J]. Field Crops Research, 2012, 127: 153–160. DOI: 10.1016/j.fcr.2011.11.020
[14] Jeffery S, Verheijen F G A, Van Der Velde M, et al. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis[J]. Agriculture, Ecosystems & Environment, 2011, 144(1): 175–187.
[15] Spokas K A, Cantrell K B, Novak J M, et al. Biochar: A synthesis of its agronomic impact beyond carbon sequestration[J]. Journal of Environmental Quality, 2012, 41(4): 973–989. DOI: 10.2134/jeq2011.0069
[16] Lou Y M, Joseph S, Li L, et al. Water extract from straw biochar used for plant growth promotion: An initial test[J]. Bioresources, 2016, 11(1): 249–266.
[17] 王盼, 郑庭茜, 卞荣军, 等. 基于生物质裂解活性有机物的有机–无机水溶肥对空心菜产量, 品质及养分的影响[J]. 土壤通报, 2018, 49(6): 1377–1382. Wang P, Zheng T X, Bian R J, et al. Effects on yield, quality and nutrients of water spinach by organic/inorganic water-soluble fertilizer based on bioactive extracts from biomass pyrolysis[J]. Chinese Journal of Soil Science, 2018, 49(6): 1377–1382.
[18] 潘根兴, 卞荣军, 程琨. 从废弃物处理到生物质制造业: 基于热裂解的生物质科技与工程[J]. 科技导报, 2017, 35(23): 82–93. Pan G X, Bian R J, Cheng K. From biowaste treatment to novel bio-material manufacturing: Biomaterial science and technology based on biomass pyrolysis[J]. Science & Technology Review, 2017, 35(23): 82–93.
[19] 潘根兴, 李恋卿, 刘晓雨, 等. 热裂解生物质炭产业化: 秸秆禁烧与绿色农业新途径[J]. 科技导报, 2015, 33(13): 92–101. DOI: 10.3981/j.issn.1000-7857.2015.13.015 Pan G X, Li L Q, Liu X Y, et al. Industrialization of biochar from biomass pyrolysis: A new option for straw burning ban and green agriculture of China[J]. Science & Technology Review, 2015, 33(13): 92–101. DOI: 10.3981/j.issn.1000-7857.2015.13.015
[20] Lehmann J. A handful of carbon[J]. Nature, 2007, 447(7141): 143–144. DOI: 10.1038/447143a
[21] Marris E. Black is the new green[J]. Nature, 2006, 442: 624–626. DOI: 10.1038/442624a
[22] 陈温福, 张伟明, 孟军. 农用生物炭研究进展与前景[J]. 中国农业科学, 2013, 46(16): 3324–3333. DOI: 10.3864/j.issn.0578-1752.2013.16.003 Chen W F, Zhang W M, Meng J. Advances and prospects in research of biochar utilization in agriculture[J]. Scientia Agricultura Sinica, 2013, 46(16): 3324–3333. DOI: 10.3864/j.issn.0578-1752.2013.16.003
[23] Masek O, Buss W, Roy-Poirier A, et al. Consistency of biochar properties over time and production scales: A characterisation of standard materials[J]. Journal of Analytical and Applied Pyrolysis, 2018, 132: 200–210. DOI: 10.1016/j.jaap.2018.02.020
[24] Troeger N, Richter D, Stahl R. Effect of feedstock composition on product yields and energy recovery rates of fast pyrolysis products from different straw types[J]. Journal of Analytical and Applied Pyrolysis, 2013, 100: 158–165. DOI: 10.1016/j.jaap.2012.12.012
[25] Singh B, Singh B P, Cowie A L, et al. Characterisation and evaluation of biochars for their application as a soil amendment[J]. Soil Research, 2010, 48(7): 516–525. DOI: 10.1071/SR10058
[26] Tsai W T, Liu S C, Chen H R, et al. Textural and chemical properties of swine-manure-derived biochar pertinent to its potential use as a soil amendment[J]. Chemosphere, 2012, 89(2): 198–203. DOI: 10.1016/j.chemosphere.2012.05.085
[27] Cantrell K B, Hunt P G, Uchimiya M, et al. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar[J]. Bioresource Technology, 2012, 107: 419–428. DOI: 10.1016/j.biortech.2011.11.084
[28] Brewer C E, Hu Y Y, Schmidt-Rohr K, et al. Extent of pyrolysis impacts on fast pyrolysis biochar properties[J]. Journal of EnvironmentalQuality, 2012, 41(4): 1115–1122. DOI: 10.2134/jeq2011.0118
[29] Lin Z, Rui Z P, Liu M L, et al. Pyrolyzed biowastes deactivated potentially toxic metals and eliminated antibiotic resistant genes for healthy vegetable production[J]. Journal of Cleaner Production, 2020, 276: 124208–124208. DOI: 10.1016/j.jclepro.2020.124208
[30] Bian R, Ma B, Zhu X, et al. Pyrolysis of crop residues in a mobile bench-scale pyrolyser: Product characterization and environmental performance[J]. Journal of Analytical and Applied Pyrolysis, 2016, 119: 52–59. DOI: 10.1016/j.jaap.2016.03.018
[31] Jindo K, Mizumoto H, Sawada Y, et al. Physical and chemical characterization of biochars derived from different agricultural residues[J]. Biogeosciences, 2014, 11(23): 6613–6621. DOI: 10.5194/bg-11-6613-2014
[32] Liu X, Zhang A, Ji C, et al. Biochar’s effect on crop productivity and the dependence on experimental conditions–A meta-analysis of literature data[J]. Plant and Soil, 2013, 373(1–2): 583–594. DOI: 10.1007/s11104-013-1806-x
[33] 邱良祝, 朱脩玥, 马彪, 等. 生物质炭热解炭化条件及其性质的文献分析[J]. 植物营养与肥料学报, 2017, 23(6): 1622–1630. DOI: 10.11674/zwyf.17031 Qiu L Z, Zhu X Y, Ma B, et al. Literature analysis on properties and pyrolyzing conditions of biochars[J]. Journal of Plant Nutrition and Ferrtilizers, 2017, 23(6): 1622–1630. DOI: 10.11674/zwyf.17031
[34] Cayuela M L, Van Zwieten L, Singh B P, et al. Biochar’s role in mitigating soil nitrous oxide emissions: A review and meta-analysis[J]. Agriculture, Ecosystems & Environment, 2014, 19: 5–16.
[35] 刘晓雨, 刘成, 王贺东, 等. 添加生物质炭不同组分对不结球白菜产量和品质的影响[J]. 南京农业大学学报, 2018, 41(6): 1070–1077. DOI: 10.7685/jnau.201805049 Liu X Y, Liu C, Wang H D, et al. Effect of different biochar components on the yield and quality of non-heading Chinese cabbage (Brassica campestris ssp. chinesis)[J]. Journal of Naning Agricultural University, 2018, 41(6): 1070–1077. DOI: 10.7685/jnau.201805049
[36] IBI–STD–2.1. Standardized product definition and product testing guidelines for biochar that is used in soil[S].
[37] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. Lu R K. Methods of soil and agricultural chemistry analysis[M]. Beijing: China Agricultural Science and Technology Press, 2000.
[38] 靳振江, 邰继承, 潘根兴, 等. 荆江地区湿地与稻田有机碳、微生物多样性及土壤酶活性的比较[J]. 中国农业科学, 2012, 45(18): 3773–3781. DOI: 10.3864/j.issn.0578-1752.2012.18.010 Jin Z J, Tai J C, Pan G X, et al. Comparison of soil organic carbon, microbial diversity and enzyme activity of wetlands and rice paddies in Jinjiang area of Hubei, China[J]. Scientia Agricultura Sinica, 2012, 45(18): 3773–3781. DOI: 10.3864/j.issn.0578-1752.2012.18.010
[39] Li J Y, Liu Z D, Zhao W Z, et al. Alkaline slag is more effective than phosphogypsum in the amelioration of subsoil acidity in an Ultisol profile[J]. Soil & Tillage Research, 2015, 149: 21–32.
[40] 庄舜尧. 氮肥对于蔬菜品质的影响[A]. 谢建昌. 菜园土壤与蔬菜合理施肥[M]. 南京: 河海大学出版社, 1997. 211–216. Zhuang S Y. Effect of nitrogen fertilizer on vegetable quality[A]. Xie J C. Garden soil and vegetables are properly fertilized[M]. Nanjing: Hohai University Press, 1997. 211–216.
[41] 边静. 农林生物质半纤维素分离及降解制备低聚木糖研究[D]. 北京: 北京林业大学博士学位论文, 2013. Bian J. Isolation and degradation of hemicelluloses for the production of xylooligosaccharides from lignocellulosic biomass[D]. Beijing: PhD Dissertation of Beijing Forestry University, 2013.
[42] 梁嘉晋. 纤维素和半纤维素热解机理及其产物调控途径的研究[D]. 广州: 华南理工大学硕士学位论文, 2016. Liang J J. Mechanism researches of cellulose and hemicellulose pyrolysis and their products regulation[D]. Guangzhou: MS Thesis of South China University of Technology, 2016.
[43] Bian R J, Joseph S, Shi W, et al. Biochar DOM for plant promotion but not residual biochar for metal immobilization depended on pyrolysis temperature[J]. Science of the Total Environment, 2019, 662: 571–580. DOI: 10.1016/j.scitotenv.2019.01.224
[44] Chan K Y, Xu Z. Biochar: nutrient properties and their enhancement[C]. Lehmann J J S. Biochar for environmental management science and technology[M]. London: Earthscan, 2009.67–84.
[45] 郭文杰, 邵前前, 杜健, 等. 不同温度热解牛骨炭对菜园土壤磷素转化及小白菜产量的影响[J]. 土壤通报, 2019, 50(6): 1391–1399. Guo W J, Shao Q Q, Du J, et al. Effects of bovine bone carbonchar pyrolyed at different temperatures on phosphorus transformation and bioavailability of vegetable soil[J]. Chinese Journal of Soil Science, 2019, 50(6): 1391–1399.
[46] NY/T 3618–2020. 生物炭基有机肥料[S]. NY/T 3618–2020. Biochar-based organic fertilizer[S].
[47] Cao X, Harris W. Properties of dairy-manure-derived biochar pertinent to its potential use in remediation[J]. Bioresource Technology, 2010, 101(14): 5222–5228. DOI: 10.1016/j.biortech.2010.02.052
[48] Kambo H S, Dutta A. A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications[J]. Renewable & Sustainable Energy Reviews, 2015, 45: 359–378.
[49] 徐仁扣. 秸秆生物质炭对红壤酸度的改良作用: 回顾与展望[J]. 农业资源与环境学报, 2016, 33(4): 303–309. Xu R K. Progresses on amelioration of red soil acidity with crop straw biochar: A review[J]. Journal of Agricultural Resources and Environment, 2016, 33(4): 303–309.
[50] 张登晓, 周惠民, 潘根兴, 等. 城市园林废弃物生物质炭对小白菜生长、硝酸盐含量及氮素利用率的影响[J]. 植物营养与肥料学报, 2014, 20(6): 1569–1576. DOI: 10.11674/zwyf.2014.0628 Zhang D X, Zhou H M, Pan G X, et al. Effect of municipal green waste biochar addition on the growth, nitrate content and nitrogen use efficiency of greenhouse pakchoi[J]. Journal of Plant Nutrition and Fertilizers, 2014, 20(6): 1569–1576. DOI: 10.11674/zwyf.2014.0628
[51] Bian R, Li L, Shi W, et al. Pyrolysis of contaminated wheat straw to stabilize toxic metals in biochar but recycle the extract for agricultural use[J]. Biomass and Bioenergy, 2018, 118: 32–39. DOI: 10.1016/j.biombioe.2018.08.003
[52] Chan K Y, Van Zwieten L, Meszaros I, et al. Agronomic values of greenwaste biochar as a soil amendment[J]. Australian Journal of Soil Research, 2007, 45(8): 629. DOI: 10.1071/SR07109
[53] Lehmann J, Rillig M C, Thies J, et al. Biochar effects on soil biota–A review[J]. Soil Biology & Biochemistry, 2011, 43(9): 1812–1836.
[54] Moritsuka N, Yanai J, Mori K, et al. Biotic and abiotic processes of nitrogen immobilization in the soil-residue interface[J]. Soil Biology & Biochemistry, 2004, 36(7): 1141–1148.
[55] Thippayarugs S, Toomsan B, Vityakon P, et al. Interactions in decomposition and N mineralization between tropical legume residue components[J]. Agroforestry Systems, 2008, 72(2): 137–148. DOI: 10.1007/s10457-007-9062-9
[56] 李会合, 王正银, 李宝珍. 蔬菜营养与硝酸盐的关系[J]. 应用生态学报, 2004, 15(9): 1667–1672. DOI: 10.3321/j.issn:1001-9332.2004.09.035 Li H H, Wang Z Y, Li B Z. Relationship between vegetable nutrition and nitrate content[J]. Chinese Journal of Applied Ecology, 2004, 15(9): 1667–1672. DOI: 10.3321/j.issn:1001-9332.2004.09.035
[57] Vassilev N, Martos E, Mendes G, et al. Biochar of animal origin: A sustainable solution to the global problem of high-grade rock phosphate scarcity?[J]. Journal of the Science of Food and Agriculture, 2013, 93(8): 1799–1804. DOI: 10.1002/jsfa.6130
[58] Postma J, Nijhuis E H, Someus E. Selection of phosphorus solubilizing bacteria with biocontrol potential for growth in phosphorus rich animal bone charcoal[J]. Applied Soil Ecology, 2010, 46(3): 464–469. DOI: 10.1016/j.apsoil.2010.08.016
-
期刊类型引用(8)
1. 高华,涂昊泽,赵钰湲,孔雯,夏文建,王飞儿,Muhammad Shaaban,林杉. 生物质炭调控药用植物连作障碍的研究进展. 福建农业学报. 2024(01): 105-114 . 百度学术
2. 刘程,徐汝民,汪军,陈涛. 市政污泥与牛粪协同炭化对改性污泥生物炭性质的影响. 安徽化工. 2024(02): 135-139+144 . 百度学术
3. 袁梦婷,李子川,孟俊,张敏,叶郑豪,单胜道,胡敏骏,徐君,柴彦君. 施用猪粪生物炭对酸性和石灰性水稻土颗粒态和矿物结合态有机碳含量及化学结构的影响. 植物营养与肥料学报. 2024(03): 441-456 . 本站查看
4. 马想,陈平,梁晶. 两种城市源有机固体废物生物质炭理化特性研究. 环境卫生工程. 2024(04): 29-35 . 百度学术
5. 姜晓琳,肖永丰,刘汇东. 土壤调理剂的研究与应用进展. 环境生态学. 2024(08): 105-109 . 百度学术
6. 钱九盛,谢文逸,何中华,刘晓雨,张旭辉,郑聚锋,李恋卿,潘根兴. 施用生物质炭对桃园土壤肥力及黄桃产量和品质的影响. 农业资源与环境学报. 2023(03): 680-688 . 百度学术
7. 李柯衡,张明华,贾永霞,熊瑞,谢倚慧,李婷,蒲玉琳,李云. 纳米材料对土壤镉生物有效性及小白菜生长、品质的影响. 土壤通报. 2023(04): 930-936 . 百度学术
8. 孙宇龙,张永利,苏有健,王烨军,方雅各,廖万有. 生物质炭对土壤物理结构性状和水分特征影响的研究进展. 江苏农业科学. 2022(23): 25-32 . 百度学术
其他类型引用(9)