• ISSN 1008-505X
  • CN 11-3996/S

长期施肥土壤不同粒径颗粒的固碳效率

蔡岸冬, 张文菊, 申小冉, 肖婧, 韩天富, 徐明岗

蔡岸冬, 张文菊, 申小冉, 肖婧, 韩天富, 徐明岗. 长期施肥土壤不同粒径颗粒的固碳效率[J]. 植物营养与肥料学报, 2015, 21(6): 1431-1438. DOI: 10.11674/zwyf.2015.0607
引用本文: 蔡岸冬, 张文菊, 申小冉, 肖婧, 韩天富, 徐明岗. 长期施肥土壤不同粒径颗粒的固碳效率[J]. 植物营养与肥料学报, 2015, 21(6): 1431-1438. DOI: 10.11674/zwyf.2015.0607
CAI An-dong, ZHANG Wen-ju, SHEN Xiao-ran, XIAO Jing, HAN Tian-fu, XU Ming-gang. Soil carbon sequestration efficiency of different particle-size fractions after long-term fertilization[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(6): 1431-1438. DOI: 10.11674/zwyf.2015.0607
Citation: CAI An-dong, ZHANG Wen-ju, SHEN Xiao-ran, XIAO Jing, HAN Tian-fu, XU Ming-gang. Soil carbon sequestration efficiency of different particle-size fractions after long-term fertilization[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(6): 1431-1438. DOI: 10.11674/zwyf.2015.0607

长期施肥土壤不同粒径颗粒的固碳效率

基金项目: 

国家自然科学基金面上项目(41371247); 公益性行业(农业)科研专项(201203030,201303126)资助

详细信息
    作者简介:

    蔡岸冬(1987—),男,河南商丘人,硕士,主要从事土壤培肥与改良方面的研究工作。E-mail: caiandong0906@163.com,*通信作者Tel: 010-82108661, E-mail: zhangwenju01@caas.cn

  • 中图分类号: S152.3;S153.6+2

Soil carbon sequestration efficiency of different particle-size fractions after long-term fertilization

  • 摘要: 目的 探讨不同施肥措施土壤有机碳在不同粒级颗粒中的分配及变化情况,可揭示各级颗粒中有机碳与外源有机碳输入之间的定量关系。方法 依托南方红壤连续20年长期定位施肥试验,依据外源有机碳累积输入梯度,选择不施肥(CK)、 氮磷钾化肥配施(NPK)、 氮磷钾化肥与秸秆配施(NPKS)、 轮作条件下氮磷钾化肥与有机肥配施(NPKMR)、 氮磷钾化肥与有机肥配施(NPKM)、 单施有机肥(M)、 增量氮磷钾化肥与增量有机肥配施(1.5NPKM)7个处理,并采用物理分组方法将土壤颗粒分为砂粒(53~2000 m)、 粗粉粒(5~53 m)、 细粉粒(2~5 m)和粘粒(2 m)4个组分。结果 与不施肥相比,长期施肥均能显著增加土壤总有机碳及各级颗粒中的有机碳的储量,其中以施用有机肥的效果最明显。不同施肥处理各级颗粒中以粘粒的有机碳储量最高,平均为16.26 t/hm2。施用有机肥和秸秆还田均能显著增加砂粒中有机碳的分配比例,降低粘粒有机碳的分配比例,而对粗粉粒和细粉粒无显著影响。土壤砂粒所占的质量百分比及其与粗粉粒、 细粉粒和粘粒的比值均与粗粉粒、 细粉粒和粘粒组分中有机碳的浓度呈显著正相关关系,表明小颗粒(粗粉粒、 细粉粒和粘粒)中有机碳的固持和富集促进了大颗粒(砂粒)的形成与稳定。各级颗粒之间,施用有机肥处理的土壤粘粒组分的固碳速率最快,为0.29~0.52 t/(hm2a),其次为砂粒[0.30~0.40 t/(hm2a)],而粗粉粒和细粉粒的固碳速率基本相当为 0.09~0.16 t/(hm2a)。分析结果还表明,土壤总有机碳及各级颗粒有机碳与外源有机碳的输入呈显著正线性相关关系,其中土壤总固碳效率为10.57%,而各级颗粒之间,粘粒和砂粒组分的固碳效率(4.25%和3.60%)相当于粗粉粒和细粉粒(1.73%和1.00%)的2倍以上。结论 南方红壤各级颗粒中有机碳均没有出现饱和现象,有机碳主要在土壤粘粒和砂粒组分中富集,细颗粒中有机碳的富集会促进大粒径土壤颗粒的形成,而粘粒是土壤固碳效率最重要的矿物颗粒组成部分。表明长期配施有机肥不仅是红壤有机质提升的重要措施,也是改善红壤结构的重要途径。
    Abstract: 【Objectives】 Our objective was to explore effects of various long-term fertilization practices on soil organic carbon distribution ratios and quantitate the relationship between organic carbon sequestered and additional organic carbon input in different particle-size fractions. 【Methods】 The designed treatments were selected to obtain a gradient of additional carbon input, including no fertilizer control (CK), chemical nitrogen, phosphorus and potassium fertilizers (NPK), straw return with chemical fertilizers (NPKS), chemical fertilizers combined with manure (NPKM), chemical fertilizer combined with manure under soybean rotation (NPKMR), manure (M) alone, and high application rate of NPKM (1.5NPKM). Soil samples were collected after twenty-year fertilization practices, and separated into sand (53-2000 m), coarse silt (5-53 m), fine silt (2-5 m) and clay (2 m) by the physical fractionation. 【Results】 Compared with CK, the total soil organic carbon (SOC) stocks and those of the particle-size fractions are significantly increased under the fertilization treatments. The long-term application of manure with or without chemical fertilizers is the most effective practice for increasing soil organic carbon. The SOC stock in the clay fraction (16.26 t/hm2) is the highest among the four particle-size fractions after the 20 years fertilization treatments. The treatments with manure and straw incorporation significantly increase the SOC distribution proportion in the sand size fraction (13.33%-25.36%), while the treatments reduce the proportions in the clay-size fraction, and there are no significant changes in both the coarse and fine silt fractions. However, the application of chemical fertilizer has less effects on the organic carbon distribution ratios of the fractions. The concentrations of SOC in the coarse silt, fine silt, and clay size fractions are significantly correlated with the mass proportion of sand size fraction and the mass ratio of sand to coarse silt, fine silt, and clay size fractions, respectively. The treatments with manure show higher carbon sequestration rates in the clay[0.29-0.52 t/(hm2a)], sand fractions[0.30-0.40 t/(hm2a)]. Meanwhile, the coarse and fine silt fractions have low and equal sequestration rates[0.09-0.16 t/(hm2a)]after the 20 years fertilizations. Significantly positive linear correlations are observed between the SOC sequestered in total and all fractions with the gross accumulated organic carbon input during the 20 years. The sequestration efficiency of total organic carbon is 10.57%. The sequestration efficiencies in the clay (4.25%) and sand fractions (3.60%) are about double of those in the coarse silt (1.73%) and fine silt fractions (1.00%). 【Conclusions】 Our results indicate that in red soil, SOC accumulation mainly occurs in the clay and sand size fractions. Accumulation of SOC in the clay-size fraction benefits the sand-size fractions (aggregates) formation. Application of manure is not only an important practice for soil carbon sequestration, but also an optimal management to improve physical structure of red soil.
  • [null] [1] Schmidt M W I, Torn M S, Abiven S et al. Persistence of soil organic matter as an ecosystem property[J]. Nature, 2011, 478(7367): 49-56.
    [2] Ghosh S, Wilson B, Ghoshal S et al. Organic amendments influe-nce soil quality and carbon sequestration in the Indo-Gangetic plains of India[J]. Agriculture, Ecosystems & Environment, 2012, 156: 134-141.
    [3] Cai Z C, Qin S W. Dynamics of crop yields and soil organic car-bon in a long-term fertilization experiment in the Huang-Huai-Hai Plain of China[J]. Geoderma, 2006, 136(3): 708-715.
    [4] Yan X, Zhou H, Zhu Q H et al. Carbon sequestration efficiency in paddy soil and upland soil under long-term fertilization in southern China[J]. Soil and Tillage Research, 2013, 130: 42-51.
    [5] Srinivasarao C, Venkateswarlu B, Lal R et al. Soil carbon seque-stration and agronomic productivity of an Alfisol for a groundnut-based system in a semiarid environment in southern India[J]. European Journal of Agronomy, 2012, 43: 40-48.
    [6] Rasmussen P E, Collins H P. Long-term impacts of tillage, fertil-izer, and crop residue on soil organic matter in temperate semiarid regions[J]. Advances in Agronomy, 1991, 45: 93-134.
    [7] Majumder B, Mandal B, Bandyopadhyay P K, Chaudhury J. Soil organic carbon pools and productivity relationships for a 34 year old rice-wheat-jute agroecosystem under different fertilizer treatments[J]. Plant and Soil, 2007, 297(1-2): 53-67.
    [8] Zhang W, Xu M, Wang X et al. Effects of organic amendments on soil carbon sequestration in paddy fields of subtropical China[J]. Journal of Soils and Sediments, 2012, 12(4): 457-470.
    [9] Majumder B, Mandal B, Bandyopadhyay P K et al. Organic ame-ndments influence soil organic carbon pools and rice-wheat productivity[J]. Soil Science Society of America Journal, 2008, 72(3): 775-785.
    [10] Balabane M, Plante A F. Aggregatation and carbon storage in silty soil using physical fraction techniques[J]. European Journal of Soil Science, 2004, 55: 415-427.
    [11] Six J, Conant R T, Paul E A, Paustian K. Stabilization mecha-nisms of soil organic matter: implications for C-saturation of soils[J]. Plant and Soil, 2002, 241(2): 155-176.
    [12] Wu T, Schoenau J J, Li F et al. Influence of fertilization and organic amendments on organic-carbon fractions in Heilu soil on the loess plateau of China[J]. Journal of Plant Nutrition and Soil Science, 2005, 168(1): 100-107.
    [13] Anderson D W, Saggar S, Bettany J R, Stewart J W B. Particle size fractions and their use in studies of soil organic matter: I. The nature and distribution of forms of carbon, nitrogen, and sulfur[J]. Soil Science Society of America Journal, 1981, 45(4): 767-772.
    [14] Schulten H R, Leinweber P. Influence of long-term fertilization with farmyard manure on soil organic matter: Characteristics of particle-size fractions[J]. Biology and Fertility of Soils, 1991, 12(2): 81-88.
    [15] Diekow J, Mielniczuk J, Knicker H et al. Carbon and nitrogen stocks in physical fractions of a subtropical Acrisol as influenced by long-term no-till cropping systems and N fertilization[J]. Plant and Soil, 2005, 268(1): 319-328.
    [16] Aoyama M, Angers D A, N??dayegamiye A. Particulate and mine-ral-associated organic matter in water-stable aggregates as affected by mineral fertilizer and manure applications[J]. Canadian Journal of Soil Science, 1999, 79(2): 295-302.
    [17] Xu M, Lou Y, Sun X et al. Soil organic carbon active fractions as early indicators for total carbon change under straw incorporation[J]. Biology and Fertility of Soils, 2011, 47(7): 745-752.
    [18] Tong X, Xu M, Wang X et al. Long-term fertilization effects on organic carbon fractions in a red soil of China[J]. Catena, 2014, 113: 251-259.
    [19] 徐明岗,梁国庆,张夫道,等. 中国土壤肥力演变[M]. 北京: 中国农业科学技术出版社, 2006.
    Xu M G, Liang G Q, Zhang F D et al . Evolution of soil fertility in China[M]. Beijing: China Agricultural Science and Technology Press, 2006.
    [20] 武天云, Schoenau J J, 李凤民, 等. 利用离心法进行土壤颗粒分级[J]. 应用生态学报, 2004, 15(3): 477-481.
    Wu T Y, Schoenau J J, Li F M et al. Soil particle size fractionation with centrifugation method[J]. Chinese Journal of Applied Ecology, 2004, 15(3): 477-481.
    [21] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
    Lu R K. Analytical methods for soil and agrochemistry[M]. Beijing: China Agricultural Science and Technology Press, 2000.
    [22] Jiang G, Xu M, He X et al. Soil organic carbon sequestration in upland soils of northern China under variable fertilizer management and climate change scenarios[J]. Global Biogeochemical Cycles, 2014, 28(3): 319-333.
    [23] 盖钧镒. 试验统计方法[M]. 北京: 中国农业出版社, 2001.
    Gai J Y. Experiment and statistical methods[M]. Beijing: China Agriculture Press, 2001.
    [24] Zhang W J, Wang X J, Xu M G et al. Soil organic carbon dynamics under long-term fertilizations in arable land of northern China[J]. Biogeosciences, 2010, 7(2): 409-425.
    [25] Bhattacharyya R, Prakash V, Kundu S et al. Long term effects of fertilization on carbon and nitrogen sequestration and aggregate associated carbon and nitrogen in the Indian sub-Himalayas[J]. Nutrient Cycling in Agroecosystems, 2010, 86(1): 1-16.
    [26] Purakayastha T J, Rudrappa L, Singh D et al. Long-term impact of fertilizers on soil organic carbon pools and sequestration rates in maize-wheat-cowpea cropping system[J]. Geoderma, 2008, 144(1): 370-378.
    [27] McGill W B, Paul E A. Fractionation of soil and 15N nitrogen to separate the organic and clay interactions of immobilized N[J]. Canadian Journal of Soil Science, 1976, 56(3): 203-212.
    [28] Mrabet R, Saber N, El-Brahli A et al. Total, particulate organic matter and structural stability of a Calcixeroll soil under different wheat rotations and tillage systems in a semiarid area of Morocco[J]. Soil and Tillage Research, 2001, 57(4): 225-235.
    [29] Sleutel S, De Neve S, Németh T et al. Effect of manure and fertilizer application on the distribution of organic carbon in different soil fractions in long-term field experiments[J]. European Journal of Agronomy, 2006, 25(3): 280-288.
    [30] Lal R, Follett R F, Stewart B A, Kimble J K. Soil carbon sequ-estration to mitigate climate change and advance food security[J]. Soil Science, 2007, 172(12): 943-956.
    [31] Yu H, Ding W, Luo J et al. Long-term application of organic manure and mineral fertilizers on aggregation and aggregate-associated carbon in a sandy loam soil[J]. Soil and Tillage Research, 2012, 124: 170-177.
    [32] de Moraes Sá J C, Séguy L, Tivet F et al. Carbon depletion by plowing and its restoration by no-till cropping systems in oxisols of subtropical and tropical agro-ecoregions in Brazil[J]. Land Degradation and Development, 2015, 26: 531-543.
  • 期刊类型引用(30)

    1. 苏欣悦,王跃锋,何宁波,李亚鹏,柏凯栋,王恒飞,李建华,徐明岗. 黄土高原北部典型县域耕层土壤有机碳储量的时空分布及其影响因素. 植物营养与肥料学报. 2025(03): 485-495 . 本站查看
    2. 王雅润,赵娟,杨振兴,周怀平,解文艳,刘志平. 不同施肥模式下褐土的有机碳组分及碳固存效应变化. 植物营养与肥料学报. 2024(03): 469-481 . 本站查看
    3. 刘明生,刘洋,王子玥,常智慧. 植丝对草坪草生长及坪床土壤碳封存的影响. 草地学报. 2024(12): 3941-3950 . 百度学术
    4. 程宝钰,胡发龙,韩梅,赵财,王玉珑,殷民兴,葛丽丽. 麦后复种绿肥方式及施氮制度对土壤有机碳和小麦产量的影响. 甘肃农业大学学报. 2024(06): 57-67 . 百度学术
    5. 郑延云,余正洪,张佳宝,张丛志,马东豪,陈林,周桂香. 腐殖酸–水铁矿复合物提升新整治耕地土壤有机碳的效应. 土壤. 2024(06): 1184-1191 . 百度学术
    6. 何如海,张博睿,汪玉芳,蔡影,叶梦雅,苏虎,胡宏祥,方恒. 秸秆还田配施化肥对油-稻轮作土壤固碳及作物经济效益分析. 长江流域资源与环境. 2023(09): 1981-1991 . 百度学术
    7. 万小楠,赵珂悦,吴雄伟,白鹤,杨学云,顾江新. 秸秆还田对冬小麦-夏玉米农田土壤固碳、氧化亚氮排放和全球增温潜势的影响. 环境科学. 2022(01): 569-576 . 百度学术
    8. 高强,宓文海,夏斯琦,刘明月,居静,张祖建,毛伟,赵海涛. 不同施肥模式下黄泥田水稻土团聚体稳定性及有机碳矿化特征. 上海农业学报. 2022(01): 13-20 . 百度学术
    9. 薄录吉,李彦,张英鹏,仲子文,孙明,李冰,刘兆辉,孙翠平. 长期施肥下山东潮土固碳特征及产量效应. 华北农学报. 2022(S1): 207-213 . 百度学术
    10. 叶会财,李大明,胡志华,胡丹丹,宋惠洁,万长艳,胡惠文,柳开楼. 长期施肥下红壤性水稻土固碳效应特征. 中国农学通报. 2021(02): 61-66 . 百度学术
    11. 王蕾,王艳玲,李欢,石嘉琦,周亦靖. 长期施肥下红壤旱地磷素有效性影响因子的冗余分析. 中国土壤与肥料. 2021(01): 17-25 . 百度学术
    12. 黄少辉,杨军芳,杨云马,姜蓉,何萍,贾良良. 长期应用养分专家管理模式提高小麦玉米轮作氮肥利用率及土壤有机碳固存. 华北农学报. 2021(02): 154-161 . 百度学术
    13. 徐虎,蔡岸冬,周怀平,Colinet Gilles,张文菊,徐明岗. 长期秸秆还田显著降低褐土底层有机碳储量. 植物营养与肥料学报. 2021(05): 768-776 . 本站查看
    14. 姚佳璇,俄胜哲,袁金华,车宗贤,王钰轩,赵天鑫. 城市污泥农用对灌漠土作物产量及土壤质量的影响. 生态学杂志. 2021(07): 2120-2132 . 百度学术
    15. 范廷玉,钟建,王顺,王兴明,张燕海. 高潜水位矿区地表拉张裂隙区土壤特征研究. 安徽理工大学学报(自然科学版). 2021(03): 15-21 . 百度学术
    16. 姚佳璇,俄胜哲,袁金华,时晓娟,车宗贤. 施肥对灌漠土作物产量、土壤肥力与重金属含量的影响. 中国生态农业学报(中英文). 2020(06): 813-825 . 百度学术
    17. 张水清,岳克,杜丽君,王更新,宋晓,郭斗斗,张珂珂,张玉亭,黄绍敏. 不同耕作方式下有机肥施用量对华北潮土性质及作物产量的影响. 中国土壤与肥料. 2020(04): 84-89 . 百度学术
    18. 高洪军,彭畅,张秀芝,李强,朱平,王立春. 秸秆还田量对黑土区土壤及团聚体有机碳变化特征和固碳效率的影响. 中国农业科学. 2020(22): 4613-4622 . 百度学术
    19. 郑佳舜,胡钧铭,韦燕燕,李婷婷,苏世鸣,韦翔华,何铁光,夏旭. 绿肥粉垄耦合对稻田耕层土壤团粒结构特征的影响(英文). 南方农业学报. 2020(11): 2653-2664 . 百度学术
    20. LIU Kai-lou,HUANG Jing,LI Da-ming,YU Xi-chu,YE Hui-cai,HU Hui-wen,HU Zhi-hua,HUANG Qing-hai,ZHANG Hui-min. Comparison of carbon sequestration efficiency in soil aggregates between upland and paddy soils in a red soil region of China. Journal of Integrative Agriculture. 2019(06): 1348-1359 . 必应学术
    21. 黄少辉,杨军芳,杨云马,邢素丽,韩宝文,刘孟朝,何萍,贾良良. 长期不同施肥措施下华北潮土土壤有机碳的固存变化. 华北农学报. 2019(S1): 168-175 . 百度学术
    22. 谢丽华,廖超林,林清美,唐茹,孙钰翔,黎丽娜,尹力初. 有机肥增减施后红壤水稻土团聚体有机碳的变化特征. 土壤. 2019(06): 1106-1113 . 百度学术
    23. 贾良良,孙彦铭,刘克桐,杨云马,黄少辉,杨军芳,刘孟朝. 河北省不同生态区农田土壤肥力现状及变化特征. 土壤通报. 2018(02): 367-376 . 百度学术
    24. 张雅蓉,李渝,刘彦伶,黄兴成,张文安,蒋太明. 长期施肥下黄壤有机碳库演变及固存特征. 西南农业学报. 2018(04): 770-778 . 百度学术
    25. 樊红柱,陈琨,陈庆瑞,秦鱼生,蒋松. 长期定位施肥31年后紫色水稻土碳、氮含量及储量变化. 西南农业学报. 2018(07): 1425-1431 . 百度学术
    26. 陆太伟,蔡岸冬,徐明岗,高强,孙楠,张文菊. 施用有机肥提升不同土壤团聚体有机碳含量的差异性. 农业环境科学学报. 2018(10): 2183-2193 . 百度学术
    27. 吴玉红,郝兴顺,田霄鸿,陈艳龙,张春辉,陈浩,李厚华,秦宇航,黄重. 秸秆还田对汉中盆地稻田土壤有机碳组分、碳储量及水稻产量的影响. 水土保持学报. 2017(04): 325-331 . 百度学术
    28. 柳开楼,叶会财,李大明,黄庆海,余喜初,胡志华,徐小林,胡惠文,周利军,王赛莲. 长期施肥下红壤旱地的固碳效率. 土壤. 2017(06): 1166-1171 . 百度学术
    29. 林诚,王飞,李清华,何春梅,张辉. 长期不同施肥下南方黄泥田有效磷对磷盈亏的响应特征. 植物营养与肥料学报. 2017(05): 1175-1183 . 本站查看
    30. 郝小雨,马星竹,周宝库,李一丹. 长期不同施肥措施下黑土有机碳的固存效应. 水土保持学报. 2016(05): 316-321 . 百度学术

    其他类型引用(26)

计量
  • 文章访问数:  4086
  • HTML全文浏览量:  1085
  • PDF下载量:  804
  • 被引次数: 56
出版历程
  • 收稿日期:  2015-12-14
  • 修回日期:  2015-12-14
  • 刊出日期:  2015-11-24

目录

    /

    返回文章
    返回