• ISSN 1008-505X
  • CN 11-3996/S

海藻肥对菜心抗旱性的影响及其机理探究

崔丹丹, 杨锦, 耿银银, 陈文康, 沈宏

崔丹丹, 杨锦, 耿银银, 陈文康, 沈宏. 海藻肥对菜心抗旱性的影响及其机理探究[J]. 植物营养与肥料学报, 2021, 27(7): 1185-1197. DOI: 10.11674/zwyf.20567
引用本文: 崔丹丹, 杨锦, 耿银银, 陈文康, 沈宏. 海藻肥对菜心抗旱性的影响及其机理探究[J]. 植物营养与肥料学报, 2021, 27(7): 1185-1197. DOI: 10.11674/zwyf.20567
CUI Dan-dan, YANG Jin, GENG Yin-yin, CHEN Wen-kang, SHEN Hong. Effect and mechanism of seaweed fertilizer increasing the drought stress resistance of flowering Chinese cabbage[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(7): 1185-1197. DOI: 10.11674/zwyf.20567
Citation: CUI Dan-dan, YANG Jin, GENG Yin-yin, CHEN Wen-kang, SHEN Hong. Effect and mechanism of seaweed fertilizer increasing the drought stress resistance of flowering Chinese cabbage[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(7): 1185-1197. DOI: 10.11674/zwyf.20567

海藻肥对菜心抗旱性的影响及其机理探究

基金项目: 国家重点研发计划(2016YFD200405-5);广东省科技计划项目(2019B030301007);广东省重点领域研发计划(2019B020214002)
详细信息
    作者简介:

    崔丹丹 E-mail:cuidan0627@163.com

    通讯作者:

    沈宏 E-mail:hshen@scau.edu.cn

Effect and mechanism of seaweed fertilizer increasing the drought stress resistance of flowering Chinese cabbage

  • 摘要:
    目的 

    结合田间试验和盆栽试验,研究海藻肥对干旱胁迫条件下菜心产量和品质的影响,探讨其提高菜心抗旱性可能存在的机理,为海藻肥在叶菜上的应用提供理论支撑。

    方法 

    1) 田间试验以‘碧清菜心’为材料,于2017年分别在广州 (华南主产区) 和宁夏 (供港澳有机蔬菜种植基地) 开展,土壤水分设为正常供水 (70%~75%田间土壤最大持水量) 和干旱 (50%~55%田间土壤最大持水量) 两个水平,设置清水对照 (CK)、海藻提取物 (SE)、水溶化肥 (NPK)、海藻肥 (NPK+SE) 4个处理。在菜心移栽7、14和21天时进行冲施,每次用量10 L/m2。移栽28天后收获,测定海藻肥对菜心经济产量和品质的影响。2) 盆栽试验于2018年在华南农业大学遮荫网室开展,正常供水只设清水对照 (CK),干旱条件下施肥处理同田间试验,施肥量改为100 mL/株。在移栽后14、21和28天时,测定菜心最大叶长、最大叶宽、株高,移栽后28天(收获时)测定叶片相对含水量,叶绿素和自由基含量,抗氧化酶活性和养分吸收量。3) 利用不同孔径的醋酸纤维超滤膜将海藻提取物分为分子量 > 10 kDa、5~10 kDa、3~5 kDa和 < 3 kDa等4种海藻提取物组分,测定其体外自由基清除能力及其对菜心抗旱性的影响。

    结果 

    1) 田间试验结果表明,广州试验点正常供水条件下,与NPK处理相比,NPK+SE处理的菜心经济产量差异不显著,但干旱条件下显著增产;宁夏试验点在干旱和正常供水条件下,NPK+SE处理的菜心经济产量均显著高于NPK处理。广州试验点干旱和正常供水条件下,NPK+SE处理的各品质指标均高于NPK处理。宁夏试验点正常供水条件下,NPK+SE处理的菜心可溶性糖和可溶性蛋白含量较CK增加显著,而干旱条件下所有品质指标均显著增加。2) 盆栽试验结果显示,干旱条件下,SE处理的部分菜心品质指标值高于正常供水对照。收获时与NPK处理相比,NPK+SE处理显著提高了菜心株高、最大叶长和叶宽,鲜重显著增加12.60%,菜心叶绿素含量提高了10.24%,抗氧化酶活性提高27.84%~43.40%,叶片自由基含量降低了24.88%~41.56%。此外,NPK+SE处理的菜心氮、磷和钾吸收量分别较NPK处理增加了14.48%、16.41%和35.37%。3) 4个分子量不同的海藻提取物组分中,主要活性成分海藻酸、褐藻多酚、甘露醇在 < 3 kDa组分中的含量高于其他3个分子量组分。对超氧阴离子和羟基自由基的清除能力由大到小依次为< 3 kDa、> 10 kDa、5~10 kDa、3~5 kDa,以 < 3 kDa组分对干旱条件下菜心的促生作用最强。

    结论 

    两个试验点的结果都表明,海藻提取物与水溶肥配合冲施可以显著提高菜心的经济产量和品质,干旱条件下的效果更显著。海藻提取物能够提高菜心的叶绿素含量、降低叶片自由基累积、增加氮磷钾的吸收,从而提高菜心抗旱性。< 3 kDa海藻提取物中的活性成分含量最高,因此,分子量 < 3 kDa的海藻提取物的自由基清除能力最强,对菜心的抗旱性提高效果最好。

    Abstract:
    Objectives 

    This study explores the effect and mechanism of seaweed fertilizer on the yield and quality of flowering Chinese cabbage under drought stress condition using a combination of field and pot experiments. The aim was to provide theoretical support for applying seaweed fertilizer in leafy vegetables.

    Methods 

    Field experiments were conducted in Guangzhou and Ningxia in 2017, taking flowering Chinese cabbage as test materials. Under normal water and drought stress conditions (70%–75% and 50%–55% of the maximum field moisture capacity), the vegetable seedlings were subjected to treatments of seaweed extracts (SE), soluble chemical fertilizer (NPK), seaweed fertilizer (NPK+SE), and the control had no extract or fertilizer. The economic yield and quality of the vegetable were determined. Pot experiments were conducted in the greenhouse of South China Agricultural University in 2018. The fertilizer treatments were the same as those used for the field experiments under drought stress conditions and only a water control treatment under normal water condition (CK0). The leaf length, leaf width, and plant height of flowering Chinese cabbage were measured at 14 days, 21 days and 28 days after transplanting. The relative water content of leaf, the chlorophyll content, malonaldehyde (MDA), proline and free radical, antioxidant enzyme activities, and nutrient uptake were measured after harvest. The same pot experiment was also conducted using seaweed extracts divided into fractions of > 10 kDa, 5–10 kDa, 3–5 kDa and < 3 kDa molecular weight by ultrafiltration membrane.

    Results 

    In the two field experiments, NPK+SE treatment increased the yield and quality of flowering Chinese cabbage than NPK treatment, and the increment under drought stress was higher than under normal water condition. The results of pot experiments under drought stress condition showed that SE treatment did not exhibit growth and yield increase effect, compared with CK treatment. However, NPK+SE treatment significantly increased the plant height, leaf length and leaf width, compared with NPK treatment. Also, NPK+SE treatment increased chlorophyll contents in leaves by 10.24%, enhanced the antioxidant enzymes activities by 27.84%–43.40%, decreased free radical contents by 24.88%–41.56%, and improved the N, P and K uptake by 14.48%, 16.41%, and 35.37%, respectively. Among the four fractions of SE, the contents of alginate acid, polyphenols, and mannitols were higher in < 3 kDa fraction than those in the other fractions. The scavenging rate of superoxide anions and hydroxyl radicals of < 3 kDa fraction was significantly higher than those of other fractions, and the growth-promoting effect of < 3 kDa fraction was the strongest under drought stress condition.

    Conclusions 

    Seaweed fertilizer significantly increased the yield and quality of flowering Chinese cabbage under drought stress condition, in both field and pot experiments. SE could increase the chlorophyll content, reduce the accumulation of free radicals in leaves, increase the nutrient uptake of flowering Chinese cabbage, and thus improve the drought resistance of the crop. As the main active components existing in the SE fraction of molecular weight < 3 kDa, it has the most potent effect on improving the drought resistance of flowering Chinese cabbage.

  • 菜心(Brassica parachinensis)又名菜薹,是十字花科芸薹属白菜亚种的一个变种。菜薹为其主要食用部分,富含纤维、维生素、蛋白质和矿物元素等,为广东省特产蔬菜之一[1]。菜心品质柔嫩、味道清甜,是供港、供澳的主要蔬菜种类之一,目前已经在全国范围种植[2]。菜心属长日照植物,喜温和气候,温度高于25℃或低于20℃,其菜薹细小,质量差[3]。随着国内和海外市场对菜心需求量的增加,而华南地区夏季高温多雨,不宜种植,因此年产量难以满足市场需求。宁夏地区因日照充足、昼夜温差大,所产菜心纤维含量少、口感佳,已经成为内地供港澳绿色有机蔬菜的重要种植基地[4]。随着全球人口数量增多,粮食的需求量增加,环境问题加剧,农业系统面临着巨大挑战。干旱是全球范围内限制作物生产的最大因素[5],其对农作物产量的降低幅度可达45%~92%[6]。菜心的含水量约占其总重量的93.5%[2],因此栽培过程中水分对其产量和品质起着关键作用。华南地区高温伴随的干旱天气会导致菜薹细小、品质差,产量大幅降低[7]。而宁夏属温带干旱、半干旱气候,降水量少、蒸发强度大,蔬菜种植用水主要以引黄灌溉为主,大引大排不仅水分利用效率低,而且水分供应不均匀,严重影响菜心品质和经济效益[8]

    海藻提取物因富含海藻多糖、植物激素、甜菜碱和甾醇等多种活性物质,具有促进作物生长、改善品质、增强抗逆性等特点,在农业生产中的应用已经被大量报道[9-11]。多项研究表明,在盐胁迫[12]、干旱胁迫[13]、缺铁胁迫[14]、热胁迫[15]和病害[16]等条件下,海藻提取物可以增强作物的抗逆性。Almaroai等[17]研究发现9%的双眉藻提取物显著增加了洋葱的株高、叶片数和叶面积,保持较高的酚含量,增加鳞茎产量。冯敬涛等[18]研究表明干旱条件下,喷施400倍海藻提取物能够促进苹果幼苗的光合作用,增强叶片抗氧化酶活性,提高氮吸收,从而有效缓解干旱胁迫损伤。3 g/L的泡叶藻提取物可以通过调节气孔和抗氧化防御系统,提高水分利用效率,从而增强拟南芥抗旱性[19],葡萄的研究中也报道了相似的结果[20]。在大豆上,0.7%的泡叶藻提取物可以通过调控脱落酸合成和活性氧解毒相关基因的表达来缓解干旱胁迫[13]。2 g/L的海藻肥能够增强番茄叶片的渗透调节能力,降低失水速率,增强番茄抗旱性[21]。海藻肥还可以通过提高黄瓜幼苗叶片的相对含水量和束缚水含量,降低相对电导率和自由水/束缚水比值,提高黄瓜抗旱性[22]

    由于海藻提取物养分含量较低,对于土壤养分含量不足或缺乏的植物,直接施用效果不佳。将海藻提取物与一定量氮磷钾或微量元素进行合理的复配,制备成海藻增效肥料,这是目前海藻提取物在农业应用中的主要形式[23]。然而在不同气候条件下,海藻提取物和海藻肥对农作物生长,特别是对菜心生长的影响鲜有报道。分别在菜心主产区广州和宁夏开展田间试验,研究海藻肥对菜心产量和品质的影响,并通过盆栽试验探究其影响菜心抗旱性可能存在的机理,为海藻肥在菜心生产中的应用提供理论依据。

    选用‘碧清菜心’为试验材料 (由广东省农业科学院蔬菜研究所提供),用不含肥的基质育苗,待幼苗长至3叶1心时移栽。

    海带采自福建厦门沿海地区,海藻提取物于实验室利用复合工艺制备而成。具体为:将新鲜海带剪碎后,按照1∶100的质量比加入蒸馏水,匀浆;每100 mL海带匀浆中,加入0.4 g氢氧化钠后,180 r/min室温碱解4 h;随后调节pH至6.5,加入1 g海藻酸裂解酶 (实验室制备),180 r/min室温酶解20 h。用纱布过滤后得到海藻提取物,其海藻酸含量为22.9 g/L、总糖含量为6.4 g/L、有机质含量为14.2 g/L、可溶性固形物为3.2%、粗蛋白含量为15.4 g/L。

    田间试验于2017年分别在广州钟落潭试验基地 (23°61′N、112°34′E) 和宁夏马园村 (36°01′N、106°28′E) 开展,广州试验地土壤类型为赤红壤,质地为砂壤土,宁夏试验地土壤类型为湘黄土,质地为黏土,土壤理化性状见表1。菜心的行株距为15 cm × 15 cm,采用随机区组排列,每个处理3个小区,每个小区 (10 m × 1.5 m) 为一次重复。土壤水分设正常供水 (70%~75%的田间最大持水量) 和干旱 (50%~55%的田间最大持水量) 2个水平,每个土壤水分条件下,设置仅供水 (CK)、海藻提取物 (SE)、常规施肥 (NPK+等量清水)、海藻肥 (NPK+SE) 4个施肥处理,试验共8个处理。其中,N–P2O5–K2O比例为30–70–100,养分总含量为200 g/L,海藻肥是海藻提取物与NPK复配而成的液体肥。在菜心移栽7、14和21天时,稀释300倍各冲施一次,用量为每次10 L/m2。移栽后28天时收获,测定经济产量、可溶性蛋白、维生素C、可溶性糖和可溶性固形物含量。

    表  1  广州和宁夏地区试验地供试土壤特性
    Table  1.  The soil characteristics of Guangzhou and Ningxia in field experiment
    地区
    Region
    pH碱解氮
    Available N
    (mg/kg)
    有效磷
    Available P
    (mg/kg)
    速效钾
    Available K
    (mg/kg)
    有机质
    Organic matter
    (g/kg)
    广州
    Guangzhou
    5.5868.2530.92154.64 8.90
    宁夏
    Ningxia
    8.6161.9012.41149.0014.73
    下载: 导出CSV 
    | 显示表格

    盆栽试验于2018年在华南农业大学遮荫网室进行,供试土壤理化性质为:土壤类型为赤红壤,质地为砂壤土,pH为5.79、碱解氮114 mg/kg、有效磷42.1 mg/kg、速效钾172 mg/kg、有机质11.8 g/kg。水分设置同田间试验,设置正常供水对照 (CK0),干旱条件下设置干旱条件对照 (CK1)、海藻提取物 (SE)、常规施肥 (NPK+等量清水)、海藻肥 (NPK+SE),共5个处理。分别在菜心移栽7、14和21天时,稀释300倍各冲施一次,每次用量为100 mL/株。分别在移栽14、21和28天时测定株高、最大叶长和最大叶宽。收获时测定菜心叶片的相对含水量,叶绿素、丙二醛、脯氨酸、超氧阴离子、过氧化氢含量,超氧化物歧化酶 (SOD)、过氧化物酶 (POD) 和过氧化氢酶 (CAT) 活性及植株的养分吸收量。

    利用不同孔径的醋酸纤维超滤膜分离海藻提取物,分别得到分子量 > 10 kDa、5~10 kDa、3~5 kDa、< 3 kDa 的4种海藻提取物。测定不同分子量海藻提取物中还原糖、可溶性固形物、海藻酸、褐藻多酚和甘露醇的含量,并评价其对羟基自由基和超氧阴离子的清除能力。

    盆栽试验测定不同分子量海藻提取物对菜心幼苗抗旱性的影响,供试土壤同1.2.2。仅设置正常供水对照 (CK0),干旱条件下设置干旱条件对照 (CK1)、海藻提取物原液 (SE)、> 10 kDa组分、5~10 kDa组分、3~5 kDa组分、< 3 kDa组分,共7个处理。分别于移栽后7、14、21天进行处理,稀释50倍后灌根施用,每次用量为100 mL/株。移栽后28天时收获,测定菜心鲜重及叶片相对含水量。

    株高、叶长和叶宽通过直尺测量,生物量通过称重法测定,经济产量为地上部可食用部分重量,收获后计算每个处理小区菜心经济产量的平均数,折算成单位面积产量。田间试验的土壤含水量采用便携式土壤水分测定仪 (TZS-1,浙江托普仪器有限公司) 进行测定,盆栽试验的土壤含水量通过称重法[24]测定。可溶性糖、还原糖、可溶性蛋白、叶绿素、脯氨酸、丙二醛含量和抗氧化酶 (SOD、POD、CAT) 活性参照李合生主编的《植物生理生化实验原理和技术》[25]测定;叶片相对含水量的测定参照杨锦等的方法[23];可溶性固形物用糖度计直接测定。菜心叶片中过氧化氢含量采用分光光度法[26]测定,超氧阴离子含量采用羟胺氧化方法[27]测定。

    菜心收获后称重装袋,105℃杀青20 min,65℃烘至恒重,粉碎后消煮,用凯氏定氮法测定全氮含量,钒钼黄分光光度法测定全磷含量,火焰光度计法[28]测定全钾含量。

    海藻提取物对羟基自由基和超氧阴离子的清除能力参照周婷等的方法[29]测定;海藻酸含量采用间羟基联苯法[30]进行测定;甘露醇和甜菜碱参照石子仪等的方法[31]测定;海藻多酚用福林酚法[32]测定。

    数据处理采用Excel进行整理和分析,采用SPSS 18.0软件进行统计分析,用Duncan法进行多重比较和差异显著性检验,P < 0.05为显著。采用双因素方差分析法比较供水、施肥及二者交互作用对菜心经济产量和品质指标的影响。

    表2可知,除供水对宁夏地区维生素C的影响为显著水平 (P < 0.05)外,供水和施肥处理对菜心的经济产量、可溶性糖、可溶性蛋白、维生素C和可溶性固形物均有极显著的影响 (P < 0.01),供水与施肥交互作用仅对可溶性固形物含量有显著 (宁夏) 和极显著 (广州) 的影响 (表2),说明水肥是菜心生产过程中的重要影响因素。

    表  2  不同水分处理条件下海藻肥对菜心经济产量和品质的影响 (田间试验)
    Table  2.  Effects of seaweed fertilizer on yield and quality of flowering Chinese cabbage under different water treatments (field experiment)
    处理
    Treatment
    经济产量 (t/hm2)
    Economic yield
    可溶性糖 (mg/g, FW)
    Soluble sugar
    可溶性蛋白 (mg/g, FW)
    Soluble protein
    维生素C (mg/100 g, FW)
    Vitamin C
    可溶性固形物 (%)
    Soluble solids
    广州 Guangzhou
    正常供水
    Normal water
    CK18.56 ± 0.23 bC9.94 ± 0.24 cDE8.54 ± 0.62 bC33.33 ± 2.22 bB3.47 ± 0.12 bD
    SE19.33 ± 0.38 bC10.43 ± 1.02 bcBCD8.92 ± 0.42 abC35.74 ± 4.63 bB4.33 ± 0.21 aAB
    NPK21.77 ± 0.31 aAB11.55 ± 0.48 abABC10.71 ± 1.09 aAB39.26 ± 1.29 abAB4.40 ± 0.20 aAB
    NPK+SE22.65 ± 0.46 aA12.29 ± 0.69 aA10.88 ± 1.17 aA44.44 ± 3.85 aA4.53 ± 0.06 aA
    干旱
    Drought stress
    CK15.92 ± 0.46 dE8.23 ± 0.51 cEF6.33 ± 0.36 cD24.04 ± 2.37 bC2.80 ± 0.22 bE
    SE17.17 ± 0.18 cD8.24 ± 0.22 bcF6.61 ± 0.25 cD23.13 ± 4.44 bC2.90 ± 0.10 bE
    NPK19.02 ± 0.13 bC10.03 ± 0.64 abCD8.47 ± 0.53 bC36.29 ± 3.52 aB3.93 ± 0.07 aC
    NPK+SE21.30 ± 0.42 aB11.83 ± 0.36 aAB9.56 ± 0.48 aBC37.03 ± 3.40 aB4.17 ± 0.18 aBC
    FF value
    供水 Water supply (W)83.88***18.15**51.26***33.93***130.21***
    施肥 Fertilization (F)76.99***19.72***23.31***18.86***73.70***
    W × F1.712.640.692.1114.12***
    宁夏 Ningxia
    正常供水
    Normal water
    CK21.92 ± 0.57 cD10.13 ± 1.17 bD12.62 ± 1.09 bBC34.80 ± 2.75 cC3.77 ± 0.21 cD
    SE22.62 ± 0.70 cCD10.79 ± 0.38 bD11.59 ± 0.23 abBCD35.00 ± 2.08 cC3.57 ± 0.15 cD
    NPK25.68 ± 0.52 bB15.69 ± 0.10 aAB14.48 ± 1.53 aA44.40 ± 1.04 bB4.67 ± 0.12 bB
    NPK+SE28.18 ± 0.43 aA16.68 ± 0.52 aA14.37 ± 0.60 aA54.60 ± 1.10 aA4.97 ± 0.14 aA
    干旱
    Drought stress
    CK17.02 ± 0.19 dE8.51 ± 0.96 cE10.33 ± 0.94 bD30.60 ± 1.80 cC3.17 ± 0.09 dE
    SE18.40 ± 0.63 cE9.49 ± 0.69 cE11.10 ± 0.53 bCD32.80 ± 2.75 cC3.63 ± 0.15 cD
    NPK22.18 ± 0.33 bCD13.18 ± 0.38 bC11.73 ± 0.75 abBCD40.20 ± 3.75 bB4.17 ± 0.13 bC
    NPK+SE24.03 ± 0.40 aC14.92 ± 0.96 aB12.94 ± 0.58 aAB50.40 ± 3.60 aA4.43 ± 0.15 aB
    FF value
    供水 Water supply (W)142.36***36.43***24.20***12.64*43.90***
    施肥 Fertilization (F)76.10***113.85***10.77***77.39***103.00***
    W × F0.660.741.990.236.59*
    注(Note):CK—清水 Water; SE—海藻提取物 Seaweed extracts; NPK—常规化肥 Chemical fertilizer; NPK+SE—海藻肥 Chemical fertilizer+Seaweed extracts. 同列数据后不同小写字母表示相同水分条件下处理之间差异显著,不同大写字母表示同一试验点所有处理之间差异显著 (P < 0.05) Values followed different lowercase letters indicate significant difference among fertilization treatments under the same water condition, and different capital letters indicate significant difference among all treatments in the same experimental site (P < 0.05). *—P < 0.05; **—P < 0.01; ***—P < 0.001.
    下载: 导出CSV 
    | 显示表格

    广州试验点,NPK+SE处理对菜心的经济产量和品质在正常供水条件下与NPK处理无显著差异,而在干旱胁迫条件下,经济产量提高了10.49%,可溶性蛋白含量增加了12.87% (P < 0.05)。宁夏试验点,与NPK处理相比,NPK+SE处理的菜心经济产量、维生素C和可溶性固形物含量,在正常供水和干旱条件下均有显著提高;NPK+SE处理的菜心经济产量和可溶性糖含量在干旱条件下较NPK处理分别增加了11.30%和13.20%。SE处理在宁夏试验点提高菜心产量和品质的效果优于在广州试验点,但是提升效果在两个试验点均小于NPK处理和NPK+SE处理。

    盆栽试验中,干旱胁迫对菜心的株高、最大叶长、最大叶宽、鲜重和品质指标均具有显著的抑制作用 (图1)。SE处理对株高、最大叶长和叶宽无明显改善作用,而NPK处理和NPK+SE处理则显著提高菜心的形态指标。移栽后28天收获时,NPK+SE处理的菜心株高、最大叶长和最大叶宽分别较NPK处理增加11.01%、18.93%和18.75%,差异显著。此外,NPK+SE处理的菜心鲜重和可溶性蛋白含量也分别较NPK处理提高了12.60%和6.02%,而两个处理的菜心可溶性糖、维生素C和可溶性固形物含量无显著差异。

    图  1  干旱条件下海藻肥对菜心鲜重、品质和形态指标的影响 (盆栽试验)
    [注(Note):CK0—正常供水对照 Normal water supply control;CK1—干旱对照 Drought stress control;SE—干旱条件下施海藻提取物 Applying seaweed extracts under drought stress;NPK—干旱条件下常规施肥 Applying chemical fertilizer under drought stress;NPK+SE—干旱条件下施海藻肥 Applying seaweed extracts and chemical fertilizer under drought stress;柱上不同字母表示处理间差异显著 (P < 0.05) Different lowercase letters above the bars indicate significant difference among treatments (P < 0.05).]
    Figure  1.  Effects of seaweed fertilizer on the fresh weight, quality and morphological index of flowering Chinese cabbageunder drought stress condition (pot experiment)

    干旱胁迫条件下,植物体内渗透物质的积累和抗氧化酶活性增强能够缓解植物因干旱引起的氧化损伤。干旱条件下菜心叶片的相对含水量和叶绿素含量显著降低,脯氨酸和丙二醛含量显著上升,而SE、NPK和NPK+SE处理均显著增加了菜心叶绿素和脯氨酸含量,降低了丙二醛的累积,NPK+SE处理的效果最优,菜心叶绿素含量较NPK处理提高了10.24%,显著高于NPK和SE处理 (图2)。

    图  2  干旱胁迫条件下海藻肥对菜心抗旱性的影响 (盆栽试验)
    [注(Note):CK0—正常供水对照 Normal water supply control;CK1—干旱对照Drought stress control;SE—干旱条件下施海藻提取物 Applying seaweed extracts under drought stress;NPK—干旱条件下常规施肥 Applying chemical fertilizer under drought stress;NPK+SE—干旱条件下施海藻肥 Applying seaweed extracts and chemical fertilizer under drought stress;柱上不同字母表示处理间差异显著 (P < 0.05) Different lowercase letters above the bars indicate significant difference among treatments (P < 0.05).]
    Figure  2.  Effects of seaweed fertilizer on the drought resistance of flowering Chinese cabbage under drought stress condition (pot experiment)

    干旱胁迫条件下,菜心叶片中积累大量的超氧阴离子和过氧化氢 (自由基),同时抗氧化酶活性增强 (图3)。干旱条件下,各处理间叶片中超氧阴离子含量差异显著,含量大小顺序为CK1 > SE > NPK > NPK+SE;CK1与SE处理的叶片过氧化氢含量无显著差异,而NPK和NPK+SE处理的叶片中过氧化氢含量显著低于CK1和SE处理,且NPK+SE处理的超氧阴离子和过氧化氢含量较NPK处理分别显著降低41.56%和24.88%。以上结果表明,干旱条件下,单施海藻提取物对过氧化氢的累积无显著改善作用,而NPK+SE处理则可以显著降低叶片的自由基含量。

    图  3  干旱条件下海藻肥对菜心叶片自由基含量及抗氧化酶活性的影响 (盆栽试验)
    [注(Note):CK0—正常供水对照 Normal water supply control;CK1—干旱对照 Drought stress control;SE—干旱条件下施海藻提取物 Applying seaweed extracts under drought stress;NPK—干旱条件下常规施肥 Applying chemical fertilizer under drought stress;NPK+SE—干旱条件下施海藻肥 Applying seaweed extracts and chemical fertilizer under drought stress;柱上不同字母表示处理间差异显著 (P < 0.05) Different lowercase letters above the bars indicate significant difference among treatments (P < 0.05).]
    Figure  3.  Effects of seaweed fertilizer on the free radical contents and antioxidant enzymy activities of leaves under drought stress condition (pot experiment)

    图3还可以看出,除SOD活性外,SE处理的菜心叶片POD和CAT活性与CK1处理无显著差异。而NPK+SE处理的叶片SOD、POD和CAT活性则分别较NPK处理高出43.40%、39.65%和27.84% (图3)。综合以上结果可知,干旱条件下,单施海藻提取物对菜心抗旱性的提高效果较小,NPK处理能够增强菜心叶片的抗氧化酶活性,降低自由基含量,减缓叶片氧化损伤,有效提高菜心抗旱性,而NPK+SE处理较NPK处理进一步显著提升菜心的抗旱能力。

    表3结果可知,与正常供水对照 (CK0) 相比,干旱胁迫对照 (CK1) 显著降低了菜心氮磷钾的吸收量。与CK1相比,SE、NPK和NPK+SE处理均能够提高菜心氮磷钾的吸收量,NPK+SE处理的菜心氮、磷和钾吸收量分别较NPK处理高14.48%、16.41%和35.37%。

    表  3  干旱条件下海藻肥对菜心氮磷钾吸收量的影响 (盆栽试验)
    Table  3.  Effects of seaweed fertilizer on the N, P, and K uptake of flowering Chinese cabbage under drought stress condition (pot experiment)
    处理
    Treatment
    N
    (mg/plant)
    P
    (mg/plant)
    K
    (mg/plant)
    CK0123.16 ± 3.10 c34.29 ± 0.86 c61.59 ± 1.55 c
    CK159.74 ± 2.05 e18.62 ± 0.64 d27.67 ± 0.95 e
    SE105.70 ± 3.66 d34.22 ± 1.18 c45.21 ± 1.56 d
    NPK178.82 ± 3.38 b63.31 ± 1.20 b107.81 ± 2.04 b
    NPK+SE204.72 ± 5.72 a73.70 ± 2.06 a145.96 ± 4.08 a
    注(Note):CK0—正常供水对照 Normal water supply control; CK1—干旱对照 Drought stress control; SE—干旱条件下施海藻提取物 Applying seaweed extracts under drought stress; NPK—干旱条件下常规施肥 Applying chemical fertilizer under drought stress; NPK+SE—干旱条件下施海藻肥 Applying seaweed extracts and chemical fertilizer under drought stress; 同列数据后不同小写字母表示处理间差异显著 (P < 0.05) Values followed by different letters in a column are significantly different among treatments (P < 0.05).
    下载: 导出CSV 
    | 显示表格

    表4结果显示,4个不同分子量海藻提取物中各成分含量均低于海藻提取物原液 (SE)。4个分子量海藻提取物中,< 3 kDa组分中的海藻酸、褐藻多酚、甘露醇和可溶性固形物含量高于其他3个分子量海藻提取物;其他3个分子量海藻提取物中,> 10 kDa的海藻酸含量高于5~10 kDa和3~5 kDa,而5~10 kDa中的褐藻多酚含量高于 > 10 kDa和3~5 kDa,其他成分含量间无显著性差异 (表4)。

    表  4  不同分子量海藻提取物的主要成分比较
    Table  4.  Comparison of main components of seaweed extracts (SE) with different molecular weights
    海藻提取物分子量
    Molecular weight of SE
    可溶性固形物 (%)
    Soluble solids
    海藻酸 (g/L)
    Alginate acid
    褐藻多酚 (mg/L)
    Polyphenols
    甘露醇 (g/L)
    Mannitols
    还原糖 (g/L)
    Reducing sugars
    SE3.20 ± 0.46 a22.91 ± 2.46 a211.63 ± 10.32 a3.86 ± 0.34 a4.39 ± 0.78 a
    > 10 kDa0.23 ± 0.03 c7.80 ± 1.28 b17.60 ± 2.38 d0.34 ± 0.15 c0.98 ± 0.03 b
    5~10 kDa0.40 ± 0.08 c3.69 ± 0.35 c36.88 ± 3.44 c0.64 ± 0.23 c0.80 ± 0.07 b
    3~5 kDa0.33 ± 0.05 c3.60 ± 0.30 c25.06 ± 2.53 d0.49 ± 0.16 c0.94 ± 0.04 b
    < 3 kDa1.77 ± 0.33 b9.69 ± 1.32 b167.48 ± 8.94 b2.58 ± 0.29 b1.39 ± 0.12 b
    注(Note):SE—海藻提取物 Seaweed extracts; 同列数据后不同字母表示各海藻提取物组分间差异显著 (P < 0.05) Values followed by different letters in a column are significantly different among the seaweed extracts (P < 0.05).
    下载: 导出CSV 
    | 显示表格

    不同分子量海藻提取物均具有一定的自由基清除能力,其中分子量 < 3 kDa的海藻提取物对羟基自由基和超氧阴离子的清除能力显著高于SE (海藻提取物原液),分别提高了17.98%和133.19%,而其他3个分子量海藻提取物则显著低于SE (图4)。与干旱对照 (CK1) 相比,SE和4个不同分子量海藻提取物处理均能增加菜心的鲜重和叶片相对含水量,以SE和 < 3 kDa组分处理效果最好,3~5 kDa次之 (图4)。这表明分子量越小,其对菜心抗旱性的提高作用越强。

    图  4  不同分子量海藻提取物的自由基清除能力及其对菜心鲜重、叶片相对含水量的影响 (盆栽试验)
    [注(Note):柱上不同小写字母表示处理间差异显著 (P < 0.05) Different lowercase letters above the bars indicate significant difference among treatments (P < 0.05).]
    Figure  4.  Free radical scavenging rate of seaweed extracts with different molecular weights and their effects on fresh weight and relative water content of flowering Chinese cabbage leaves (pot experiment)

    褐藻如海带、马尾藻、泡叶藻等是制备海藻提取物的主要原料,在作物栽培中被证实有较好的增产和抗逆效果[33]。Goni等[34]研究表明,连续干旱处理7天,0.33%的泡叶藻提取物可以促进番茄的光合作用,促进渗透调节物质的累积,提高番茄产量,但抗旱性强弱与提取物中组分含量有密切关系。在花椰菜的研究中,泡叶藻提取物和氨基酸配施可以较好的提高抗旱性,促进花椰菜对N、P、K、Mg、Cu和Mn的吸收[35]。本研究结果显示,单施海藻提取物对菜心抗旱性的促进作用较常规施肥和海藻肥差 (表2),这可能与土壤养分和海藻提取物中养分含量低有关。本试验干旱条件下,海藻肥处理的菜心产量最高,其中海藻肥的总养分含量为200 g/L,这与Fan等[36]的研究结果一致。在广州试验点,海藻肥对干旱胁迫的菜心增产作用明显;而在宁夏,海藻肥处理的菜心在正常供水和干旱胁迫条件下都有增产作用,这可能与宁夏地区降雨量少,空气湿度小,温差大,菜心对海藻肥的响应效果好有关[4]

    干旱胁迫时,植物气孔关闭,导致叶绿体和线粒体中积累大量自由基,破坏植物的正常代谢,抑制光合作用,从而导致作物减产[37]。Bian等[37]研究发现,干旱显著抑制了番茄的株高,降低了叶片的叶绿素荧光参数Fv/Fm和相对含水量,增加丙二醛含量。另外有研究指出,干旱胁迫时,植物叶片的渗透调节物质脯氨酸和可溶性糖含量显著上升,且脯氨酸含量与抗氧化酶SOD、POD、CAT活性呈正相关[38]。本研究结果显示在干旱条件下,菜心叶片相对含水量和叶绿素含量下降,丙二醛和脯氨酸含量则上升,抗氧化酶活性增强,鲜重显著降低 (图1图3)。刘明军等[22]在海藻肥对黄瓜抗旱性影响的研究中指出,抗旱性与脯氨酸含量无显著相关性,与叶片相对含水量呈正相关。孙锦等[21]表明海藻肥增强番茄抗旱性,可能是由于其含有丰富的海藻多糖和多种生长调节剂,能够增加叶片中可溶性糖和脯氨酸等含量,调节细胞渗透势,提高叶片的吸水和保水能力,从而增强抗旱性。这表明海藻肥可以通过调节植物的光合作用、自由基清除系统和叶片的水分平衡等生理进程来缓解干旱胁迫损伤[39]。本研究结果表明,干旱条件下,海藻肥能够促进菜心的光合作用,提高叶片相对含水量,增强抗氧化酶活性,降低自由基的累积,从而缓解干旱胁迫损伤 (图1图3),该结果支持了上述观点。

    干旱胁迫降低植物的干物质累积,多项研究指出,施用钾肥可以促进作物生理生长,提高产量,增强抗旱性[40-42]。本研究发现干旱条件下与常规施肥相比,海藻肥处理显著增加菜心氮、磷、钾的吸收量,其中对钾吸收量的提升作用最明显 (表3)。在大豆的研究中指出,叶面喷施大于7.5%的卡帕藻提取物提高了大豆籽粒对氮、磷、钾的吸收量[43]。本研究中海藻提取物处理的菜心磷吸收量与正常供水对照相比无显著变化,氮、钾吸收量显著降低,一方面可能是由于海藻提取物所含养分量少;另一方面可能是由于施用方式为灌施,叶面喷施处理能够增加气孔对海藻提取物的吸收[44]。Santaniello等[19]的研究表明,泡叶藻提取物处理的拟南芥在脱水胁迫后期能够较好的控制气孔运动,提高水分利用效率和叶肉细胞导度。气孔的开关依赖于保卫细胞中钾离子的浓度[45],干旱时叶片中较高的钾含量可以提高植物蒸腾效率,降低蒸发/蒸腾值,从而提高水分利用效率[41]。此外,钾还被证实可以降低干旱时植物体内活性氧和丙二醛含量,减少氧化损伤,同时能够诱导植物溶质的积累,促进水分吸收,维持渗透平衡,从而增强植物的抗旱性[45-46]。因此本研究中海藻肥增加菜心叶片中脯氨酸含量,降低丙二醛含量 (图2),可能与海藻肥提高了菜心的钾吸收量有关 (表3)。

    海藻肥是由海藻提取物溶液与氮磷钾或微量元素经过混合搅拌制备成的一种液态复合肥料,其核心物质为海藻提取物[23]。不同来源海藻中主要功能物质的成分差异较大,如绿藻中含有大量的淀粉、果胶和葡甘聚糖,红藻含有较多的琼脂、红藻胶和卡拉胶,褐藻则含有丰富的岩藻多糖和海藻酸盐等[47]。我们之前的研究中已经报道,在最适质量浓度时,海带提取物中4种主要功能物质增强菜心抗旱性的顺序为海藻酸 > 褐藻多酚 > 甘露醇 > 甜菜碱[23]。本研究所用 < 3 kDa海藻提取物中的褐藻多酚和甘露醇含量高于其他3个分子量海藻提取物组分 (表4),与其对菜心的抗旱性结果也是一致的[23]

    Liu等[48]研究表明,喷施0.1%的海藻酸寡糖可以增加干旱胁迫时小麦的叶绿素和脯氨酸含量,增强抗氧化酶活性,降低丙二醛含量,从而提高小麦的抗旱性。Li等[49]对黄瓜喷施0.2%的4~8 kDa的海藻酸寡糖得到了类似的结果,同时指出海藻酸寡糖可以诱导ABA的合成和抗氧化酶合成基因的表达,从而提高黄瓜抗旱性。研究指出分子量为373~932 Da的海藻酸寡糖,能够有效的清除活性氧[50]。本研究中,< 3 kDa海藻提取物中海藻酸含量虽低于海藻提取物原液 (表4),其自由基清除能力却远高于海藻提取物原液 (图4),可能是由于 < 3 kDa组分中的海藻酸多为低分子量海藻寡糖,其抗氧化活性更强[51]

    海藻中的酚类主要包括生育酚和褐藻多酚,具有较强的抗氧化和抗肿瘤特性,而褐藻中的褐藻多酚不仅含量和自由基清除能力显著高于红藻和绿藻,且其清除能力与含量呈线性正相关[52]。Goni等[53]指出0.2%的泡叶藻提取物对拟南芥抗旱性的影响与提取物中多酚含量存在很大联系,其中碱性条件下制备的泡叶藻提取物中酚类含量是酸性条件下制备的4倍。本研究中海藻提取物是通过碱解和中性条件下酶解复合工艺制备得到的,海藻提取物原液中褐藻多酚的含量较 < 3 kDa海藻提取物高26.36% (表4),而 < 3 kDa海藻提取物体外清除自由基和提高菜心抗旱性能力显著大于海藻提取物原液 (图4),这说明 < 3 kDa组分可能依赖于多种功能物质的综合效应行使功能,具体机制仍需进一步深入研究。

    甘露醇是一种糖醇,除了存在于高等植物,在海藻中也广泛存在,约占海藻干重的10%~30%,尤其在褐藻中含量更高[54]。在逆境条件下,甘露醇可以作为溶质和羟基自由基清除剂减轻植物损伤[55]。在番茄、花生和小麦的研究中,植株转入将甘露醇1-磷酸转化为甘露醇的编码基因mtlD后,能积累更多的甘露醇,可以增强羟基自由基清除能力,诱导渗透调节物质累积,提高作物抗旱性[56-58]。在中度干旱条件下,叶面喷施1 mg/g的甘露醇可以有效降低玉米体内超氧阴离子和过氧化氢含量,减缓过氧化损伤,从而增强玉米抗旱性[59]。杨锦等[23]指出与海藻肥相比,海藻肥添加2.60 g/L的甘露醇可以增强抗氧化酶活性,维持细胞膨压,提高菜心抗旱性。这表明植物中甘露醇积累和甘露醇外源施用均可以提高作物抗旱性。随着甘露醇浓度升高,菜心的抗旱性先升高后下降,可能是由于适量的自由基有助于植物生长,而甘露醇浓度太高,抑制自由基的产生,反而使植物抗性下降[55]。本研究 < 3 kDa海藻提取物中甘露醇含量为2.58 g/L,高于其他3个分子量海藻提取物,低于海藻提取物原液,但其羟基自由基和超氧阴离子的清除能力最强 (表4图4),可能是由于甘露醇的含量不同造成的,内在机制需进一步深入探讨。

    海藻提取物配合氮磷钾水溶肥有提高菜心经济产量和品质的效果,尤其在干旱条件下的促生提质效果更显著,宁夏和广州试验点的结果均如此。

    施用海藻提取物能够提高干旱胁迫条件下菜心叶片中叶绿素和脯氨酸含量,增强抗氧化酶活性,降低自由基和丙二醛累积,从而缓解干旱胁迫损伤,提高菜心抗旱性。将海藻提取物按照分子量大小进行分组后,缓解干旱胁迫的主要活性成分如海藻酸、褐藻多酚和甘露醇大多存在于分子量 < 3 kDa的海藻提取物组分中,因此,< 3 kDa海藻提取物组分的抗氧化活性最强,对提高菜心的抗旱性效果最好。

  • 图  1   干旱条件下海藻肥对菜心鲜重、品质和形态指标的影响 (盆栽试验)

    [注(Note):CK0—正常供水对照 Normal water supply control;CK1—干旱对照 Drought stress control;SE—干旱条件下施海藻提取物 Applying seaweed extracts under drought stress;NPK—干旱条件下常规施肥 Applying chemical fertilizer under drought stress;NPK+SE—干旱条件下施海藻肥 Applying seaweed extracts and chemical fertilizer under drought stress;柱上不同字母表示处理间差异显著 (P < 0.05) Different lowercase letters above the bars indicate significant difference among treatments (P < 0.05).]

    Figure  1.   Effects of seaweed fertilizer on the fresh weight, quality and morphological index of flowering Chinese cabbageunder drought stress condition (pot experiment)

    图  2   干旱胁迫条件下海藻肥对菜心抗旱性的影响 (盆栽试验)

    [注(Note):CK0—正常供水对照 Normal water supply control;CK1—干旱对照Drought stress control;SE—干旱条件下施海藻提取物 Applying seaweed extracts under drought stress;NPK—干旱条件下常规施肥 Applying chemical fertilizer under drought stress;NPK+SE—干旱条件下施海藻肥 Applying seaweed extracts and chemical fertilizer under drought stress;柱上不同字母表示处理间差异显著 (P < 0.05) Different lowercase letters above the bars indicate significant difference among treatments (P < 0.05).]

    Figure  2.   Effects of seaweed fertilizer on the drought resistance of flowering Chinese cabbage under drought stress condition (pot experiment)

    图  3   干旱条件下海藻肥对菜心叶片自由基含量及抗氧化酶活性的影响 (盆栽试验)

    [注(Note):CK0—正常供水对照 Normal water supply control;CK1—干旱对照 Drought stress control;SE—干旱条件下施海藻提取物 Applying seaweed extracts under drought stress;NPK—干旱条件下常规施肥 Applying chemical fertilizer under drought stress;NPK+SE—干旱条件下施海藻肥 Applying seaweed extracts and chemical fertilizer under drought stress;柱上不同字母表示处理间差异显著 (P < 0.05) Different lowercase letters above the bars indicate significant difference among treatments (P < 0.05).]

    Figure  3.   Effects of seaweed fertilizer on the free radical contents and antioxidant enzymy activities of leaves under drought stress condition (pot experiment)

    图  4   不同分子量海藻提取物的自由基清除能力及其对菜心鲜重、叶片相对含水量的影响 (盆栽试验)

    [注(Note):柱上不同小写字母表示处理间差异显著 (P < 0.05) Different lowercase letters above the bars indicate significant difference among treatments (P < 0.05).]

    Figure  4.   Free radical scavenging rate of seaweed extracts with different molecular weights and their effects on fresh weight and relative water content of flowering Chinese cabbage leaves (pot experiment)

    表  1   广州和宁夏地区试验地供试土壤特性

    Table  1   The soil characteristics of Guangzhou and Ningxia in field experiment

    地区
    Region
    pH碱解氮
    Available N
    (mg/kg)
    有效磷
    Available P
    (mg/kg)
    速效钾
    Available K
    (mg/kg)
    有机质
    Organic matter
    (g/kg)
    广州
    Guangzhou
    5.5868.2530.92154.64 8.90
    宁夏
    Ningxia
    8.6161.9012.41149.0014.73
    下载: 导出CSV

    表  2   不同水分处理条件下海藻肥对菜心经济产量和品质的影响 (田间试验)

    Table  2   Effects of seaweed fertilizer on yield and quality of flowering Chinese cabbage under different water treatments (field experiment)

    处理
    Treatment
    经济产量 (t/hm2)
    Economic yield
    可溶性糖 (mg/g, FW)
    Soluble sugar
    可溶性蛋白 (mg/g, FW)
    Soluble protein
    维生素C (mg/100 g, FW)
    Vitamin C
    可溶性固形物 (%)
    Soluble solids
    广州 Guangzhou
    正常供水
    Normal water
    CK18.56 ± 0.23 bC9.94 ± 0.24 cDE8.54 ± 0.62 bC33.33 ± 2.22 bB3.47 ± 0.12 bD
    SE19.33 ± 0.38 bC10.43 ± 1.02 bcBCD8.92 ± 0.42 abC35.74 ± 4.63 bB4.33 ± 0.21 aAB
    NPK21.77 ± 0.31 aAB11.55 ± 0.48 abABC10.71 ± 1.09 aAB39.26 ± 1.29 abAB4.40 ± 0.20 aAB
    NPK+SE22.65 ± 0.46 aA12.29 ± 0.69 aA10.88 ± 1.17 aA44.44 ± 3.85 aA4.53 ± 0.06 aA
    干旱
    Drought stress
    CK15.92 ± 0.46 dE8.23 ± 0.51 cEF6.33 ± 0.36 cD24.04 ± 2.37 bC2.80 ± 0.22 bE
    SE17.17 ± 0.18 cD8.24 ± 0.22 bcF6.61 ± 0.25 cD23.13 ± 4.44 bC2.90 ± 0.10 bE
    NPK19.02 ± 0.13 bC10.03 ± 0.64 abCD8.47 ± 0.53 bC36.29 ± 3.52 aB3.93 ± 0.07 aC
    NPK+SE21.30 ± 0.42 aB11.83 ± 0.36 aAB9.56 ± 0.48 aBC37.03 ± 3.40 aB4.17 ± 0.18 aBC
    FF value
    供水 Water supply (W)83.88***18.15**51.26***33.93***130.21***
    施肥 Fertilization (F)76.99***19.72***23.31***18.86***73.70***
    W × F1.712.640.692.1114.12***
    宁夏 Ningxia
    正常供水
    Normal water
    CK21.92 ± 0.57 cD10.13 ± 1.17 bD12.62 ± 1.09 bBC34.80 ± 2.75 cC3.77 ± 0.21 cD
    SE22.62 ± 0.70 cCD10.79 ± 0.38 bD11.59 ± 0.23 abBCD35.00 ± 2.08 cC3.57 ± 0.15 cD
    NPK25.68 ± 0.52 bB15.69 ± 0.10 aAB14.48 ± 1.53 aA44.40 ± 1.04 bB4.67 ± 0.12 bB
    NPK+SE28.18 ± 0.43 aA16.68 ± 0.52 aA14.37 ± 0.60 aA54.60 ± 1.10 aA4.97 ± 0.14 aA
    干旱
    Drought stress
    CK17.02 ± 0.19 dE8.51 ± 0.96 cE10.33 ± 0.94 bD30.60 ± 1.80 cC3.17 ± 0.09 dE
    SE18.40 ± 0.63 cE9.49 ± 0.69 cE11.10 ± 0.53 bCD32.80 ± 2.75 cC3.63 ± 0.15 cD
    NPK22.18 ± 0.33 bCD13.18 ± 0.38 bC11.73 ± 0.75 abBCD40.20 ± 3.75 bB4.17 ± 0.13 bC
    NPK+SE24.03 ± 0.40 aC14.92 ± 0.96 aB12.94 ± 0.58 aAB50.40 ± 3.60 aA4.43 ± 0.15 aB
    FF value
    供水 Water supply (W)142.36***36.43***24.20***12.64*43.90***
    施肥 Fertilization (F)76.10***113.85***10.77***77.39***103.00***
    W × F0.660.741.990.236.59*
    注(Note):CK—清水 Water; SE—海藻提取物 Seaweed extracts; NPK—常规化肥 Chemical fertilizer; NPK+SE—海藻肥 Chemical fertilizer+Seaweed extracts. 同列数据后不同小写字母表示相同水分条件下处理之间差异显著,不同大写字母表示同一试验点所有处理之间差异显著 (P < 0.05) Values followed different lowercase letters indicate significant difference among fertilization treatments under the same water condition, and different capital letters indicate significant difference among all treatments in the same experimental site (P < 0.05). *—P < 0.05; **—P < 0.01; ***—P < 0.001.
    下载: 导出CSV

    表  3   干旱条件下海藻肥对菜心氮磷钾吸收量的影响 (盆栽试验)

    Table  3   Effects of seaweed fertilizer on the N, P, and K uptake of flowering Chinese cabbage under drought stress condition (pot experiment)

    处理
    Treatment
    N
    (mg/plant)
    P
    (mg/plant)
    K
    (mg/plant)
    CK0123.16 ± 3.10 c34.29 ± 0.86 c61.59 ± 1.55 c
    CK159.74 ± 2.05 e18.62 ± 0.64 d27.67 ± 0.95 e
    SE105.70 ± 3.66 d34.22 ± 1.18 c45.21 ± 1.56 d
    NPK178.82 ± 3.38 b63.31 ± 1.20 b107.81 ± 2.04 b
    NPK+SE204.72 ± 5.72 a73.70 ± 2.06 a145.96 ± 4.08 a
    注(Note):CK0—正常供水对照 Normal water supply control; CK1—干旱对照 Drought stress control; SE—干旱条件下施海藻提取物 Applying seaweed extracts under drought stress; NPK—干旱条件下常规施肥 Applying chemical fertilizer under drought stress; NPK+SE—干旱条件下施海藻肥 Applying seaweed extracts and chemical fertilizer under drought stress; 同列数据后不同小写字母表示处理间差异显著 (P < 0.05) Values followed by different letters in a column are significantly different among treatments (P < 0.05).
    下载: 导出CSV

    表  4   不同分子量海藻提取物的主要成分比较

    Table  4   Comparison of main components of seaweed extracts (SE) with different molecular weights

    海藻提取物分子量
    Molecular weight of SE
    可溶性固形物 (%)
    Soluble solids
    海藻酸 (g/L)
    Alginate acid
    褐藻多酚 (mg/L)
    Polyphenols
    甘露醇 (g/L)
    Mannitols
    还原糖 (g/L)
    Reducing sugars
    SE3.20 ± 0.46 a22.91 ± 2.46 a211.63 ± 10.32 a3.86 ± 0.34 a4.39 ± 0.78 a
    > 10 kDa0.23 ± 0.03 c7.80 ± 1.28 b17.60 ± 2.38 d0.34 ± 0.15 c0.98 ± 0.03 b
    5~10 kDa0.40 ± 0.08 c3.69 ± 0.35 c36.88 ± 3.44 c0.64 ± 0.23 c0.80 ± 0.07 b
    3~5 kDa0.33 ± 0.05 c3.60 ± 0.30 c25.06 ± 2.53 d0.49 ± 0.16 c0.94 ± 0.04 b
    < 3 kDa1.77 ± 0.33 b9.69 ± 1.32 b167.48 ± 8.94 b2.58 ± 0.29 b1.39 ± 0.12 b
    注(Note):SE—海藻提取物 Seaweed extracts; 同列数据后不同字母表示各海藻提取物组分间差异显著 (P < 0.05) Values followed by different letters in a column are significantly different among the seaweed extracts (P < 0.05).
    下载: 导出CSV
  • [1] 曾小玲, 赵瑞丽, 钟开勤, 等. 软腐病菌侵染下菜心叶片的转录组分析[J]. 热带作物学报, 2021, 42(5): 1433–1439.

    Zeng X L, Zhao R L, Zhong K Q, et al. Transcriptome analysis of flowering Chinese cabbage [Brassica csampestris L. ssp. Chinensis (L.) var. utilis Tsen et Lee] infected by soft rot disease[J]. Chinese Journal of Tropical Crops, 2021, 42(5): 1433–1439.

    [2] 王萍, 王玲, 于新, 等. 菜心采后贮藏保鲜技术研究进展[J]. 食品安全质量检测学报, 2020, 11(19): 6956–6962.

    Wang P, Wang L, Yu X, et al. Research advances in postharvest storage and preservation techniques of Chinese flowering cabbage[J]. Journal of Food Safety and Quality, 2020, 11(19): 6956–6962.

    [3] 张德双, 张凤兰, 余阳俊, 等. 菜薹 (菜心) 亲本材料的创制及新品种18A1菜心的选育[J]. 中国蔬菜, 2020, (5): 77–81.

    Zhang D S, Zhang F L, Yu Y J, et al. Creation of new parent materials and breeding of new flowering Chinese cabbage variety ‘18A1’[J]. Chinese Vegetables, 2020, (5): 77–81.

    [4] 杨冬艳, 韩继山, 俞顺忠, 等. 宁夏露地有机菜心一年四收高产栽培技术[J]. 长江蔬菜, 2015, (11): 39–41. DOI: 10.3865/j.issn.1001-3547.2015.11.021

    Yang D Y, Han J S, Yu S Z, et al. Cultivation techniques of organic flowering Chinese cabbage with four harvest per year and high yield in open field culture in Ningxia[J]. Journal of Changjiang Vegetables, 2015, (11): 39–41. DOI: 10.3865/j.issn.1001-3547.2015.11.021

    [5]

    Del Buono D. Can biostimulants be used to mitigate the effect of anthropogenic climate change on agriculture? It is time to respond[J]. Science of the Total Environment, 2021, 751: 141763. DOI: 10.1016/j.scitotenv.2020.141763

    [6]

    Fahad S, Bajwa A A, Nazir U, et al. Crop production under drought and heat stress: Plant responses and management options[J]. Frontiers in Plant Science, 2017, 8: 1147. DOI: 10.3389/fpls.2017.01147

    [7] 陈丽娜, 吕顺, 庄华才, 等. 华南特色大棚对夏季菜心栽培的影响[J]. 热带作物学报, 2014, 35(5): 842–846. DOI: 10.3969/j.issn.1000-2561.2014.05.004

    Chen L N, Lü S, Zhuang H C, et al. Rain and insect proof shelter for Chinese flowering cabbage production in summer in south China[J]. Chinese Journal of Tropical Crops, 2014, 35(5): 842–846. DOI: 10.3969/j.issn.1000-2561.2014.05.004

    [8] 王湛, 李银坤, 王利春, 等. 生物炭对有机菜心产量、品质及水分利用的影响[J]. 农业机械学报, 2018, 49(12): 273–280. DOI: 10.6041/j.issn.1000-1298.2018.12.033

    Wang Z, Li Y K, Wang L C, et al. Effects of biochar on yield, quality and water utilization of organic flowering Chinese cabbage[J]. Transaction of the Chinese Society for Agricultural Machinery, 2018, 49(12): 273–280. DOI: 10.6041/j.issn.1000-1298.2018.12.033

    [9]

    Arioli T, Mattner S W, Winberg P C. Applications of seaweed extracts in Australian agriculture: Past, present and future[J]. Journal of Applied Phycology, 2015, 27(5): 2007–2015. DOI: 10.1007/s10811-015-0574-9

    [10]

    Calvo P, Nelson L, Kloepper J W. Agricultural uses of plant biostimulants[J]. Plant and Soil, 2014, 383(1–2): 3–41. DOI: 10.1007/s11104-014-2131-8

    [11]

    Carrasco-Gil S, Hernandez-Apaolaza L, Jose Lucena J. Effect of several commercial seaweed extracts in the mitigation of iron chlorosis of tomato plants (Solanumly copersicum L.)[J]. Plant Growth Regulation, 2018, 86(3): 401–411. DOI: 10.1007/s10725-018-0438-9

    [12]

    Ibrahim W M, Ali R M, Hemida K A, et al. Role of Ulva lactuca extract in alleviation of salinity stress on wheat seedlings[J]. The Scientific World Journal, 2014, 2014: 847290.

    [13]

    Shukla P S, Shotton K, Norman E, et al. Seaweed extract improve drought tolerance of soybean by regulating stress-response genes[J]. AoB Plants, 2018, 10(1): plx051.

    [14]

    Papenfus H B, Kulkarni M G, Stirk W A, et al. Effect of a commercial seaweed extract (Kelpak®) and polyamines on nutrient-deprived (N, P and K) okra seedlings[J]. Scientia Horticulturae, 2013, 151: 142–146. DOI: 10.1016/j.scienta.2012.12.022

    [15]

    Fike J H, Saker K E, O'Keefe S F, et al. Effects of Tasco (a seaweed extract) and heat stress on N metabolism and meat fatty acids in wether lambs fed hays containing endophyte-infected fescue[J]. Small Ruminant Research, 2005, 60(3): 237–245. DOI: 10.1016/j.smallrumres.2004.12.007

    [16]

    Wite D, Mattner S W, Porter I J, et al. The suppressive effect of a commercial extract from Durvillaea potatorum and Ascophyllum nodosum on infection of broccoli by Plasmodiophora brassicae[J]. Journal of Applied Phycology, 2015, 27(5): 2157–2161. DOI: 10.1007/s10811-015-0564-y

    [17]

    Almaroai Y A, Eissa M A. Role of marine algae extracts in water stress resistance of onion under semiarid conditions[J]. Journal of Soil Science and Plant Nutrition, 2020, 20(3): 1092–1101. DOI: 10.1007/s42729-020-00195-0

    [18] 冯敬涛, 邢玥, 张鑫, 等. 干旱胁迫下水杨酸、脱落酸和海藻提取物对苹果幼苗抗旱性及养分吸收的影响[J]. 中国果树, 2019, (6): 42–48.

    Feng J T, Xing Y, Zhang X, et al. Effects of salicylic acid, abscisic acid and seaweed extract on drought resistance and nutrient uptake of apple seedlings under drought stress[J]. China Fruits, 2019, (6): 42–48.

    [19]

    Santaniello A, Scartazza A, Gresta F, et al. Ascophyllum nodosum seaweed extract alleviates drought stress in Arabidopsis by affecting photosynthetic performance and related gene expression[J]. Frontiers in Plant Science, 2017, 8: 1362. DOI: 10.3389/fpls.2017.01362

    [20]

    Salvi L, Niccolai A, Cataldo E, et al. Effects of Arthrospira platensis extract on physiology and berry traits in Vitis vinifera[J]. Plants, 2020, 9(12): 1805. DOI: 10.3390/plants9121805

    [21] 孙锦, 韩丽君, 于庆文. 海藻肥对番茄抗旱性的影响[J]. 北方园艺, 2005, (3): 64–66. DOI: 10.3969/j.issn.1001-0009.2005.03.039

    Sun J, Han L J, Yu Q W. Effect of seaweed fertilizer on the drought resistance of tomato[J]. Northern Horticulture, 2005, (3): 64–66. DOI: 10.3969/j.issn.1001-0009.2005.03.039

    [22] 刘明军, 侯栋, 岳宏忠, 等. 海藻肥在黄瓜上的抗旱效应研究[J]. 甘肃农业大学学报, 2003, (4): 450–454. DOI: 10.3969/j.issn.1003-4315.2003.04.014

    Liu M J, Hou D, Yue H Z, et al. Effect of seaweed fertilizer on cucumber seedling exposed to drought stress[J]. Journal of Gansu Agricultural University, 2003, (4): 450–454. DOI: 10.3969/j.issn.1003-4315.2003.04.014

    [23] 杨锦, 尹媛红, 沈宏. 海藻功能物质对菜心抗旱胁迫的影响[J]. 磷肥与复肥, 2019, 34(3): 34–42. DOI: 10.3969/j.issn.1007-6220.2019.03.015

    Yang J, Yin Y H, Shen H. Effect of seaweed functional substances on drought resistance of flowering cabbage[J]. Phosphate and Compound Fertilizer, 2019, 34(3): 34–42. DOI: 10.3969/j.issn.1007-6220.2019.03.015

    [24] 高雁, 李春, 娄恺. 干旱胁迫条件下加工番茄对喷施甜菜碱的生理响应[J]. 植物营养与肥料学报, 2012, 18(2): 426–432. DOI: 10.11674/zwyf.2012.11320

    Gao Y, Li C, Lou K. Effect of spraying glycine betaine on physiological responses of processing tomato under drought stress[J]. Journal of Plant Nutrition and Fertilizers, 2012, 18(2): 426–432. DOI: 10.11674/zwyf.2012.11320

    [25] 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000.

    Li H S. Principles and techniques of plant physiological biochemical experiment[M]. Beijing: Higher Education Press, 2000.

    [26] 李刚, 徐芳杰, 蒋思丝, 等. 铝对小麦根尖细胞壁过氧化物酶活性和过氧化氢含量的影响[J]. 植物营养与肥料学报, 2010, 16(4): 887–892. DOI: 10.11674/zwyf.2010.0416

    Li G, Xu F J, Jiang S S, et al. Effects of aluminum on hydrogen peroxide content and cell wall-bound peroxidase activity in wheat root tips[J]. Journal of Plant Nutrition and Fertilizers, 2010, 16(4): 887–892. DOI: 10.11674/zwyf.2010.0416

    [27] 陈钰佩, 高翠民, 任彬彬, 等. 水分胁迫下氮素形态影响水稻根系通气组织形成的生理机制[J]. 南京农业大学学报, 2017, 40(2): 273–280. DOI: 10.7685/jnau.201604034

    Chen Y P, Gao C M, Ren B B, et al. Physiological mechanism of nitrogen forms affect aerenchyma formation of rice root under water stress[J]. Journal of Nanjing Agricultural University, 2017, 40(2): 273–280. DOI: 10.7685/jnau.201604034

    [28] 侯云鹏, 韩立国, 孔丽丽, 等. 不同施氮水平下水稻的养分吸收、转运及土壤氮素平衡[J]. 植物营养与肥料学报, 2015, 21(4): 836–845. DOI: 10.11674/zwyf.2015.0402

    Hou Y P, Han L G, Kong L L, et al. Nutrient absorption, translocation in rice and soil nitrogen equilibrium under different nitrogen application doses[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(4): 836–845. DOI: 10.11674/zwyf.2015.0402

    [29] 周婷, 蒲彪, 姜欢笑, 等. 藤椒油体外抗氧化活性研究[J]. 食品工业科技, 2014, 35(21): 58–62.

    Zhou T, Pu B, Jiang H X, et al. Study on the antioxidant activities of Zanthoxylum armatum DC Prodr. oil[J]. Science and Technology of Food Industry, 2014, 35(21): 58–62.

    [30] 叶颖, 耿银银, 沈宏. 海藻肥中海藻酸测定方法的比较[J]. 磷肥与复肥, 2019, 34(12): 30–32. DOI: 10.3969/j.issn.1007-6220.2019.12.012

    Ye Y, Geng Y Y, Shen H. Comparison of determination methods of alginic acid in seaweed fertilizer[J]. Phosphate and Compound Fertilizer, 2019, 34(12): 30–32. DOI: 10.3969/j.issn.1007-6220.2019.12.012

    [31] 石子仪, 吴云, 朱月美, 等. HPLC-ELSD测定肉苁蓉中甜菜碱甘露醇果糖葡萄糖和蔗糖的含量[J]. 中国现代中药, 2019, 21(12): 1641–1646.

    Shi Z Y, Wu Y, Zhu Y M, et al. Quantitative determination of betaine, mannitol, fructose, glucose and sucrose in Herba cistanches by HPLC-ELSD[J]. Modern Chinese Medicine, 2019, 21(12): 1641–1646.

    [32] 段海霞, 林云霞, 张金荣, 等. Folin-Ciocalteu比色法测定铜藻中褐藻多酚含量的研究[J]. 天然产物研究与开发, 2015, 27(8): 1374–1378.

    Duan H X, Lin Y X, Zhang J R, et al. Determination of phlorotannins in Sargassum horneri using Folin-Ciocalteu colorimetric method[J]. Natural Product Research and Development, 2015, 27(8): 1374–1378.

    [33]

    Craigie J S. Seaweed extract stimuli in plant science and agriculture[J]. Journal of Applied Phycology, 2011, 23: 371–393.

    [34]

    Goni O, Quille P, O'Connell S. Ascophyllum nodosum biostimulants and their role in enhancing tolerance to drought stress in tomato plants[J]. Plant Physiology and Biochemistry, 2018, 126: 63–73. DOI: 10.1016/j.plaphy.2018.02.024

    [35]

    Kaluzewicz A, Bosiacki M, Spizewski T. Influence of biostimulants on the content of macro- and micronutrients in broccoli plants exposed to drought stress[J]. Journal of Elementology, 2018, 23(1): 287–297.

    [36]

    Fan D, Hodges D M, Zhang J, et al. Commercial extract of the brown seaweed Ascophyllum nodosum enhances phenolic antioxidant content of spinach (Spinacia oleracea L.) which protects Caenorhabditis elegans against oxidative and thermal stress[J]. Food Chemistry, 2011, 124(1): 195–202. DOI: 10.1016/j.foodchem.2010.06.008

    [37]

    Bian Z, Zhang X, Wang Y, et al. Improving drought tolerance by altering the photosynthetic rate and stomatal aperture via green light in tomato (Solanumly copersicum L.) seedlings under drought conditions[J]. Environmental and Experimental Botany, 2019, 167: 103844. DOI: 10.1016/j.envexpbot.2019.103844

    [38]

    Liu C, Liu Y, Guo K, et al. Effect of drought on pigments, osmotic adjustment and antioxidant enzymes in six woody plant species in karst habitats of southwestern China[J]. Environmental and Experimental Botany, 2011, 71(2): 174–183. DOI: 10.1016/j.envexpbot.2010.11.012

    [39]

    Zhou G, Qiu X, Zhang J, et al. Effects of seaweed fertilizer on enzyme activities, metabolic characteristics, and bacterial communities during maize straw composting[J]. Bioresource Technology, 2019, 286: 121375. DOI: 10.1016/j.biortech.2019.121375

    [40]

    Zamani S, Naderi M R, Soleymani A, et al. Sunflower (Helianthus annuus L.) biochemical properties and seed components affected by potassium fertilization under drought conditions[J]. Ecotoxicology and Environmental Safety, 2020, 190: 110017. DOI: 10.1016/j.ecoenv.2019.110017

    [41] 朱波, 徐绮雯, 马淑敏, 等. 干旱胁迫和钾肥对油菜苗期生物量和水分利用特征的影响[J]. 干旱地区农业研究, 2019, 37(6): 57–64. DOI: 10.7606/j.issn.1000-7601.2019.06.09

    Zhu B, Xu Q W, Ma S M, et al. Effect of drought stress and potassium on biomass and water use of Brassica napus cultivars during seedling stage[J]. Agricultural Research in the Arid Areas, 2019, 37(6): 57–64. DOI: 10.7606/j.issn.1000-7601.2019.06.09

    [42] 孙哲, 史春余, 刘桂玲, 等. 干旱胁迫与正常供水钾肥影响甘薯光合特性及块根产量的差异[J]. 植物营养与肥料学报, 2016, 22(4): 1071–1078. DOI: 10.11674/zwyf.15307

    Sun Z, Shi C Y, Liu G L, et al. Effect difference of potassium fertilizer on leaf photosynthetic characteristics and storage root yield of sweet potato under drought stress and normal water condition[J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(4): 1071–1078. DOI: 10.11674/zwyf.15307

    [43]

    Rathore S S, Chaudhary D R, Boricha G N, et al. Effect of seaweed extract on the growth, yield and nutrient uptake of soybean (Glycine max) under rainfed conditions[J]. South African Journal of Botany, 2009, 75(2): 351–355. DOI: 10.1016/j.sajb.2008.10.009

    [44]

    Mancuso S, Azzarello E, Mugnai S, et al. Marine bioactive substances (IPA extract) improve foliar ion uptake and water stress tolerance in potted Vitis vinifera plants[J]. Advances in Horticultural Science, 2006, 20(2): 156–161.

    [45]

    Hasanuzzaman M, Bhuyan M H M B, Nahar K, et al. Potassium: A vital regulator of plant responses and tolerance to abiotic stresses[J]. Agronomy-Basel, 2018, 8(3): 31.

    [46]

    Zahoor R, Zhao W, Abid M, et al. Potassium application regulates nitrogen metabolism and osmotic adjustment in cotton (Gossypium hirsutum L.) functional leaf under drought stress[J]. Journal of Plant Physiology, 2017, 215: 30–38. DOI: 10.1016/j.jplph.2017.05.001

    [47]

    Khan W, Rayirath U P, Subramanian S, et al. Seaweed extracts as biostimulants of plant growth and development[J]. Journal of Plant Growth Regulation, 2009, 28(4): 386–399. DOI: 10.1007/s00344-009-9103-x

    [48]

    Liu H, Zhang Y, Yin H, et al. Alginate oligosaccharides enhanced Triticum aestivum L. tolerance to drought stress[J]. Plant Physiology and Biochemistry, 2013, 62: 33–40. DOI: 10.1016/j.plaphy.2012.10.012

    [49]

    Li J, Wang X, Lin X, et al. Alginate-derived oligosaccharides promote water stress tolerance in cucumber (Cucumis sativus L.)[J]. Plant Physiology and Biochemistry, 2018, 130: 80–88. DOI: 10.1016/j.plaphy.2018.06.040

    [50]

    He X, Li R, Huang G, et al. Influence of marine oligosaccharides on the response of various biological systems to UV irradiation[J]. Journal of Functional Foods, 2013, 5(2): 858–868. DOI: 10.1016/j.jff.2013.01.035

    [51]

    Liu J, Yang S, Li X, et al. Alginate oligosaccharides: Production, biological activities, and potential applications[J]. Comprehensive Reviews in Food Science and Food Safety, 2019, 18(6): 1859–1881. DOI: 10.1111/1541-4337.12494

    [52]

    Ito M, Koba K, Hikihara R, et al. Analysis of functional components and radical scavenging activity of 21 algae species collected from the Japanese coast[J]. Food Chemistry, 2018, 255: 147–156. DOI: 10.1016/j.foodchem.2018.02.070

    [53]

    Goni O, Fort A, Quille P, et al. Comparative transcriptome analysis of two Ascophyllum nodosum extract biostimulants: Same seaweed but different[J]. Journal of Agricultural and Food Chemistry, 2016, 64(14): 2980–2989. DOI: 10.1021/acs.jafc.6b00621

    [54]

    Chades T, Scully S M, Ingvadottir E M, et al. Fermentation of mannitol extracts from brown macro algae by thermophilic Clostridia[J]. Frontiers in Microbiology, 2018, 9: 1931. DOI: 10.3389/fmicb.2018.01931

    [55]

    Patel T K, Williamson J D. Mannitol in plants, fungi, and plant-fungal interactions[J]. Trends in Plant Science, 2016, 21(6): 486–497. DOI: 10.1016/j.tplants.2016.01.006

    [56]

    Khare N, Goyary D, Singh N K, et al. Transgenic tomato cv. Pusa Uphar expressing a bacterial mannitol-1-phosphate dehydrogenase gene confers abiotic stress tolerance[J]. Plant Cell Tissue and Organ Culture, 2010, 103(2): 267–277. DOI: 10.1007/s11240-010-9776-7

    [57]

    Bhauso T D, Radhakrishnan T, Kumar A, et al. Overexpression of bacterial mtlD gene in peanut improves drought tolerance through accumulation of mannitol[J]. The Scientific World Journal, 2014, 2014: 125967.

    [58]

    Abebe T, Guenzi A C, Martin B, et al. Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity[J]. Plant Physiology, 2003, 131(4): 1748–1755. DOI: 10.1104/pp.102.003616

    [59] 杨德光, 沈秀瑛, 赵天宏, 等. 活性氧清除剂在提高玉米抗旱性中的作用[J]. 沈阳农业大学学报, 2002, 33(1): 3–5. DOI: 10.3969/j.issn.1000-1700.2002.01.001

    Yang D G, Shen X Y, Zhao T H, et al. The role of active oxygen scavengers in increasing drought resistance of maize[J]. Journal of Shenyang Agricultural University, 2002, 33(1): 3–5. DOI: 10.3969/j.issn.1000-1700.2002.01.001

  • 期刊类型引用(17)

    1. 周俊康,陆莹,陈宁一,文超然,王超,裴宝磊. 海藻活性物质的提取及其在肥料中的应用研究. 特种经济动植物. 2024(01): 188-192 . 百度学术
    2. 刘杰,郭嘉华,赵鹏,王永龙,范菠菠,耿志刚,段天凤. 干旱胁迫下海藻活性物质对蒙古黄芪光合作用、生长及品质的影响. 核农学报. 2024(05): 985-992 . 百度学术
    3. 黄艳霞,陈根辉,林建富,郭其茂,黄康德,四郎群措,谢丽君,林子龙. 烟地套种甘薯龙紫9号的高效栽培技术研究. 作物杂志. 2024(05): 228-234 . 百度学术
    4. 赵文麟,郭湘,王雪,张新梅,李翔,张国平,吕霞,许彬,许俊强. 生物刺激素在植物响应胁迫中的应用研究进展. 植物生理学报. 2024(11): 1620-1628 . 百度学术
    5. 郑玲燕,杨婷婷,王旭,赵洁,雷红涛,韦晓群. 基于感官评价的常见菜心品质分级方法建立. 食品安全质量检测学报. 2023(04): 50-56 . 百度学术
    6. 殷敏,丁颖,庄东英,李亚芳,晏军,崔必波. 不同植物生长调节剂复配对水稻产量性状的影响. 现代农业科技. 2023(05): 5-8 . 百度学术
    7. 赵小湾,宋明璇,刘金华,王雪,张忠庆,杨靖民. 干旱胁迫下壳寡糖对番茄幼苗生理指标的影响. 中国土壤与肥料. 2023(01): 163-168 . 百度学术
    8. 于金慧,刘炳福,刘超,马德源,马云飞,陈高,韩福文,尤升波,毕玉平. 益生菌联合海藻多糖对草莓生长与品质的影响. 山东农业科学. 2023(07): 104-112 . 百度学术
    9. 李海俊,张莹,高富成,穆晓国,高虎,叶林. 菜心及其根际土壤环境对长期连作的响应. 核农学报. 2023(10): 2052-2062 . 百度学术
    10. 马金昭,孙瑶,辛鑫,戚兴超,张泽浩,马宁,柳小琪,王修康. 海藻酸复合磷肥对玉米产量与土壤养分的影响. 干旱地区农业研究. 2023(06): 149-156 . 百度学术
    11. 苗钧魁,张雅婷,张圣国,郑志红,王致鹏,王海英. 不同工艺海带提取物中植物激素和海藻酸寡糖的比较研究. 南方水产科学. 2022(02): 142-149 . 百度学术
    12. 代中旭,艾新帅,杨正华,袁乐斌,卢波斯,沈宏. 海藻寡糖与复合肥配合施用对菜心产量和品质的影响. 磷肥与复肥. 2022(05): 49-52 . 百度学术
    13. 侯江涛,杨雅兰,赵莹菲,王诗赞,张志芳. 海藻精对NaCl胁迫下黄瓜幼苗抗性生理的影响. 江苏农业科学. 2022(13): 165-170 . 百度学术
    14. 周彬,于小晶,张民,田虹雨,董晶晶,郭蕾,张天骄. 褪黑素壳聚糖微粒防止褪黑素降解并有效提高其抗旱功能. 植物营养与肥料学报. 2022(07): 1308-1317 . 本站查看
    15. 张美玲,刘爽,王姗姗,崔赛,葛振宇,王春男,田英豪,程东娟,王建霄. 不同浓度海藻肥对叶用莴苣抗逆性的影响. 蔬菜. 2022(08): 29-35 . 百度学术
    16. 王姗姗,刘爽,张美玲,崔赛,程东娟,葛振宇,王春男,王建霄. 不同浓度海藻肥对玉米苗期生长及抗逆性的影响. 湖南农业科学. 2022(08): 25-29+35 . 百度学术
    17. 徐昱松,宫彬彬,吴晓蕾,李敬蕊,高洪波. 育苗基质喷施海藻肥对番茄幼苗生长的影响. 河北农业大学学报. 2022(04): 32-36 . 百度学术

    其他类型引用(2)

图(4)  /  表(4)
计量
  • 文章访问数:  1666
  • HTML全文浏览量:  734
  • PDF下载量:  85
  • 被引次数: 19
出版历程
  • 收稿日期:  2020-11-24
  • 录用日期:  2021-03-07
  • 网络出版日期:  2021-07-18
  • 刊出日期:  2021-07-24

目录

/

返回文章
返回