• ISSN 1008-505X
  • CN 11-3996/S

五爪金龙、 南美蟛蜞菊入侵对土壤化学和微生物学性质的影响

全国明, 毛丹鹃, 章家恩, 谢俊芳, 秦钟

全国明, 毛丹鹃, 章家恩, 谢俊芳, 秦钟. 五爪金龙、 南美蟛蜞菊入侵对土壤化学和微生物学性质的影响[J]. 植物营养与肥料学报, 2016, 22(2): 439-449. DOI: 10.11674/zwyf.14417
引用本文: 全国明, 毛丹鹃, 章家恩, 谢俊芳, 秦钟. 五爪金龙、 南美蟛蜞菊入侵对土壤化学和微生物学性质的影响[J]. 植物营养与肥料学报, 2016, 22(2): 439-449. DOI: 10.11674/zwyf.14417
QUAN Guo-ming, MAO Dan-juan, ZHANG Jia-en, XIE Jun-fang, QIN Zhong. Impacts of Ipomoea cairica and Wedelia trilobata invasion on soil chemical and microbiological characteristics[J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(2): 439-449. DOI: 10.11674/zwyf.14417
Citation: QUAN Guo-ming, MAO Dan-juan, ZHANG Jia-en, XIE Jun-fang, QIN Zhong. Impacts of Ipomoea cairica and Wedelia trilobata invasion on soil chemical and microbiological characteristics[J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(2): 439-449. DOI: 10.11674/zwyf.14417

五爪金龙、 南美蟛蜞菊入侵对土壤化学和微生物学性质的影响

基金项目: 

国家自然科学基金(U1131006); 国家星火计划项目(2013GA780108); 教育部博士点基金项目(200805640012,20124404110009); 广东省高等学校高层次人才项目[粤财教(2013)246号]; 广州市属高校科研计划项目(2012A136); 广州市青少年科技教育项目(14B024-05)资助。

详细信息
    作者简介:

    全国明(1975—),男,广东廉江人,博士,副教授,主要从事农业生态学、入侵生态学方面的研究。E-mail:gzbyqgm@126.com

    通讯作者:

    章家恩,E-mail:jeanzh@scau.edu.cn

  • 中图分类号: Q143; Q16; Q948

Impacts of Ipomoea cairica and Wedelia trilobata invasion on soil chemical and microbiological characteristics

  • 摘要: 【目的】五爪金龙(Ipomoea cairica)、 南美蟛蜞菊(Wedelia trilobata)已入侵我国华南地区并造成严重危害。本文研究了五爪金龙入侵群落、 南美蟛蜞菊入侵群落与土著植物类芦(Neyraudia reynaudiana)群落内的土壤养分、 土壤微生物量、 土壤酶活性以及微生物群落代谢活性、 碳源利用特征与功能多样性的变化规律,探讨两种外来植物入侵对土壤生态系统的影响,为揭示其野外入侵机制提供科学依据。【方法】采用野外样方法于2010年1月在广州市东郊的火炉山森林公园设置五爪金龙入侵区、 南美蟛蜞菊入侵区和土著植物类芦区3类样地,测定土壤养分、 土壤酶活性、 土壤微生物量与微生物功能多样性。【结果】1)与土著植物区相比,五爪金龙入侵区土壤有机碳、 全氮、 全磷以及速效氮、 速效磷、 速效钾含量显著提高,增幅达到60.38%~230.01%; 南美蟛蜞菊入侵区土壤有机碳、 全氮、 速效氮、 速效磷含量亦显著提高,增幅达到50.54%~145.52%; 两种外来植物入侵区土壤C/N比显著降低,但对全钾含量的影响不明显。2)两种外来植物能够显著提高入侵地的土壤微生物量,其中五爪金龙、 南美蟛蜞菊入侵区的土壤微生物量碳(Cmic)、 氮(Nmic)、 磷(Pmic)含量分别比土著植物区增加105.00%~152.15%和61.51%~138.27%,但土壤微生物量在两个入侵区之间的差异不明显; 对于土壤微生物熵,南美蟛蜞菊入侵区的Cmic/Corg值显著高于土著植物区,但Nmic/Nt、 Pmic/Pt值3类样地之间差异不显著。3)两种外来植物入侵显著提高土壤脲酶、 蛋白酶、 蔗糖酶和纤维素酶的活性,其中南美蟛蜞菊入侵区的土壤脲酶、 蛋白酶和纤维素酶活性最高,分别比土著植物区增加70.35%、 21.51%和227.86%; 对于蔗糖酶活性,五爪金龙、 南美蟛蜞菊入侵区的增幅则分别达到322.58%和157.14%; 过氧化氢酶活性各处理间的差异较小,差异均不显著。4)两种外来植物入侵能够提高土壤微生物群落的代谢活性,平均孔颜色变化率(AWCD)在整个培育周期内均表现为五爪金龙入侵区>南美蟛蜞菊入侵区>土著植物区,其中72 h的AWCD值分别为1.18、 0.88和0.56,差异显著。与土著植物区相比,五爪金龙入侵区6种类型碳源的利用效率显著提高,其增幅高达75.00%~162.86%; 南美蟛蜞菊入侵区碳水化合物类、 羧酸类和聚合物类碳源的利用率亦显著提高,其增幅分别为87.72%、 41.18%和83.72%; 两种入侵植物对不同类型碳源的利用程度存在一定差异,五爪金龙对羧酸类、 胺类碳源的利用率显著高于南美蟛蜞菊。主成分分析显示,PC1与PC2能够解释不同入侵区土壤微生物群落碳源利用数据71.89%的总体变异,其中PC1主要受碳水化合物类、 氨基酸类与聚合物类碳源的影响,PC2则主要受碳水化合物类与羧酸类碳源的制约。两种外来植物入侵对土壤微生物群落的功能多样性产生重要影响,其中入侵地土壤微生物群落的Shannon-Wiener指数(H)、 Mc Intosh指数(U)、 丰富度指数(S)和Simpson优势度指数(Ds)显著高于土著植物区,但两个入侵区之间的差异较小; 三个处理区的Pielou均匀度指数(E)差异不明显。【结论】五爪金龙、 南美蟛蜞菊两种外来植物能够改善入侵地的土壤营养环境,提高土壤肥力水平,形成对自身生长、 竞争有利的微环境,从而加快入侵扩散。
    Abstract: 【Objectives】Ipomoea cairica and Wedelia trilobata, the two general exotic plants, have invaded successfully in southern China and caused lots of serious damages to native ecosystem. In order to explore impacts of the two weeds invasion on soil ecosystem and provide scientific basis for their invasion mechanism in fields, the changes of soil chemical and microbiological properties, including soil nutrient, soil microbial biomass, soil enzyme and metabolic activity, carbon substrate utilization and function diversity of soil microbial community in I. cairica invaded community, W. trilobata invaded community and Neyraudia reynaudiana native community were investigated by using field plot methods. 【Methods】Three sampling sites were selected, including I. cairica invaded site, W. trilobata invaded site and N. reynaudiana native site in the Huolushan Forest Park of Guangzhou city in January 2010. There were four replicates per sampling site (each replicate plot was 4 m2). Soil samples were collected, and soil nutrient, soil enzyme activity, soil microbial biomass and function diversity of soil microbial community were determined. 【Results】 1) Compared with the native plant plot, the contents of soil organic carbon, total nitrogen, total phosphorus, available nitrogen, available phosphorus and available potassium in the I. cairica plot (increased range is 60.38%-230.01%) and the contents of soil organic carbon, total nitrogen, available nitrogen and available phosphorus in the W. trilobata plot (increased range is 50.54%-145.52%) are significantly increased, while the soil C/N ratios are significantly decreased, and there are no significant differences in the contents of total potassium among the three plots. 2) The two exotic plants could significantly increase soil microbial biomass of the invaded plots. The contents of soil microbial biomass carbon, nitrogen and phosphorus of the I. cairica plot and the W. trilobata plot are 105.00%-152.15% and 61.51%-138.27% higher than those in the native plant plot respectively, while there are no significant differences in the contents of soil microbial biomass between the two invaded plots. The ratio of soil microbial biomass carbon to soil organic carbon (Cmic/Corg) in the W. trilobata plot is significantly higher than that in the native plant plot, but the ratios of soil microbial biomass nitrogen to total soil nitrogen (Nmic/Nt) and soil microbial biomass phosphorus to total soil phosphorus (Pmic/Pt) among the three plots are in the same levels. 3) The two exotic plants invasion could significantly increase the activities of soil urase, protease, invertase and cellulose enzymes. The activities of soil urase, protease and cellulose enzymes of the W. trilobata plot are the highest in all the sampling plots, and are 70.35%, 21.51% and 227.86% higher than those of the native plant plot respectively. The activities of soil invertase of the I. cairica plot and the W. trilobata plot are 322.58% and 157.14% higher than that of the native plant plot respectively, while the activities of hydrogen peroxidase are almost the same among the three plots and no significant differences are found. 4) The two exotic plants could significantly increase the metabolic activities of soil microbial community of the invaded plots. The average well color development (AWCD) of all treatments exhibits an order of I. cairica plot > W. trilobata plot > native plant plot during the whole incubating period. The AWCD values of three sampling plots incubated at 72 hours are 1.18, 0.88 and 0.56 respectively, and the differences are significant. Compared to the native plant plot, I. cairica invasion could significantly improve six carbon substrate utilization of soil microbial community, with the increased ranges reach up to 75.00%-162.86%. W. trilobata invasion also significantly increases the utilizations of carbohydrates, carboxylic acids and polymers, with the increased rates of 87.72%, 41.18% and 83.72% respectively. There are some differences in the utilizations of different carbon substrates between the two invasive plants, and the carboxylic acids and amines/amides utilizations of soil from the I. cairica plot are significantly greater than those in the W. trilobata plot. The principal components analysis (PCI) reveals that 71.89% of the variation of carbon substrate utilization data of soil microbial community in different invasion plots could be explained by the first and second components (PC1 and PC2). Carbohydrates, amino acids and polymers are highly correlated with PC1, while PC2 is mainly affected by carbohydrates and carboxylic acids. The two exotic plants could significantly influence the function diversity of soil microbial community. The indexes of Shannon-Wiener (H), Mc Intosh (U), substrate richness (S) and Simpsons dominance (Ds) of soil microbial community in the two invaded plots are significantly higher than those in the native plant plot, but the differences between the two invaded plots are not significant. The Pielou indexes (E) also have not significant differences among all the three treatments. 【Conclusions】 The two exotic plants, I. cairica and W. trilobata, can ameliorate soil nutrition environment in the invaded areas, enhance supply level of soil nutrients, and hence create a favorable microhabitat which can benefit their growth and competitiveness and facilitate their invasion in fields.
  • [null] [1] 胡玉佳, 王永繁. 两种草质藤本杂草营养生长与生殖生长研究[J]. 中山大学学报(自然科学版), 2001, 40(1): 93-96.
    Hu Y J, Wang Y F. A study on the vegetation and reproduction of two weedy herbaceous vines[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2001, 40(1): 93-96.
    [2] 廖宜英, 林金哲, 郑灿钟. 农林业入侵杂草五爪金龙生活史特性研究[J]. 江西农业学报, 2006, 18(6): 112-115.
    Liao Y Y, Lin J Z, Zheng C Z. Observation on life history characteristics of invasive weed Ipomoea cairica in agriculture and forestry[J]. Acta Agriculturae Jiangxi, 2006, 18(6): 112-115.
    [3] 吴彦琼, 胡玉佳, 廖富林. 从引进到潜在入侵的植物—南美蟛蜞菊[J]. 广西植物, 2005, 25(5): 413-418.
    Wu Y Q, Hu Y J, Liao F L. Wedelia trilobata—A species from introduced to potential invasive[J]. Guihaia, 2005, 25(5): 413-418.
    [4] Lowe S, Browne M, Boudjelas S, et al. 100 of the world’s worst invasive alien species: a selection from the global invasive species database[R]. New Zealand: The Invasive Species Specialist Group, 2000.
    [5] 宋莉英, 彭长连, 彭少麟. 华南地区3种入侵植物与本地植物叶片建成成本的比较[J]. 生物多样性, 2009, 17(4): 378-384.
    Song L Y, Peng C L, Peng S L. Comparison of leaf construction costs between three invasive species and three native species in South China[J]. Biodiversity Science, 2009, 17(4): 378-384.
    [6] 吴彦琼, 胡玉佳. 外来植物南美蟛蜞菊、 裂叶牵牛和五爪金龙的光合特性研究[J]. 生态学报, 2004, 24(10): 2334-2339.
    Wu Y Q, Hu Y J. Researches on photosynthetic characteristics of exotic plants Wedelia trilobata, Pharbitis nil and Ipomoea cairica[J]. Acta Ecologica Sinica, 2004, 24(10): 2334-2339.
    [7] 刘伟, 侯任昭, 叶蕙, 等. 五爪金龙的化感作用[J]. 华南农业大学学报, 1997, 18(2): 119-120, 122.
    Liu W, Hou R Z, Ye H, et al. Study on the allelopathy of Ipomoea cairica[J]. Journal of South China Agricultural University, 1997, 18(2): 119-120, 122.
    [8] 吴易, 司春灿, 孙见凡, 等. 南美蟛蜞菊根系分泌物中2种化学物质的化感潜力[J]. 西北农业学报, 2014, 23(10): 170-178.
    Wu Y, Si C C, Sun J F, et al. Allelopathic effects of two chemicals in Wedelia trilobata root exudates[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2014, 23(10): 170-178.
    [9] Shen X Y, Peng S L, Chen B M, et al. Do higher resource capture ability and utilization efficiency facilitate the successful invasion of native plants? [J].Biological Invasions, 2011, 13: 869-881.
    [10] Liu G, Huang Q Q, Lin Z G, et al. High tolerance to salinity and herbivory stresses may explain the expansion of Ipomoea cairica to salt marshes[J]. PLoS One, 2012, 7(11): e48829.
    [11] Si C C, Dai Z C, Lin Y, et al. Local adaptation and phenotypic plasticity both occurred in Wedelia trilobata invasion across a tropical island[J]. Biological Invasions, 2014, 16: 2323-2337.
    [12] 宋莉英, 孙兰兰, 张强, 等. 高温对入侵种三裂叶蟛蜞菊叶片PSII功能和光能分配的影响[J]. 植物生理学通讯, 2009, 45(5): 464-468.
    Song L Y, Sun L L, Zhang Q, et al. Effects of high temperature on the PSII functions and absorbed light allocation in leaves of invasive Wedelia trilobata[J]. Plant Physiology Communications, 2009, 45(5): 464-468.
    [13] 宋莉英, 孙兰兰, 舒展, 等. 夏季高光下入侵植物三裂叶蟛蜞菊叶片变红的生理功能[J]. 生物多样性, 2009, 17(2): 188-194.
    Song L Y, Sun L L, Shu Z, et al. Physiological functions of the red leaves of Wedelia trilobata induced by high irradiance in summer [J]. Biodiversity Science, 2009, 17(2): 188-194.
    [14] 朱慧, 吴双桃. 杂草五爪金龙对入侵地植物群落和土壤肥力的影响[J]. 生态与农村环境学报, 2012, 28(5): 505-510.
    Zhu H, Wu S T. Impacts of invasion of Ipomoea cairica on plant community and soil fertility[J]. Journal of Ecology and Rural Environment, 2012, 28(5): 505-510.
    [15] 柯展鸿, 邱佩霞, 胡东雄, 等. 三裂叶蟛蜞菊入侵对土壤酶活性和理化性质的影响[J]. 生态环境学报, 2013, 22(3): 432-436.
    Ke Z H, Qiu P X, Hu D X, et al. Effects of Wedelia trilobata invasion on soil enzyme activities and physical-chemical properties[J]. Ecology and Environmental Sciences, 2013, 22(3): 432-436.
    [16] Domènech R, Vilà M, Gesti J, et al. Neighbourhood association of Cortaderia selloana invasion, soil properties and plant community structure in mediterranean coastal grasslands[J]. Acta Oecologica, 2006, 29: 171-177.
    [17] Martin M R, Tipping P W, Sickman J O. Invasion by an exotic tree alters above and belowground ecosystem components[J]. Biological Invasions, 2009, 11: 1883-1894.
    [18] Fickbohm S S, Zhu W X. Exotic purple loosestrife invasion of native cattail freshwater wetlands: Effects on organic matter distribution and soil nitrogen cycling[J]. Applied Soil Ecology, 2006, 32: 123-131.
    [19] Rodgers V L, Wolfe B E, Werden L K, et al. The invasive species Alliaria petiolata (garlic mustard) increases soil nutrient availability in northern hardwood-conifer forests[J]. Oecologia, 2008, 157: 459-471.
    [20] Christian J M, Wilson S D. Long-term ecosystem impacts of an introduced grass in the northern Great Plains[J]. Ecology, 1999, 80(7): 2397-2407.
    [21] 鲍士旦. 土壤农化分析(第三版)[M]. 北京: 农业出版社, 2000.
    Bao S D. Soil and agricultural chemistry analysis (3rd edition) [M]. Beijing: China Agriculture Press, 2000.
    [22] 姚槐应, 黄昌勇. 土壤微生物生态学及其实验技术[M]. 北京: 科学出版社, 2006.
    Yao H Y, Huang C Y. Soil microbial ecology and its experimental technology[M]. Beijing: Science Press, 2006.
    [23] 关松荫. 土壤酶及其研究方法[M]. 北京: 农业出版社, 1986.
    Guan S Y. Soil enzymes and its research methods [M]. Beijing: Agriculture Press, 1986.
    [24] 吴金水, 林启美, 黄巧云, 等. 土壤微生物生物量测定方法及其应用[M]. 北京: 气象出版社, 2006.
    Wu J S, Lin Q M, Huang Q Y, et al. Assay method of soil microbial biomass and its application[M]. Beijing: China Meteorological Press, 2006.
    [25] Garland J L. Analytical approaches to the characterization of samples of microbial communities using patterns of potential C source utilization[J]. Soil Biology and Biochemistry, 1996, 28: 213-221.
    [26] Garland J L. Analysis and interpretation of community-level
    physiological profiles in microbial ecology[J]. FEMS Microbiology Ecology, 1997, 24: 289-300.
    [27] Stefanowicz A. The biolog plates technique as a tool in ecological studies of microbial communities[J]. Polish Journal of Environmental Studies, 2006, 15(5): 669-676.
    [28] 王强, 戴九兰, 吴大千, 等. 微生物生态研究中基于BIOLOG方法的数据分析[J]. 生态学报, 2010, 30(3): 817-823.
    Wang Q, Dai J L, Wu D Q, et al. Statistical analysis of data from BIOLOG method in the study of microbial ecology[J]. Acta Ecologica Sinica, 2010, 30(3): 817-823.
    [29] 胡婵娟, 傅伯杰, 刘国华, 等. 黄土丘陵沟壑区典型人工林下土壤微生物功能多样性[J]. 生态学报, 2009, 29(2): 727-733.
    Hu C J, Fu B J, Liu G H, et al. Soil microbial functional and diversity under typical artificial woodlands in the hilly area of the Loess Plateau[J]. Acta Ecologica Sinica, 2009, 29(2): 727-733.
    [30] Ratcliff A W, Busse M D, Shestak C J. Changes in microbial
    community structure following herbicide (glyphosate) additions to forest soils[J]. Applied Soil Ecology, 2006, 34: 114-124.
    [31] Insam H. A new set of substrates proposed for community
    characterization in environmental samples[A]. Insam H, Rangger A (eds). Microbial communities: Functional versus structural approaches[M]. Berlin Heidelberg: Springer, 1997. 259-260.
    [32] Kulmatiski A, Beard K H, Stevens J R, et al. Plant-soil
    feedbacks: a meta-analytical review[J]. Ecology Letters, 2008, 11: 980-992.
    [33] Suding K N, Harpole W S, Fukami T, et al. Consequences of plant-soil feedbacks in invasion[J]. Journal of Ecology, 2013, 101: 298-308.
    [34] Weidenhamer J D, Callaway R M. Direct and indirect effects of invasive plants on soil chemistry and ecosystem function[J]. Journal of Chemical Ecology, 2010, 36: 59-69.
    [35] van der Putten W H, Bardgett R D, Bever J D, et al. Plant-soil feedbacks: the past, the present and future challenges[J]. Journal of Ecology, 2013, 101: 265-276.
    [36] Jandová K, Klinerová T, Müllerová J, et al. Long-term impact of Heracleum mantegazzianum invasion on soil chemical and biological characteristics[J]. Soil Biology and Biochemistry, 2014, 68: 270-278.
    [37] Niu H B, Liu W X, Wan F H, et al. An invasive aster(Ageratina
    adenophora) invades and dominates forest understories in China: altered soil microbial communities facilitate the invader and inhibit natives[J]. Plant and Soil, 2007, 294: 73-85.
    [38] Timsina B, Shrestha B B, Rokaya M B, et al. Impact of
    Parthenium hysterophorus L. invasion on plant species composition and soil properties of grassland communities in Nepal[J]. Flora, 2011, 206: 233-240.
    [39] Rout M E, Chrzanowski T H. The invasive Sorghum halepense harbors endophytic N2-fixing bacteria and alters soil biogeochemistry[J]. Plant and Soil, 2009, 315: 163-172.
    [40] Liao C Z, Luo Y Q, Jiang L F, et al. Invasion of Spartina
    alterniflora enhanced ecosystem carbon and nitrogen stocks in the Yangtze Estuary, China[J]. Ecosystems, 2007, 10: 1351-1361.
    [41] Zhou C F, An S Q, Deng Z F, et al. Sulfur storage changed by exotic Spartina alterniflora in coastal saltmarshes of China[J]. Ecological Engineering, 2009, 35: 536-543.
    [42] Marchante E, Kjller A, Struwe S, et al. Invasive Acacia longifolia
    induce changes in the microbial catabolic diversity of sand dunes[J]. Soil Biology and Biochemistry, 2008, 40: 2563-2568.
    [43] Fan L, Chen Y, Yuan J G, et al. The effect of Lantana camara Linn. invasion on soil chemical and microbiological properties and plant biomass accumulation in southern China[J]. Geoderma, 2010, 154: 370-378.
    [44] Saggar S, McIntosh P D, Hedley C B, et al. Changes in soil microbial biomass, metabolic quotient, and organic matter turnover under Hieracium (H. pilosella L.) [J]. Biology and Fertility of Soils, 1999, 30: 232-238.
    [45] Zhang C B, Wang J, Qian B Y, et al. Effects of the invader Solidago canadensis on soil properties[J]. Applied Soil Ecology, 2009, 43: 163-169.
    [46] Chacón N, Heana H, Flores S, et al. Chemical, physical, and biochemical soil properties and plant roots as affected by native and exotic plants in Neotropical arid zones[J]. Biology and Fertility of Soils, 2009, 45: 321-328.
    [47] Kourteva P S, Ehrenfelda J G, Hggblom M. Experimental
    analysis of the effect of exotic and native plant species on the structure and function of soil microbial communities[J]. Soil Biology and Biochemistry, 2003, 35: 895-905.
    [48] Li W H, Zhang C B, Jiang H B, et al. Changes in soil microbial community associated with invasion of the exotic weed, Mikania micrantha H B K[J]. Plant and Soil, 2006, 281: 309-324.
    [49] Duda J J, Freeman D C, Emlen J M, et al. Differences in native soil ecology associated with invasion of the exotic annual chenopod, Halogeton glomeratus[J]. Biology and Fertility of Soils, 2003, 38: 72-77.
    [50] Sanon A, Béguiristain T, Cébron A, et al. Changes in soil
    diversity and global activities following invasions of the exotic invasive plant, Amaranthus viridis L., decrease the growth of native sahelian Acacia species[J]. FEMS Microbiology Ecology, 2009, 70: 118-131.
    [51] Qin Z, Xie J F, Quan G M, et al. Impacts of the invasive annual herb Ambrosia artemisiifolia L. on soil microbial carbon source utilization and enzymatic activities[J]. European Journal of Soil Biology, 2014, 60: 58-66.
    [52] Jacinthe P A, Bills J S, Tedesco L P. Size, activity and
    catabolic diversity of the soil microbial biomass in a wetland complex invaded by reed canary grass[J]. Plant and Soil, 2010, 329: 227-238.
    [53] Gomez E, Ferreras L, Toresani S. Soil bacterial functional
    diversity as influenced by organic amendment application[J]. Bioresource Technology, 2006, 97: 1484-1489.
    [54] Si C C, Liu X Y, Wang C Y, et al. Different degrees of plant invasion significantly affect the richness of the soil fungal community[J]. PLoS ONE, 2013, 8(12): e85490.
    [55] 朱慧, 马瑞君, 吴双桃, 等. 杂草五爪金龙对其入侵地土壤酶活性与微生物群落的影响[J]. 韩山师范学院学报, 2012, 33(3): 34-39.
    Zhu H, Ma R J, Wu S T, et al. Impacts of invasive weed Ipomoea cairica on the soil enzyme activitiy and microbial community[J]. Journal of Hanshan Normal University, 2012, 33(3): 34-39.
    [56] Hawkes C V, Wren I F, Herman D J, et al. Plant invasion alters nitrogen cycling by modifying the soil nitrifying community[J]. Ecology Letters, 2005, 8: 976-985.
    [57] 柏艳芳, 郭绍霞, 李敏. 入侵植物与丛枝菌根真菌的相互作用[J]. 应用生态学报, 2011, 22(9): 2457-2463.
    Bai Y F, Guo S X, Li M. Interactions between invasive plants and arbuscular mycorrhizal fungi: A review[J]. Chinese Journal of Applied Ecology, 2011, 22(9): 2457-2463.
  • 期刊类型引用(16)

    1. 付立勇,崔哲池,陈晓慧,潘艳菊,冯莹,蔡志全. 佛山科学技术学院(仙溪校区)维管植物的多样性. 现代园艺. 2023(13): 74-77 . 百度学术
    2. 张涵,李伟华,赵海霞,赵梦欣,刘万学,孙文秀. 菊科植物改变土壤氮素的可利用性. 草业科学. 2023(07): 1766-1778 . 百度学术
    3. 康文佳,李鑫宇,资惠宇,彭金波,王瑞龙,种云霄. 广州市主要河流中22座未开发江心岛上的入侵植物种类及其分布特征. 湿地科学. 2023(05): 699-707 . 百度学术
    4. 李华洪,何成成,习平根,姜子德,李敏慧. 南美蟛蜞菊霜霉病病原鉴定及系统发育分析. 生物安全学报. 2022(02): 156-162 . 百度学术
    5. 方发之,黎肇家,桂慧颖,吴钟亲. 海南黎母山片区外来树种对土壤理化性质的影响. 林业资源管理. 2022(03): 104-109 . 百度学术
    6. 史梦竹,李建宇,郭燕青,胡大鹏,郑丽祯,傅建炜. 福州市公园外来入侵植物初步调查与分析. 生物安全学报. 2020(03): 229-234 . 百度学术
    7. 张震,曹亚蒙,钟耀华,王力超,刘静,邓丽丽. 加拿大一枝黄花在安徽合肥的入侵生态因子分析. 生物安全学报. 2019(02): 133-139 . 百度学术
    8. 许光耀,李洪远,莫训强,孟伟庆. 外来入侵植物管理与控制成效的制约因素. 生态学杂志. 2019(10): 3169-3176 . 百度学术
    9. 马文育,杨塍希,国伟强,王影,曲同宝. 火炬树对波斯菊根际土壤微生物群落功能多样性的影响. 北方园艺. 2019(21): 64-71 . 百度学术
    10. 李春妹,李韶山. 入侵植物五爪金龙根系深色有隔内生真菌的侵染特征. 菌物学报. 2019(11): 1930-1937 . 百度学术
    11. 张语馨,刘娜,瞿涛,孙涛,李典鹏,王紫璇,赵小宁,贾宏涛. 不同地膜及其残留量对土壤呼吸速率的影响. 新疆农业大学学报. 2019(03): 210-215 . 百度学术
    12. 许光耀,李洪远,莫训强,杨军中. 入侵植物生态效应及其影响因素研究进展. 安全与环境学报. 2018(01): 375-380 . 百度学术
    13. 张宝成,王平,金星. 观赏植物与生物入侵. 北方园艺. 2018(05): 178-183 . 百度学术
    14. 郑欣颖,薛立. 入侵植物三叶鬼针草与近缘本地种金盏银盘的可塑性研究进展. 生态学杂志. 2018(02): 580-587 . 百度学术
    15. 王志信,朱娇娇,谢敏杰,杨有,汪丽,赵俭波. 腐植酸可降解地膜的生物降解性研究. 中国农业科技导报. 2017(05): 92-99 . 百度学术
    16. 张志雯,梁兴国,郭艾英,秦玲,李春华. 三叶鬼针草对小麦根尖细胞的致畸作用. 河北科技师范学院学报. 2016(04): 33-37 . 百度学术

    其他类型引用(16)

计量
  • 文章访问数:  3340
  • HTML全文浏览量:  560
  • PDF下载量:  426
  • 被引次数: 32
出版历程
  • 刊出日期:  2016-03-24

目录

    /

    返回文章
    返回