Effects of chemical fertilizer reduction and organic substitution on water and salt characteristics of high salinity soil and water and nitrogen use efficiency of sunflower
-
摘要:目的
研究有机肥氮替代化肥氮对盐渍化农田土壤水盐特性及作物生长的影响,为河套灌区盐渍化农田作物生产的高质量发展提供理论依据和技术支撑。
方法本研究针对河套灌区重度盐渍土于2019—2020年开展连续2年的田间试验。在同一施氮量(N 180 kg/hm2)下,设置不施有机肥(OF0)及有机肥氮分别替代化肥氮施用量的50% (OF1)和100% (OF2)处理,以不施肥为对照(CK)。测定不同时期土壤容重、质量含水率及饱和浸提液电导率(ECe),同时在向日葵收获后测定籽粒产量及产量性状。
结果有机替代可以降低土壤容重和提高土壤孔隙度,经过两年的田间试验后,OF1和OF2处理0—40 cm土层土壤容重分别为1.46和1.43 g/cm3,较2019年播种前分别降低了3.97%和5.92%,土壤孔隙度较2019年播种前分别提高了4.94%和7.90% (P< 0.05)。有机替代显著改善盐渍土水盐特性,OF1和OF2处理显著提高了土壤含水率,OF1处理土壤含水率分别较OF0、OF2和CK提高了5.34%、3.65%和10.55% (P< 0.05)。两季向日葵生育末期OF2处理0—100 cm土层土壤ECe均值为6.77 dS/m,分别较OF0、OF1处理降低了44.10%、11.61% (P < 0.05)。有机替代提高了向日葵籽粒产量及水分利用效率,OF1处理较OF0、OF2和CK分别增产9.47%、7.52%和62.90% (P < 0.05),分别提高净收益7.02%、23.12%和65.00% (P < 0.05);OF1处理水分利用效率较OF0、OF2和CK分别提高了17.50%、9.52%和73.82% (P < 0.05)。此外,OF1处理较OF0与OF2处理显著提高了氮素偏生产力和氮素农学效率(P < 0.05)。
结论有机肥替代化肥能够改良河套灌区重度盐渍土土壤结构,改善作物根区土壤水盐环境,提高产量及水氮利用效率。但是有机肥全部替代化学氮肥降低了向日葵的生产效益,也没有显著提高向日葵的水肥利用效率。在当前推荐的氮磷钾肥基础上(N 180 kg/hm2),有机肥氮替代50%化肥氮在河套灌区重度盐渍土上是可行的施肥措施。
Abstract:ObjectivesThe effects of different organic fertilizer ratios in total nutrient input on improving soil fertility and crop growth in heavily salinized farmland were studied for efficient and sustainable agricultural production in Hetao Irrigation District.
MethodsA two-year field experiment was conducted from 2019 to 2020 in high salinity soil in Hetao Irrigation District, taking sunflower as test crop. On the basis of recommended total N input (180 kg/hm2) for sunflower, organic fertilizer was used to replace chemical N by ratio of 0 (OF0), 50% (OF1) and 100% (OF2) respectively, while no fertilizer was taken as control (CK). The soil bulk density, moisture content and electrical conductivity of saturated extract (ECe) were measured before the experiment and during the main growth stages of sunflower in 2019 and 2020. The seed yields and yield traits of sunflower were measured at harvest.
ResultsApplication of organic fertilizers reduced soil bulk density and increased soil porosity significantly. After harvest in 2020, the soil bulk density of 0−40 cm depth treated with OF1 and OF2 was 1.46 and 1.43 g/cm3, respectively, which were 3.97% and 5.92% lower than that before sowing in 2019. The soil porosity was 4.94% and 7.90% higher than that before sowing in 2019 (P < 0.05). Organic fertilizer significantly increased the water storage and decreased ECe values of saline soil. The soil water content in OF1 was 5.34%, 3.65%, and 10.55% higher than in OF0, OF2 and CK, respectively (P < 0.05). The mean ECe of 0−100 cm depth at harvest of the two growing seasons in OF2 was 6.77 dS/m, which was 44.10% and 11.61% lower than those in OF0 and OF1, respectively (P < 0.05). The seed yield under OF1 was 9.47%, 7.52%, and 62.90% higher than that in OF0, OF2 and CK, respectively (P < 0.05). The net income was 7.02%, 23.11%, and 65.00% higher than that in OF0, OF2 and CK, respectively (P < 0.05). The water use efficiency was 17.50%, 9.52%, and 73.82% higher than that in OF0, OF2 and CK, respectively (P < 0.05). In addition, OF1 significantly increased the partial factor productivity and agronomic efficiency of applied nitrogen compared with OF0 and OF2 (P < 0.05). OF2 and OF0 had similar yield and water use efficiency, but OF2 had lower fertilizer efficiency and net income compared with OF0.
ConclusionsOrganic fertilizer could improve soil structure and decrease salt content of high salinity soil, ameliorate soil water and salt environment in root zone. However, organic fertilizer could substitute about 50%, not 100% of chemical fertilizers for high sunflower yield, water and nitrogen use efficiency and economic benefit of high salinity soils in Hetao Irrigation District.
-
土壤盐碱化问题已经成为全球变化研究框架下的重要内容[1]。河套灌区是我国重要的商品粮油生产基地,同时也是盐渍化发育的典型地区,灌区70%的耕地存在着不同程度的土壤盐渍化问题[2]。向日葵作为河套灌区的经济作物,土壤盐渍化制约着向日葵的正常生长,严重阻碍了农业发展。为了实现增产,化肥施用量逐年增加[3]。化肥尤其是氮肥的过度施用[4]和土壤盐渍化已成为限制河套灌区作物生产力提升的重要因素。
化肥的大量施用会引发一系列环境问题,如水体富营养化和土壤退化[5];施用有机肥可提高土壤肥力,增强土壤养分循环[6]。然而,仅施用有机肥通常会导致产量下降[6]。大量研究表明,有机肥替代化肥有利于改善盐渍土理化性质并提高作物产量[7-10]。朱海等[7]在滨海盐渍化农田上的研究发现,在施氮量225 kg/hm2条件下有机肥氮代替1/4化肥氮施入对降低土壤盐分和玉米养分吸收利用效果最好。周慧等[8]选取河套灌区轻度和中度盐渍化农田进行研究,发现盐分水平为0.460 dS/m时,有机肥替代50% 化肥可获得最高产量及水分利用效率;盐分水平为0.951 dS/m时,有机肥替代100% 化肥处理产量最高和水分利用效率较高。颜安等[9]在南疆重度盐碱地的试验结果表明,有机肥氮替代15%化肥氮的增产效果明显,在保证棉花稳产的同时减少了化肥的施用量。Liu等[10]对亚热带地区85个地点的74篇关于水稻施用有机肥的文献进行了综合3水平Meta分析,发现有机肥在减少化肥施用量的同时,具有增加水稻产量的潜力。前人研究表明,采用有机肥替代化肥,以实现化肥减量,是减轻土壤氮素污染、改良盐渍化农田的有效措施,可以综合改善土壤物理、化学、生物特性[11],但有机肥替代化肥比例和利用效果因土壤类型和作物而异。当前,关于有机肥替代化肥的研究大都集中在玉米[7-8]、水稻[10-12]和小麦[13-14]等粮食作物上,在向日葵上,尤其是其在河套灌区重度盐碱地上的应用研究相对较少。
鉴于以上研究结果,本研究选取河套灌区重度盐渍化农田为对象,进行连续两年的田间试验,在有机肥替代化肥条件下,拟对土壤结构、水盐特性及向日葵产量形成等方面进行系统的分析,旨在揭示有机肥氮替代不同比例化肥氮对土壤水分、盐分特性及作物水氮利用的影响差异,为河套灌区盐渍化农田作物生产的高质量发展提供科学依据和技术支撑。
1. 材料与方法
1.1 试验区概况
田间试验于2019和2020年向日葵生育期内(6―9月份)进行。试验地处内蒙古自治区巴彦淖尔市临河区合济试验站(107°16′E,40°44′N,海拔约1044 m),位于河套灌区中部。试验区属黄河中上游半干旱–半漠境盐渍区[15],多年平均年降水量为135 mm,多年平均年蒸发量在2350 mm,蒸降比大于10,而且雨量多集中在夏季7、8月份,约占全年降水量的60%左右。全年无霜期为135~150 天[16]。试验区每年春季播种前采用引黄河水漫灌压盐,灌水定额约120 mm。
试验地土壤属于黄河灌淤土。0—40 cm深度土壤饱和浸提液电导率(ECe)平均值为13.69 dS/m,pH平均值为8.15,属于重度盐渍化水平[17]。0—40 cm 深度土壤容重为1.52 g/cm3,硝态氮含量44.06 mg/kg,铵态氮含量2.04 mg/kg。试验站设有气象站和地下水监测井,分别对气象数据和地下水位进行监测。2019和2020年向日葵生育期内有效降雨量分别为40.8和120.2 mm。试验区地下水位主要受周边农田灌溉影响,周年波动较大,一般在2.0~3.5 m。
1.2 试验设计
试验设置不同比例有机肥氮替代化肥氮处理。总施肥量按照纯N 180 kg/hm2、P2O5 75 kg/hm2、K2O 150 kg/hm2执行。按照纯N施用量,设置不施有机肥和有机肥分别替代化肥(尿素)氮施用量的50%和100%,依次记为OF0、OF1、OF2,以不施肥为对照(CK),具体施肥设计详见表1。共计4个处理,重复3次,共12个小区,采用随机区组设计布置。小区面积80 m2 (8 m×10 m )。每个小区之间间隔1 m。
表 1 各处理肥料施用量Table 1. Application amount of fertilizers in each treatment处理
Treatment有机肥氮比例 (%)
Organic N percentage有机肥 (kg/hm2)
Organic fertilizer尿素 (kg/hm2)
Urea磷酸二铵 (kg/hm2)
(NH4)2HPO4硫酸钾 (kg/hm2)
K2SO4CK 0 0 0 0 0 OF0 0 0 328 140 278 OF1 50 1129 164 140 278 OF2 100 2258 0 140 278 供试作物为向日葵,品种为杂交品种AD6199。采用“一膜双行”的宽窄行种植方式,地膜为高压聚乙烯地膜(厚度 8 μm、宽度70 cm),膜内为窄行距 30 cm,膜间为宽行距70 cm。覆膜后点播,播种深度5 cm,株距60 cm,播种密度33200株/hm2。2年田间试验具体播种日期分别为2019年6月5日和2020年6月6日,收获日期分别为2019年9月13日和2020年9月15日。作物生育期灌水分3次进行:播种后立即灌水40 mm,现蕾期灌水40 mm,开花期灌水40 mm (2020年生育后期降雨较多,无此次灌溉)。其他措施与当地常规农事操作一致。
所施化肥为尿素(含纯N 46%)、磷酸二铵 (NH4)2HPO4 (含纯N 21%,P2O5 53.8%)、硫酸钾K2SO4 (含K2O 54%)。有机肥为陕西杨凌霖科生态有限公司与国家节水灌溉杨凌工程技术研究中心共同研制,具体养分含量如下:有机碳 79.23%、N 6.68 %、P2O5 2.25%、K2O 0.316%、Cd 0.16 mg/kg、Hg 0.036 mg/kg、Pb 1.28 mg/kg、Cr 10.70 mg/kg、As 1.58 mg/kg。按照当地传统施肥习惯,有机肥和化肥于耕作前作为基肥一次性施用,按照小区均匀撒施之后,拖拉机翻耕(深度20 cm)。
1.3 测定方法
1.3.1 土壤含水率
分别在向日葵播种前(2019年5月3日和2020年5月5日)、播种期(2019年6月5日和2020年6月6日)、苗期(2019年7月1日和2020年7月2日)、现蕾期(2019年7月30日和2020年8月1日)、开花期(2019年8月21日和2020年8月23日)、成熟期(2019年9月13日和2020年9月15日)取土。土壤取样位置均位于膜下0—100 cm,取样间隔为0—10、10—20、20—40、40—60、60—80、80—100 cm,3次重复。
用烘干法测定土壤质量含水率,土壤体积含水率=土壤质量含水率×土壤容重。土层贮水量计算公式:
W=∑(ωi×ρbi×hi) (1) 式中:
W —土壤贮水量(mm);ωi —第i 层土壤质量含水率(%);ρbi —第i 层土壤容重(g/cm3);hi —第i 层土壤厚度(mm)。1.3.2 土壤盐分
取样日期与位置同土壤含水率测定,土壤盐分测定采用调制饱和泥浆的方法[18]。40 g土样加少量水经过夜浸泡,然后调制成饱和泥浆,离心(4000 r/min,30 min)获得浸提液。采用电导率仪(DDS-11A,上海济成分析仪器有限公司)测定2019和2020年向日葵播种前、苗期及成熟期土壤饱和浸提液的电导率(ECe)。测定深度及重复次数同土壤含水率测定。
1.3.3 土壤容重及孔隙度
在2019年播种前和2020年收获后采样(0—40 cm),取样间隔为10 cm,采用环刀法测定各处理土壤容重,然后计算孔隙度:
f=(1−ρb/ρs)×100% (2) 式中:
f —土壤孔隙度(%);ρb —土壤容重(g/cm3);ρs —土壤密度,取2.65 g/cm3。1.3.4 作物产量及水分利用效率
在向日葵收获期,选取各小区连续2行,每行10株,共20株,用常规方法测定株高、茎粗,盘径、单盘籽粒重及百粒重。
将作物蒸散量(ET)作为实际耗水量,采用水量平衡法计算:
ET=ΔW+P+I+K−R (3) 作物水分利用效率计算公式:
WUE=Y/ET (4) 式中:
ET —作物生育期内的蒸散量(mm);ΔW —生育初、末期取样0—100 cm土层贮水量变化(mm);P —生育期内有效降雨量(mm);I —生育期灌溉量(mm);K —地下水的补给量(mm),向日葵生育期内地下水位埋深2 m左右,超过主要根系层(0—60 cm)1 m以上,补给量可忽略[15];R —地表径流量,本研究地势平坦且处理之间设有隔离畦埂,此项忽略;Y —作物产量(kg/hm2)。1.3.5 氮素利用效率
计算公式[19]如下:
氮素农学效率(AEN,kg/kg)=(施氮区产量−对照区产量)/施氮量 (5) 氮素偏生产力(PFPN,kg/kg)=施氮区产量/施氮量 (6) 1.4 数据处理
利用Microsoft Excel 2019和SPSS 26.0软件进行数据处理和分析,采用LSD (least significant difference)法进行单因素方差分析和差异显著性检验(α=0.05),同时采用SigmaPlot 14.0软件作图。
2. 结果与分析
2.1 试验期间降雨与气温
2019与2020年向日葵生育期内有效降雨量分别为40.8和120.2 mm (图1),与1990—2010年同期平均降雨量92 mm[20]相比,2019年为干旱年,2020年为湿润年。与2019年生长期内降雨量相比,2020年向日葵苗期降雨量基本不变,而现蕾期至成熟期降雨量显著增加。2019与2020年生长期平均气温分别为21.56℃和21.67℃。
2.2 施用不同比例有机肥对土壤容重及孔隙度的影响
由图2可知,经过两个生长期,在2020年成熟期各处理土壤容重和孔隙度较2019年播种前均有不同程度的变化。OF1和OF2 处理在0—40 cm土层的平均土壤容重分别为1.46和1.43 g/cm3,比2019年播种前分别降低了3.97% 和5.92%;而CK和OF0处理分别较2019年播种前增加2.14%和4.55% (P < 0.05)。各土层OF2处理土壤容重最 小。在10—20 cm土层,CK处理容重(1.57 g/cm3)最大,较2019年播种前增加了3.29%;其余土层均为OF0处理容重最大。0— 40 cm土层CK与OF0处理平均孔隙度较2019年播种前分别减小了0.38% 和0.77%;而OF1与OF2处理较2019年播种前分别增加了4.94%和7.90% (P < 0.05)。这表明添加有机肥处理能够降低土壤容重,使耕层土壤孔隙状况得到改善。
2.3 施用不同比例有机肥对土壤水分的影响
2019与2020年各处理土壤体积含水率均随土层深度增加而增大,其中40—100 cm 土层土壤体积含水率普遍高于表层0—40 cm (图3)。以2019年为例,苗期OF1与OF2处理在0—20 cm 土层平均含水率分别为18.57%和19.47%,显著高于CK与OF0处理(P < 0.05);CK在20—40 cm土层平均含水率低于3个施肥处理,且有显著性差异(P < 0.05);其余土层不同处理之间体积含水率无显著性差异。现蕾期根系活动层0—40 cm平均含水率从大到小依次为OF1、OF2、OF0、CK,且添加有机肥处理均显著高于CK处理。开花期OF1处理在0—60 cm土层平均含水率显著高于其余处理(P < 0.05)。成熟期OF1处理0—20 cm土层平均含水率显著高于其余处理;40—100 cm土层OF2处理平均含水率为27.10%,显著高于其余处理(P < 0.05)。与2019年不同生育期土壤体积含水率相比,2020年苗期OF1处理在表层0—20 cm及深层60—100 cm土壤平均含水率最大;开花期OF2处理在表层0 — 10 cm土壤含水率最大;其余生育期土壤体积含水率和2019年呈相似的规律。综合两年试验结果,OF1与OF2处理显著提高了土壤含水率,OF1处理土壤含水率分别较OF0、OF2处理及CK提高了5.34%、3.65%、10.55% (P < 0.05)。
2.4 施用不同比例有机肥对土壤盐分的影响
由图4可知,在2019年播种前,土壤ECe随着土层的加深而逐渐降低。土壤盐分“表聚”现象严重,0—20 cm土层ECe平均值为18.28 dS/m,极不利于植物的生长。在灌水压盐后,2019年向日葵苗期各处理表层0—20 cm土壤盐分含量明显降低,其中OF2处理表层土壤盐分下降最为明显,ECe下降至5.05 dS/m,而OF0与OF1处理表层土壤盐分无显著性差异;从40—100 cm土层电导率来看,OF2、OF1、OF0处理分别低于、接近、高于2019年播种前(图4a)。2019年成熟期,各处理表层0—10 cm土壤电导率较苗期都有一定的升高,其余土层电导率从大到小依次为OF0、OF1、OF2处理(图4b),表明OF2处理对土壤的抑盐效果较好。
2020年播种前,除OF2处理10—20 cm土层ECe略低于2019年播种前外,其余各处理0—40 cm土层ECe均高于2019年播种前,OF0、OF1、OF2处理表层0—40 cm土层的平均ECe分别为21.11、17.40、18.12 dS/m;而OF0处理在深层40—100 cm土壤电导率低于2019年播种前(图4c)。2020年苗期,各处理电导率均随土层深度增加呈先增后减的趋势,OF0、OF1、OF2处理分别在20—40、40—60、60—80 cm达到最大值(图4d)。2020年成熟期,OF1、OF2处理0—40 cm土层ECe较2019年成熟期(图4b)显著降低,且OF2处理较OF1处理电导率显著降低(P < 0.05),而2020年OF0处理电导率较2019年无明显变化(图4e)。两年度向日葵生育末期OF2处理0—100 cm土壤电导率均值为6.77 ds/m,分别较OF0、OF1处理降低44.10%、11.61% (P < 0.05)。
2.5 施用不同比例有机肥对向日葵产量和水氮利用效率的影响
2.5.1 向日葵生长及产量
OF1与OF2处理2020 年产量分别达到3966与3701 kg/hm2,较 2019年相应提高2.67%与3.35%;而OF0与CK处理2020年产量较2019年相应减少2.10%与2.06% (P < 0.05,表2)。2019与2020年OF1处理产量均显著高于其余处理,CK产量均显著低于各施肥处理(P < 0.05)。2019年OF0与OF2处理产量之间无显著性差异;相较于2019年,2020年OF2处理产量显著增加,而OF0处理产量显著降低(P < 0.05),但2020年两处理间产量仍无明显差异,这可能与有机肥的肥效释放相对缓慢有关。产量最高的OF1处理株高、单盘粒质量、百粒重均显著高于其余处理,这是OF1处理增产的主要原因。OF0、OF1与OF2处理盘直径均显著高于CK(P < 0.05),而各施肥处理之间无显著性差异。综合两年来看,OF1处理较OF0、OF2处理和CK分别增产9.47%、7.52%、62.90% (P < 0.05)。
表 2 2019和2020年各处理向日葵产量及产量性状Table 2. Yield and yield traits of sunflower under each treatment in 2019 and 2020年份
Year处理
Treatment株高 (cm)
Plant height盘直径 (cm)
Disc diameter单盘籽粒重 (g/head)
Seed weight per disc百粒重 (g)
100-seed weight产量 (kg/hm2)
Yield2019 CK 120.5 cA 14.4 bA 73.1 cA 15.7 cA 2428 cA OF0 128.3 bA 21.1 aA 108.9 bA 18.3 bA 3614 bA OF1 136.8 aA 21.6 aA 116.4 aB 20.3 aB 3863 aB OF2 127.3 bA 20.9 aA 107.9 bB 17.9 bA 3581 bB 2020 CK 115.0 cB 15.0 bA 71.6 cB 15.6 cA 2378 cB OF0 128.5 bA 18.8 aB 106.6 bB 17.5 bB 3538 bB OF1 133.4 aB 19.0 aB 119.5 aA 23.7 aA 3966 aA OF2 126.0 bA 18.7 aB 111.5 bA 17.9 bA 3701 bA 注(Note):同列数据后不同小写字母表示同一年内处理间差异显著,不同大写字母表示相同处理两年间差异显著 (P < 0.05) Values followed by different small letters in the same column mean significant difference among treatments within the same year, and different capital letters in the same column mean significant difference between two years for the same treatment (P < 0.05); 2.5.2 向日葵耗水量与水氮利用效率
2019年OF1和OF2处理耗水量较OF0处理和CK减小且达到显著水平(P < 0.05);而2020年由于生育末期降水较多,此时耗水量多用于土壤蒸发,一定程度上掩盖了不同处理之间的差异,因此各处理耗水量无显著性差异(表3)。由水分利用效率(WUE) 的结果分析可知,OF1处理的水分利用效率均显著高于OF0与OF2处理(P < 0.05),其中2019年OF1处理分别比 OF0、OF2提高了25.79%、9.45%,2020年分别提高了9.29%、5.18% (P< 0.05)。综合两年考虑,OF1处理水分利用效率较OF0、OF2和CK分别提高了17.50%、9.52%、73.82% (P < 0.05)。所有处理中氮素农学效率以OF1处理最高,2019与2020年分别为8.0和8.8 kg/kg,显著高于OF0与OF2处理(P < 0.05);在N 180 kg/hm2施氮水平下,随着有机肥占比的增加,氮素农学效率先增加后降低。与氮素农学效率相似,OF1处理氮素偏生产力在两年试验中均显著高于OF0与OF2处理(P < 0.05)。此外,从收获后土壤贮水量来看,在降雨量较小的2019年,添加有机肥处理土壤贮水量显著高于单施化肥和不施肥处理(P < 0.05);在降雨量充足的2020年,各处理土壤贮水量无显著性差异。
表 3 2019和2020年各处理向日葵水氮利用效率Table 3. Water and nitrogen use efficiency of sunflower in each treatment in 2019 and 2020年份
Year处理Treatment 播种前贮水量
Water storage before sowing
(mm)灌水量Irrigation
(mm)降水量Rainfall
(mm)收获后贮水量
Water storage after harvest (mm)耗水量
ET
(mm)水分利用效率
WUE
[kg/(mm·hm2)]氮素农学效率
AEN
(kg/kg)氮素偏生产力
PFPN
(kg/kg)2019 CK 398.6 a 120 40.8 348.4 b 211.0 a 11.5 d OF0 395.9 a 120 40.8 350.1 b 206.6 a 17.5 c 6.6 b 20.1 b OF1 381.1 a 120 40.8 366.3 a 175.6 b 22.0 a 8.0 a 21.5 a OF2 386.2 a 120 40.8 368.9 a 168.1 b 19.4 b 5.7 b 19.2 b 2020 CK 386.4 b 80 120.2 392.5 a 194.1 a 12.3 c OF0 380.1 b 80 120.2 394.4 a 190.9 a 17.7 b 6.4 b 19.7 b OF1 401.8 a 80 120.2 396.5 a 205.5 a 19.3 a 8.8 a 22.0 a OF2 399.3 a 80 120.2 397.8 a 201.7 a 18.4 b 7.4 b 20.6 b 注(Note):ET—Evapotranspiration; WUE—Water use efficiency; AEN—Agronomic efficiency of applied N; PFPN—Partial factor productivity of applied N. 同一年内同列数据后不同小写字母表示处理间差异显著 (P < 0.05) Values followed by different small letters in the same column of the same year mean significant difference among treatments (P < 0.05). 2.6 成本效益分析
农民收入与农产品价格密切相关。2019—2020年度试验区向日葵籽粒价格为7.5元/kg;2020—2021年度由于气候以及灌区管理粗放的原因,向日葵籽粒饱满度、皮毛光泽度较差,价格下跌至6.3元/kg[21]。按照此价格计算,随着向日葵籽粒价格的下跌,本研究2020年各处理向日葵生产总收入较2019年均有所下降:单施化肥处理(OF0)降幅最为明显,较2019向日葵生产总收入下降了17.78%;OF1和OF2处理2020年向日葵生产总收入较2019年分别下降了13.77%和13.19% (P < 0.05,表4)。不同处理之间生产支出的差异主要体现在施肥管理的氮肥施用方面,OF0、OF1、OF2处理每年的氮肥成本投入分别为984.0、2185.5、3387.0元/hm2,有机肥氮成本投入占氮肥成本投入分别为0、77.49%、100%。氮肥成本投入差异显著的原因主要是有机肥含氮量(6.68%)显著低于尿素(46%),在相同施氮条件下,有机肥施用量较大。以OF2处理为例,需施用2258 kg/hm2有机肥(1.5元/kg),其成本较OF0处理显著增加。就净收益而言,OF1处理较OF0和OF2处理及CK分别增加7.02%、23.12%、65.00% (P < 0.05)。
表 4 不同处理向日葵生产效益分析Table 4. Annual benefit of sunflower production under different treatments处理
Treatment生产资料成本
Production materials
cost (yuan/hm2)田间管理成本
Field management
cost (yuan/hm2)施肥管理成本
Fertilization management
cost (yuan/hm2)总收入 (yuan/hm2)
Total income净收益 (yuan/hm2)
Net profit2019 2020 平均值
Mean2019 2020 平均值
MeanCK 3800 2950 0 18212d 14982d 16597d 11462d 8532d 9997d OF0 3800 2950 2684 27107b 22287c 24697c 17673b 13153b 15413b OF1 3800 2950 3886 28976a 24985a 26981a 18341a 14650a 16495a OF2 3800 2950 5087 26857c 23314b 25085b 15020c 11777c 13398c 注(Note):生产资料包含种子 (2400 元/hm2)、地膜 (600 元/hm2)、灌溉水电费 (700 元/hm2) 及除草剂 (100 元/hm2);田间管理包含播种前耕作 (450 元/hm2),灌溉、播种及收获用工或机械 (2300 元/hm2) 及植保措施 (200 元/hm2);各肥料单价为有机肥 1.5 元/kg、尿素 3 元/kg、磷酸二铵 5 元/kg、硫酸钾 3.6 元/kg. 同列数据后不同小写字母表示处理间差异显著 (P < 0.05). The production materials include seeds (2400 yuan/hm2), plastic film (600 yuan/hm2), irrigation water and electricity costs (700 yuan/hm2) and herbicides (100 yuan/hm2). Field management includes pre-sowing tillage (450 yuan/hm2), irrigation, sowing and harvesting labor or machinery (2300 yuan/hm2) and plant protection measures (200 yuan/hm2). The unit price of each fertilizer: organic fertilizer 1.5 yuan/kg, urea 3 yuan/kg, diammonium phosphate 5 yuan/kg, potassium sulfate 3.6 yuan/kg. Values followed by different small letters in the same column mean significant difference among treatments (P < 0.05). 3. 讨论
我国西北旱区盐渍土中盐分阳离子多以Na+为主,容易造成粘土颗粒分散,遇水易板结,孔隙度低,不利于土壤水分入渗,可耕性差[22]。有机肥的添加影响着向日葵生育期内土壤容重及孔隙度的变化过程,对土壤水分及降水的贮存量有直接影响。本研究中,OF1与OF2处理能够降低耕层(0—40 cm)土壤容重和提高土壤孔隙度,一方面是由于加入的有机肥本身容重低于耕层土壤[23],另一方面可能是因为有机无机肥配施能够促进根系增加,根系增加促进土壤中根茬量增加,土壤根茬的增加促进土壤容重的降低[24]。因此在干旱年(2019年) OF1与OF2处理能够较其余处理显著增加降水贮存量,调节耕层土壤有效水库容,减少土壤毛管水无效蒸发,为后期作物高产创造了有利的水分条件,这与朱海等[7]和王宪玲等[23]的研究结果相吻合。
有机无机肥配施处理能够改良土壤结构,维持根区相对低盐适宜生长区,优化作物根区土壤水盐环境。本研究中OF1、OF2处理(有机肥氮替代50%、100%化肥氮)均可以提高土壤含水率,降低电导率,这与前人[7,9,25-26]的研究结果相一致。OF2处理在4个处理中土壤含盐量最低,相对于CK处理显著降低了土壤容重和提高了土壤孔隙度,有利于利用降水充分向下淋洗耕层;同时在2020年成熟期,OF2处理土壤表层0—40 cm ECe值显著低于单施化肥处理(OF0),说明施用有机肥有利于减少和推迟盐分的表聚,降低表层盐分对作物的毒害性。此外,有机质在腐解过程中,可以改善土壤养分[27]和生物活性[28],促进作物的地上与地下部分生长,提高蒸发“无效水”向蒸腾“有效水”的转化[29],因而有机肥中的有机质在提高土壤养分和促进作物生长过程中可能起关键作用。而单施化肥处理(OF0)的表层土壤一直处在较低水分状态,脱盐效果不佳,造成作物在生育中后期受到盐害。
前人研究表明,有机无机肥配施能够显著增加作物产量,提高土壤肥力[30]。一般而言,旱地作物产量较高时土壤水分的消耗也相应较多[31]。本研究表明,在重度盐渍化条件下,干旱年添加有机肥处理(OF1、OF2)能够显著增加收获后土壤贮水量,降低耗水量,这是因为有机肥的施入可以显著降低土壤容重和提高土壤孔隙度,土壤对水分的保蓄能力增强,从而提高了土壤含水率[32];配施有机肥后,土壤贮水量的增加(表3),调节了耕层土壤有效水库容,减少了土壤毛管水无效蒸发[33],从而使土壤水分的消耗减少[34];而湿润年各处理收获后土壤贮水量和耗水量差异不明显,这是由于生育末期降水较多,此时耗水量多用于土壤蒸发,一定程度上掩盖了不同处理之间的差异。
本研究中OF1处理产量显著高于其他处理。相较于2019年,2020年OF2处理产量显著增加,而OF0处理产量显著减小(P < 0.05)。这可能是因为在第一年(2019年)无机肥的矿质氮供应能力强于有机肥,到第二年(2020年)有机肥中的矿质氮才缓慢释放到土壤中,周慧等[8]在河套灌区轻度和中度盐渍土上也得到了类似的结果。此外,OF1较OF2处理显著增加了净收益,这是因为OF1处理中有机肥氮替代50%化肥氮,既控制了肥料投入,又保证作物高产;而OF2处理虽然产量与OF0处理持平,但OF2处理有机肥成本投入远远高于OF0处理尿素成本投入,因此OF2处理净收益显著低于OF0处理。已有研究表明,施有机肥可以显著提高作物水分利用效率[35],这与本研究结果基本一致,这是因为施入有机肥使土壤总孔隙度及土壤养分状况得到明显改善[36],利于作物生长及水分利用率的提高。本研究结果显示,OF1处理在两年试验中水分利用效率最高;OF2处理在干旱年水分利用效率显著高于OF0处理,而在湿润年两处理水分利用效率没有显著性差异,这是因为湿润年耗水量多用于土壤蒸发,即使OF2处理产量略高于OF0处理,但两处理耗水量没有显著性差异,因而导致WUE没有显著性差异。
氮素农学效率是指单位施氮量所增加的作物籽粒产量;氮素偏生产力是指单位投入的肥料氮所能形成的作物籽粒产量,提高氮素利用效率是实现作物高产高效的主要研究方向之一。本研究中,与OF0与OF2处理相比,OF1处理显著提高了氮素农学效率及氮素偏生产力,这与张璐等[37]研究结果相一致。这一方面是因为相对于化学氮肥尿素,有机肥携带的氮素不易流失[38];另一方面有机肥肥效释放相对缓慢[39],可以保证向日葵生育后期的土壤氮素供应能力[8]。因此OF1处理获得高产的同时还提高了氮素偏生产力和氮素农学效率。此外,研究表明,由于有机肥中含有较高的Pb、Cr、As等重金属元素,有机肥替代化肥引起了土壤和农产品中重金属含量增加的负面影响[40-41],因此,长期施用有机肥还需考虑对土壤和作物中重金属累积的影响。
4. 结论
相比单施化肥,有机无机肥配施有利于提高河套灌区重度盐渍土 0—40 cm 土层土壤的孔隙度,降低土壤容重,进而改善作物根区土壤水盐环境,提高向日葵产量和水氮利用效率。在河套灌区重度盐渍土区,综合考虑向日葵产量、水氮利用效率、生育期土壤水盐运移特性及成本效益,在相同施氮量(N 180 kg/hm2)条件下,建议在向日葵生产上采用有机肥氮替代50%化肥氮。
-
表 1 各处理肥料施用量
Table 1 Application amount of fertilizers in each treatment
处理
Treatment有机肥氮比例 (%)
Organic N percentage有机肥 (kg/hm2)
Organic fertilizer尿素 (kg/hm2)
Urea磷酸二铵 (kg/hm2)
(NH4)2HPO4硫酸钾 (kg/hm2)
K2SO4CK 0 0 0 0 0 OF0 0 0 328 140 278 OF1 50 1129 164 140 278 OF2 100 2258 0 140 278 表 2 2019和2020年各处理向日葵产量及产量性状
Table 2 Yield and yield traits of sunflower under each treatment in 2019 and 2020
年份
Year处理
Treatment株高 (cm)
Plant height盘直径 (cm)
Disc diameter单盘籽粒重 (g/head)
Seed weight per disc百粒重 (g)
100-seed weight产量 (kg/hm2)
Yield2019 CK 120.5 cA 14.4 bA 73.1 cA 15.7 cA 2428 cA OF0 128.3 bA 21.1 aA 108.9 bA 18.3 bA 3614 bA OF1 136.8 aA 21.6 aA 116.4 aB 20.3 aB 3863 aB OF2 127.3 bA 20.9 aA 107.9 bB 17.9 bA 3581 bB 2020 CK 115.0 cB 15.0 bA 71.6 cB 15.6 cA 2378 cB OF0 128.5 bA 18.8 aB 106.6 bB 17.5 bB 3538 bB OF1 133.4 aB 19.0 aB 119.5 aA 23.7 aA 3966 aA OF2 126.0 bA 18.7 aB 111.5 bA 17.9 bA 3701 bA 注(Note):同列数据后不同小写字母表示同一年内处理间差异显著,不同大写字母表示相同处理两年间差异显著 (P < 0.05) Values followed by different small letters in the same column mean significant difference among treatments within the same year, and different capital letters in the same column mean significant difference between two years for the same treatment (P < 0.05); 表 3 2019和2020年各处理向日葵水氮利用效率
Table 3 Water and nitrogen use efficiency of sunflower in each treatment in 2019 and 2020
年份
Year处理Treatment 播种前贮水量
Water storage before sowing
(mm)灌水量Irrigation
(mm)降水量Rainfall
(mm)收获后贮水量
Water storage after harvest (mm)耗水量
ET
(mm)水分利用效率
WUE
[kg/(mm·hm2)]氮素农学效率
AEN
(kg/kg)氮素偏生产力
PFPN
(kg/kg)2019 CK 398.6 a 120 40.8 348.4 b 211.0 a 11.5 d OF0 395.9 a 120 40.8 350.1 b 206.6 a 17.5 c 6.6 b 20.1 b OF1 381.1 a 120 40.8 366.3 a 175.6 b 22.0 a 8.0 a 21.5 a OF2 386.2 a 120 40.8 368.9 a 168.1 b 19.4 b 5.7 b 19.2 b 2020 CK 386.4 b 80 120.2 392.5 a 194.1 a 12.3 c OF0 380.1 b 80 120.2 394.4 a 190.9 a 17.7 b 6.4 b 19.7 b OF1 401.8 a 80 120.2 396.5 a 205.5 a 19.3 a 8.8 a 22.0 a OF2 399.3 a 80 120.2 397.8 a 201.7 a 18.4 b 7.4 b 20.6 b 注(Note):ET—Evapotranspiration; WUE—Water use efficiency; AEN—Agronomic efficiency of applied N; PFPN—Partial factor productivity of applied N. 同一年内同列数据后不同小写字母表示处理间差异显著 (P < 0.05) Values followed by different small letters in the same column of the same year mean significant difference among treatments (P < 0.05). 表 4 不同处理向日葵生产效益分析
Table 4 Annual benefit of sunflower production under different treatments
处理
Treatment生产资料成本
Production materials
cost (yuan/hm2)田间管理成本
Field management
cost (yuan/hm2)施肥管理成本
Fertilization management
cost (yuan/hm2)总收入 (yuan/hm2)
Total income净收益 (yuan/hm2)
Net profit2019 2020 平均值
Mean2019 2020 平均值
MeanCK 3800 2950 0 18212d 14982d 16597d 11462d 8532d 9997d OF0 3800 2950 2684 27107b 22287c 24697c 17673b 13153b 15413b OF1 3800 2950 3886 28976a 24985a 26981a 18341a 14650a 16495a OF2 3800 2950 5087 26857c 23314b 25085b 15020c 11777c 13398c 注(Note):生产资料包含种子 (2400 元/hm2)、地膜 (600 元/hm2)、灌溉水电费 (700 元/hm2) 及除草剂 (100 元/hm2);田间管理包含播种前耕作 (450 元/hm2),灌溉、播种及收获用工或机械 (2300 元/hm2) 及植保措施 (200 元/hm2);各肥料单价为有机肥 1.5 元/kg、尿素 3 元/kg、磷酸二铵 5 元/kg、硫酸钾 3.6 元/kg. 同列数据后不同小写字母表示处理间差异显著 (P < 0.05). The production materials include seeds (2400 yuan/hm2), plastic film (600 yuan/hm2), irrigation water and electricity costs (700 yuan/hm2) and herbicides (100 yuan/hm2). Field management includes pre-sowing tillage (450 yuan/hm2), irrigation, sowing and harvesting labor or machinery (2300 yuan/hm2) and plant protection measures (200 yuan/hm2). The unit price of each fertilizer: organic fertilizer 1.5 yuan/kg, urea 3 yuan/kg, diammonium phosphate 5 yuan/kg, potassium sulfate 3.6 yuan/kg. Values followed by different small letters in the same column mean significant difference among treatments (P < 0.05). -
[1] 杨劲松, 姚荣江. 我国盐碱地的治理与农业高效利用[J]. 中国科学院院刊, 2015, 30(S1): 162–170. Yang J S, Yao R J. Management and efficient agricultural utilization of salt-affected soil in China[J]. Bulletin of Chinese Academy of Sciences, 2015, 30(S1): 162–170. Yang J S, Yao R J. Management and efficient agricultural utilization of salt-affected soil in China [J]. Bulletin of Chinese Academy of Sciences, 2015, 30(Z1): 162–170.
[2] 刘全明, 成秋明, 王学, 等. 河套灌区土壤盐渍化微波雷达反演[J]. 农业工程学报, 2016, 32(16): 109–114. Liu Q M, Cheng Q M, Wang X, et al. Soil salinity inversion in Hetao Irrigation District using microwave radar[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(16): 109–114. DOI: 10.11975/j.issn.1002-6819.2016.16.016 Liu Q M, Cheng Q M, Wang X, et al. Soil salinity inversion in Hetao Irrigation District using microwave radar [J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(16): 109–114. DOI: 10.11975/j.issn.1002-6819.2016.16.016
[3] 曹连海, 吴普特, 赵西宁, 等. 内蒙古河套灌区粮食生产灰水足迹评价[J]. 农业工程学报, 2014, 30(1): 63–72. Cao L H, Wu P T, Zhao X N, et al. Evaluation of grey water footprint of grain production in Hetao Irrigation District, Inner Moreongolia[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(1): 63–72. Cao L H, Wu P T, Zhao X N, et al. Evaluation of grey water footprint of grain production in Hetao Irrigation District, Inner Moreongolia[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(1): 63–72.
[4] 巨晓棠, 谷保静. 我国农田氮肥施用现状、问题及趋势[J]. 植物营养与肥料学报, 2014, 20(4): 783–795. Ju X T, Gu B J. Status-quo, problem and trend of nitrogen fertilization in China[J]. Journal of Plant Nutrition and Fertilizers, 2014, 20(4): 783–795. DOI: 10.11674/zwyf.2014.0401 Ju X T, Gu B J. Status-quo, problem and trend of nitrogen fertilization in China [J]. Journal of Plant Nutrition and Fertilizers, 2014, 20(4): 783–795. DOI: 10.11674/zwyf.2014.0401
[5] Gu B J, Ju X T, Chang J, et al. Integrated reactive nitrogen budgets and future trends in China[J]. PNAS, 2015, 112(28): 8792–8797. DOI: 10.1073/pnas.1510211112
[6] Zhang X Y, Fang Q C, Zhang T, et al. Benefits and trade-offs of replacing synthetic fertilizers by animal manures in crop production in China: A meta-analysis[J]. Global Change Biology, 2020, 26(2): 888–900. DOI: 10.1111/gcb.14826
[7] 朱海, 杨劲松, 姚荣江, 等. 有机无机肥配施对滨海盐渍农田土壤盐分及作物氮素利用的影响[J]. 中国生态农业学报(中英文), 2019, 27(3): 441–450. Zhu H, Yang J S, Yao R J, et al. Effects of partial substitution of organic nitrogen for inorganic nitrogen in fertilization on salinity and nitrogen utilization in salinized coastal soil[J]. Chinese Journal of Eco-Agriculture, 2019, 27(3): 441–450. Zhu H, Yang J S, Yao R J, et al. Effects of partial substitution of organic nitrogen for inorganic nitrogen in fertilization on salinity and nitrogen utilization in salinized coastal soil[J]. Chinese Journal of Eco-Agriculture, 2019, 27(3): 441–450
[8] 周慧, 史海滨, 徐昭, 等. 有机无机肥配施对盐渍土供氮特性与作物水氮利用的影响[J]. 农业机械学报, 2020, 51(4): 299–307. Zhou H, Shi H B, Xu Z, et al. Effects of combined application of organic and inorganic fertilizers on nitrogen supply and crop water and nitrogen utilization in salinized soils[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(4): 299–307. DOI: 10.6041/j.issn.1000-1298.2020.04.034 Zhou H, Shi H B, Xu J, et al. Effects of combined application of organic and inorganic fertilizers on nitrogen supply and crop water and nitrogen utilization in salinized soils [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(4): 299–307. DOI: 10.6041/j.issn.1000-1298.2020.04.034
[9] 颜安, 吴勇, 徐金虹, 等. 有机氮替代无机氮和土壤改良剂对重度盐碱地棉花产量和土壤养分的影响[J/OL]. 中国土壤与肥料, http://kns.cnki.net/kcms/detail/11.5498.S.20201105.1746.006.html, [2020-11-06]/(2021-01-06). Yan A, Wu Y, Xu J H, et al. Effects of partial substitution of chemical nitrogen with organic fertilizer and soil amendments on cotton production and soil nutrient in salinization field[J/OL]. Soil and Fertilizer Sciences in China, http://kns.cnki.net/kcms/detail/11.5498.S.20201105.1746.006.html, [2020-11-06]/(2021-01-06).
[10] Liu L, Li H, Zhu S, et al. The response of agronomic characters and rice yield to organic fertilization in subtropical China: A three-level meta-analysis[J]. Field Crops Research, 2021, 263: 1–9.
[11] 史海滨, 杨树青, 李瑞平, 等. 内蒙古河套灌区节水灌溉与水肥高效利用研究展望[J]. 灌溉排水学报, 2020, 39(11): 1–12. Shi H B, Yang S Q, Liu R P, et al. Water-saving irrigation and utilization efficiency of water and fertilizer in Hetao Irrigation District of Inner Mongolia: Prospect for future research[J]. Journal of Irrigation and Drainage, 2020, 39(11): 1–12. Shi H B, Yang S Q, Liu R P, et al. Water-saving irrigation and utilization efficiency of water and fertilizer in Hetao Irrigation District of Inner Mongolia: Prospect for future research [J]. Journal of Irrigation and Drainage, 2020, 39(11): 1–12.
[12] 徐明岗, 李冬初, 李菊梅, 等. 化肥有机肥配施对水稻养分吸收和产量的影响[J]. 中国农业科学, 2008, 41(10): 3133–3139. Xu M G, Li D C, Li J M, et al. Effects of organic manure application combined with chemical fertilizers on nutrients absorption and yield of rice in Hunan of China[J]. Scientia Agricultura Sinica, 2008, 41(10): 3133–3139. DOI: 10.3864/j.issn.0578-1752.2008.10.029 Xu M G, Li D C, Li J M, et al. Effects of organic manure application combined with chemical fertilizers on nutrients absorption and yield of rice in Hunan of China [J]. Scientia Agricultura Sinica, 2008, 41(10): 3133–3139. DOI: 10.3864/j.issn.0578-1752.2008.10.029
[13] 张奇茹, 谢英荷, 李廷亮, 等. 有机肥替代化肥对旱地小麦产量和养分利用效率的影响及其经济环境效应[J]. 中国农业科学, 2020, 53(23): 4866–4878. Zhang Q R, Xie Y H, Li T L, et al. Effects of organic fertilizers replacing chemical fertilizers on yield, nutrient use efficiency, economic and environmental benefits of dryland wheat[J]. Scientia Agricultura Sinica, 2020, 53(23): 4866–4878. DOI: 10.3864/j.issn.0578-1752.2020.23.012 Zhang Q R, Xie Y H, Li T L, et al. Effects of organic fertilizers replacing chemical fertilizers on yield, nutrient use efficiency, economic and environmental benefits of dryland wheat [J]. Scientia Agricultura Sinica, 2020, 53(23): 4866–4878. DOI: 10.3864/j.issn.0578-1752.2020.23.012
[14] 张然, 史雷, 马龙, 等. 有机无机肥配施对旱地冬小麦产量及土壤物理性质的影响[J]. 水土保持学报, 2020, 34(6): 325–330, 336. Zhang R, Shi L, Ma L, et al. Effects of combined application of organic and inorganic fertilizer on winter wheat yield and soil physical properties in dryland[J]. Journal of Soil and Water Conservation, 2020, 34(6): 325–330, 336. Zhang R, Shi L, Ma L, et al. Effects of combined application of organic and inorganic fertilizer on winter wheat yield and soil physical properties in dryland [J]. Journal of Soil and Water Conservation, 2020, 34(6): 325–330, 336.
[15] 王遵亲, 祝寿泉, 俞仁培, 等. 中国盐渍土[M]. 北京: 科学出版社, 1993. 276–282. Wang Z Q, Zhu S Q, Yu R P, et al. Salt-affected soils of China [M]. Beijing: Science Press, 1993. 276–282.
[16] 巴彦淖尔市统计局. 巴彦淖尔市统计年鉴(2012—2013年)[M]. 巴彦淖尔: 巴彦淖尔市统计局, 2013. 253–256. Bayannur Municipal Bureau of Statistics. Statistical yearbook of Bayannur City (2012-2013)[M]. Bayannur: Bayannur Municipal Bureau of Statistics, 2013. 253–256.
[17] Ondrasek G, Rengel Z. Environmental salinization processes: Detection, implications & solutions[J]. Science of the Total Environment, 2021, 754: 1–23.
[18] Weil Ray R, Brady Nyle C. The nature and properties of soils (The Fifteenth Edition) [M]. Pearson Education Limited, 2017: 453–454.
[19] 张福锁, 王激清, 张卫峰, 等. 中国主要粮食作物肥料利用率现状与提高途径[J]. 土壤学报, 2008, 45(5): 915–924. Zhang F S, Wang J Q, Zhang W F, et al. Nutrient use efficiencies of major cereal crops in China and measures for improvement[J]. Acta Pedologica Sinica, 2008, 45(5): 915–924. DOI: 10.3321/j.issn:0564-3929.2008.05.018 Zhang F S, Wang J Q, Zhang W F, et al. Nutrient use efficiencies of major cereal crops in China and measures for improvement [J]. Acta Pedologica Sinica, 2008, (5): 915–924. DOI: 10.3321/j.issn:0564-3929.2008.05.018
[20] Zhou L, Feng H. Plastic film mulching stimulates brace root emergence and soil nutrient absorption of maize in an arid environment[J]. Journal of the Science of Food and Agriculture, 2020, 100(2): 540–550. DOI: 10.1002/jsfa.10036
[21] 巴彦淖尔市农牧局. 市场行情[EB/OL]. (2021-01-03)https: //nmj. bynr. gov. cn/Bayannur Bureau of Agriculture and Animal Husbandry. Market situation[EB/OL].(2021-01-03)https://nmj.bynr.gov.cn/ [22] Litalien A, Zeeb B. Curing the earth: A review of anthropogenic soil salinization and plant-based strategies for sustainable mitigation[J]. The Science of the Total Environment, 2020, 698: 134235. DOI: 10.1016/j.scitotenv.2019.134235
[23] 王宪玲, 赵志远, 马艳婷, 等. 基于CT扫描技术研究有机无机肥长期配施对土壤物理特征的影响[J]. 植物营养与肥料学报, 2020, 26(9): 1647–1655. Wang X L, Zhao Z Y, Ma Y T, et al. Study on the effects of long-term application of chemical fertilizer combined with manure on soil physical properties of apple orchard based on CT scanning technology[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(9): 1647–1655. DOI: 10.11674/zwyf.20012 Wang X L, Zhao Z Y, Ma Y T, et al. Study on the effects of long-term application of chemical fertilizer combined with manure on soil physical properties of apple orchard based on CT scanning technology[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(9): 1647–1655. DOI: 10.11674/zwyf.20012
[24] 马俊永, 曹彩云, 郑春莲, 等. 长期施用化肥和有机肥对土壤有机碳和容重的影响[J]. 中国土壤与肥料, 2010, (6): 38–42. Ma J Y, Cao C Y, Zheng C L, et al. Effect of long-term application of chemical fertilizers and organic manure on soil organic carbon and bulk density[J]. Soil and Fertilizer Sciences in China, 2010, (6): 38–42. DOI: 10.3969/j.issn.1673-6257.2010.06.008 Ma J Y, Cao C Y, Zheng C L, et al. Effect of long-term application of chemical fertilizers and organic manure on soil organic carbon and bulk density [J]. Soil and Fertilizer Sciences in China, 2010, (6): 38–42. DOI: 10.3969/j.issn.1673-6257.2010.06.008
[25] 张密密, 陈诚, 刘广明, 等. 适宜肥料与改良剂改善盐碱土壤理化特性并提高作物产量[J]. 农业工程学报, 2014, 30(10): 91–98. Zhang M M, Chen C, Liu G M, et al. Suitable utilization of fertilizer and soil modifier to ameliorate physicochemical characteristics of saline-alkali soil and increase crop yields[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(10): 91–98. DOI: 10.3969/j.issn.1002-6819.2014.10.011 Zhang M M, Chen C, Liu G M, et al. Suitable utilization of fertilizer and soil modifier to ameliorate physicochemical characteristics of saline-alkali soil and increase crop yields[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(10): 91–98. DOI: 10.3969/j.issn.1002-6819.2014.10.011
[26] 邵孝候, 张宇杰, 常婷婷, 等. 生物有机肥对盐渍土壤水盐动态及番茄产量的影响[J]. 河海大学学报(自然科学版), 2018, 46(2): 153–160. Shao X H, Zhang Y J, Chang T T, et al. Effects of different fertilizer treatments on soil water, salt and crop yield formation in saline soils[J]. Journal of Hohai University (Natural Sciences Edition), 2018, 46(2): 153–160. Shao X H, Zhang Y J, Chang T T, et al. Effects of different fertilizer treatments on soil water, salt andcrop yield formation in saline soils[J]. Journal of Hohai University(Natural Sciences), 2018, 46(2): 153–160.
[27] 高菊生, 黄晶, 董春华, 等. 长期有机无机肥配施对水稻产量及土壤有效养分影响[J]. 土壤学报, 2014, 51(2): 314–324. Gao J S, Huang J, Dong C H, et al. Effects of long-term combined application of organic and chemical fertilizers on rice yield and soil available nutrients[J]. Acta Pedologica Sinica, 2014, 51(2): 314–324. DOI: 10.11766/trxb201303210133 Gao J S, Huang J, Dong C H, et al. Effects of long-term combined application of organic and chemical fertilizers on rice yield and soil available nutrients [J]. Acta Pedologica Sinica, 2014, 51(2): 314–324. DOI: 10.11766/trxb201303210133
[28] 蓝贤瑾, 刘益仁, 侯红乾, 等. 长期有机无机肥配施对红壤性水稻土微生物生物量和有机质结构的影响[J]. 农业资源与环境学报, 2021, 38(5): 1–16. Lan X J, Liu Y R, Hou H Q, et al. Effect of long-term organic manure application combined with chemical fertilizers on soil microbial biomass and organic matter structure in red paddy soil[J]. Journal of Agricultural Resources and Environment, 2021, 38(5): 1–16. Lan X J, Liu Y R, Hou H Q, et al. Effect of long-term organic manure application combined with chemical fertilizers on soil microbial biomass and organic matter structure in red paddy soil[J]. Journal of Agricultural Resources and Environment, 2021, 38(5): 1–16.
[29] Liu C A, Li F R, Zhou L M, et al. Effect of organic manure and fertilizer on soil water and crop yields in newly-built terraces with loess soils in a semi-arid environment[J]. Agricultural Water Management, 2013, 117: 123–132. DOI: 10.1016/j.agwat.2012.11.002
[30] 魏文良, 刘路, 仇恒浩. 有机无机肥配施对我国主要粮食作物产量和氮肥利用效率的影响[J]. 植物营养与肥料学报, 2020, 26(8): 1384–1394. Wei W L, Liu L, Qiu H H. Effects of different organic resources application combined with chemical fertilizer on yield and nitrogen use efficiency of main grain crops in China[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(8): 1384–1394. DOI: 10.11674/zwyf.19511 Wei W L, Liu L, Qiu H H. Effects of different organic resources application combined with chemical fertilizer on yield and nitrogen use efficiency of main grain crops in China[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(8): 1384–1394. DOI: 10.11674/zwyf.19511
[31] 王晓娟, 贾志宽, 梁连友, 等. 旱地施有机肥对土壤水分和玉米经济效益影响[J]. 农业工程学报, 2012, 28(6): 144–149. Wang X J, Jia Z K, Liang L Y, et al. Effects of organic fertilizer application on soil moisture and economic returns of maize in dryland farming[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(6): 144–149. DOI: 10.3969/j.issn.1002-6819.2012.06.024 Wang X J, Jia Z K, Liang L Y, et al. Effects of organic fertilizer application on soil moisture and economic returns of maize in dryland farming [J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(6): 144–149. DOI: 10.3969/j.issn.1002-6819.2012.06.024
[32] 于昕阳, 翟丙年, 金忠宇, 等. 有机无机肥配施对旱地冬小麦产量、水肥利用效率及土壤肥力的影响[J]. 水土保持学报, 2015, 29(5): 320–324. Yu X Y, Zhai B N, Jin Z Y, et al. Effects of combined application of organic and inorganic fertilizers on winter wheat yield, water and fertilizer use efficiency and soil fertility in dryland[J]. Journal of Soil and Water Conservation, 2015, 29(5): 320–324. Yu X Y, Zhai B N, Jin Z Y, et al. Effects of combined application of organic and inorganic fertilizers on winter wheat yield, water and fertilizer use efficiency and soil fertility in dryland[J]. Journal of Soil and Water Conservation, 2015, 29(5): 320–324.
[33] 吕雯, 孙兆军, 陈小莉, 等. 地膜秸秆复合覆盖改善龟裂碱土水盐特性提高油葵产量[J]. 农业工程学报, 2018, 34(13): 133–141. Lü W, Sun Z J, Chen X L, et al. Plastic film and straw combined mulching improving water and salt characteristics of Takyr Solonetzs and yield of oil sunflower[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(13): 133–141. Lv W, Sun Z J, Chen X L, et al. Plastic film and straw combined mulching improving water and salt characteristics of Takyr Solonetzs and yield of oil sunflower[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(13): 133–141.
[34] 王兵, 刘文兆, 党廷辉, 等. 长期施肥条件下旱作农田土壤水分剖面分布特征[J]. 植物营养与肥料学报, 2007, 13(3): 411–416. Wang B, Liu W Z, Dang T H, et al. Distribution features of soil water content in the profile of rainfed cropland with long-term fertilization[J]. Journal of Plant Nutrition and Fertilizers, 2007, 13(3): 411–416. DOI: 10.3321/j.issn:1008-505X.2007.03.010 Wang B, Liu W Z, Dang T H, et al. Distribution features of soil water content in the profile of rainfed cropland with long-term fertilization[J]. Journal of Plant Nutrition and Fertilizers, 2007, 13(3): 411–416. DOI: 10.3321/j.issn:1008-505X.2007.03.010
[35] 张晶, 党建友, 张定一, 等. 不同降水年型下小麦产量、品质及水分利用效率对有机无机肥配施的响应[J]. 植物营养与肥料学报, 2020, 26(9): 1625–1635. Zhang J, Dang J Y, Zhang D Y, et al. Response of yield, quality and water use efficiency of wheat to different combinations of organic manures and chemical fertilizers under different yearly precipitations[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(9): 1625–1635. DOI: 10.11674/zwyf.19525 Zhang J, Dang J Y, Zhang D Y, et al. Response of yield, quality and water use efficiency of wheat to different combinations of organic manures and chemical fertilizers under different yearly precipitations[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(9): 1625–1635. DOI: 10.11674/zwyf.19525
[36] 霍琳, 王成宝, 逄焕成, 等. 有机无机肥配施对新垦盐碱荒地土壤理化性状和作物产量的影响[J]. 干旱地区农业研究, 2015, 33(4): 105–111. Huo L, Wang C B, Pang H C, et al. Effects of combined application of organic and inorganic fertilizers on physical and chemical properties and crop yields in alkali-saline soil[J]. Agricultural Research in the Arid Areas, 2015, 33(4): 105–111. DOI: 10.7606/j.issn.1000-7601.2015.04.17 Hio L, Wang C B, Feng H C, et al. Effects of combined application of organic and inorganic fertilizers on physical and chemical properties and crop yields in alkali-saline soil[J]. Agricultural Research in the Arid Areas, 2015, 33(4): 105–111. DOI: 10.7606/j.issn.1000-7601.2015.04.17
[37] 张璐, 黄晶, 高菊生, 等. 长期绿肥与氮肥减量配施对水稻产量和土壤养分含量的影响[J]. 农业工程学报, 2020, 36(5): 106–112. Zhang L, Huang J, Gao J S, et al. Effects of long-term green manure and reducing nitrogen applications on rice yield and soil nutrient content[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(5): 106–112. DOI: 10.11975/j.issn.1002-6819.2020.05.012 Zhang L, Huang J, Gao J S, et al. Effects of long-term green manure and reducing nitrogen applications on rice yield and soil nutrient content[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(5): 106–112. DOI: 10.11975/j.issn.1002-6819.2020.05.012
[38] 马凡凡, 邢素林, 甘曼琴, 等. 有机肥替代化肥对水稻产量、土壤肥力及农田氮磷流失的影响[J]. 作物杂志, 2019, (5): 89–96. Ma F F, Xing S L, Gan M Q, et al. Effects of organic fertilizer substituting for chemical fertilizer on rice yield, soil fertility and nitrogen and phosphorus loss in farmland[J]. Crops, 2019, (5): 89–96. Ma F F, Xing S L, Gan M Q, et al. Effects of organic fertilizer substituting for chemical fertilizer on rice yield, soil fertility and nitrogen and phosphorus loss in farmland[J]. Crops, 2019, (5): 89–96.
[39] 徐福利, 王振, 徐慧敏, 等. 日光温室滴灌条件下黄瓜氮、磷、有机肥肥效与施肥模式研究[J]. 植物营养与肥料学报, 2009, 15(1): 177–182. Xu F L, Wang Z, Xu H M, et al. Study on the response and fertilization model of cucumber for nitrogen, phosphorus and manure application in greenhouse under drip irrigation[J]. Journal of Plant Nutrition and Fertilizers, 2009, 15(1): 177–182. DOI: 10.3321/j.issn:1008-505X.2009.01.026 Xu F L, Wang Z, Xu H M, et al. Study on the response and fertilization model of cucumber for nitrogen, phosphorus and manure application in greenhouse under drip irrigation[J]. Journal of Plant Nutrition and Fertilizer, 2009, 15(1): 177–182. DOI: 10.3321/j.issn:1008-505X.2009.01.026
[40] 夏文建, 张丽芳, 刘增兵, 等. 长期施用化肥和有机肥对稻田土壤重金属及其有效性的影响[J]. 2021, 环境科学, 42(5): 2469–2479 Xia W J, Zhang L F, Liu Z B, et al. Effects of long-term application of chemical fertilizers and organic fertilizers on heavy metals and their availability in reddish paddy soil[J]. Environmental Science, 2021, 42(5): 2469–2479.
[41] 吴荣, 刘善江, 孙昊, 等. 长期化肥配施不同有机肥对土壤和玉米中重金属累积的影响[J]. 植物营养与肥料学报, 2020, 26(11): 2010–2019. Wu R, Liu S J, Sun H, et al. Effects of long-term chemical fertilizer application with different organic fertilizers on accumulation of heavy metals in soil and maize[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(11): 2010–2019. Wu R, Liu S J, Sun H, et al. Effects of long-term chemical fertilizer application with different organic fertilizers on accumulation of heavy metals in soil and maize[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(11): 2010–2019.
-
期刊类型引用(11)
1. 吴敏,纪梦雅,陈艺雯,张捷凯,章骞,翁凌,曹敏杰. 黄浆水-鲍鱼内脏有机肥对木耳菜生长及土壤的影响. 集美大学学报(自然科学版). 2025(01): 20-29 . 百度学术
2. 邝雨欣,张体彬,程煜,高伟强,梁青,童建康,冯浩,郁明军. 有机无机肥配施对盐渍化农田无机态氮迁移和玉米生长的影响. 干旱地区农业研究. 2025(02): 105-115+137 . 百度学术
3. 徐晓,杨梦颖,张翠英,张树明,李贺静,韩捷,赵欣蕊,张玲玉,陈影,崔江慧. 化肥减量配施对盐碱稻田土壤改良效果研究. 中国土壤与肥料. 2024(02): 33-41 . 百度学术
4. 耿顺军,许木果,刘忠妹,陈桂良,杨丽萍. 化肥减量配施有机肥对橡胶园土壤细菌群落及其功能的影响. 热带农业科技. 2024(04): 54-60 . 百度学术
5. 吕亮雨,樊光辉,付全,龙启辰,保善存. 生物有机肥对盐碱地土壤及枸杞生理特性、产量品质的影响. 北方园艺. 2023(03): 97-104 . 百度学术
6. 肖让,张永玲,赵芸晨,郭世乾,崔增团,师伟杰. 化肥减量配施有机肥对日光温室土壤质量及茄子产量、品质的影响. 华北农学报. 2023(02): 188-198 . 百度学术
7. 王宁,冯克云,南宏宇,丛安琪,张铜会. 水分亏缺下有机无机肥配施比例对棉花水氮利用效率的影响. 中国农业科学. 2023(08): 1531-1546 . 百度学术
8. 马永康,王振华,李海强,吝海霞,李燕强,谭明东. 水温与有机肥替代比例对滴灌骏枣产量及水分利用的影响. 灌溉排水学报. 2023(05): 33-42 . 百度学术
9. 吴旭斌,冯浩,董勤各,钟佳旺,赵鹏. 河套灌区垄膜沟灌模式对春玉米田水热运移及籽粒产量的影响. 节水灌溉. 2023(06): 100-109+116 . 百度学术
10. 宋阿维,刘雨星,王相平,谢文萍,张琛平,江晓东,姚荣江. 河套灌区耕地土壤性质与作物产量空间分布特征之间的关系. 灌溉排水学报. 2023(12): 7-14 . 百度学术
11. 吕亮雨,樊光辉,付全,苏彩风,李发毅. 生物有机肥对枸杞生长及土壤性状的影响. 新疆农业科学. 2023(11): 2779-2789 . 百度学术
其他类型引用(4)