• ISSN 1008-505X
  • CN 11-3996/S

我国苹果园施肥现状、土壤剖面氮磷分布特征及减肥增效技术

刘占军, 祝慧, 张振兴, 赵家锐, 侯立耀, 翟丙年, 徐新朋, 雷秋良, 朱元骏

刘占军, 祝慧, 张振兴, 赵家锐, 侯立耀, 翟丙年, 徐新朋, 雷秋良, 朱元骏. 我国苹果园施肥现状、土壤剖面氮磷分布特征及减肥增效技术[J]. 植物营养与肥料学报, 2021, 27(7): 1294-1304. DOI: 10.11674/zwyf.20601
引用本文: 刘占军, 祝慧, 张振兴, 赵家锐, 侯立耀, 翟丙年, 徐新朋, 雷秋良, 朱元骏. 我国苹果园施肥现状、土壤剖面氮磷分布特征及减肥增效技术[J]. 植物营养与肥料学报, 2021, 27(7): 1294-1304. DOI: 10.11674/zwyf.20601
LIU Zhan-jun, ZHU Hui, ZHANG Zhen-xing, ZHAO Jia-rui, HOU Li-yao, ZHAI Bing-nian, XU Xin-peng, LEI Qiu-liang, ZHU Yuan-jun. Current status of fertilization, distribution of N and P in soil profiles and techniques for reducing fertilizer application and improving efficiency in China’s apple orchards[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(7): 1294-1304. DOI: 10.11674/zwyf.20601
Citation: LIU Zhan-jun, ZHU Hui, ZHANG Zhen-xing, ZHAO Jia-rui, HOU Li-yao, ZHAI Bing-nian, XU Xin-peng, LEI Qiu-liang, ZHU Yuan-jun. Current status of fertilization, distribution of N and P in soil profiles and techniques for reducing fertilizer application and improving efficiency in China’s apple orchards[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(7): 1294-1304. DOI: 10.11674/zwyf.20601

我国苹果园施肥现状、土壤剖面氮磷分布特征及减肥增效技术

基金项目: 国家重点研发计划 (2016YFD0200104);陕西省科技重大专项 (2020zdzx03-02-01)
详细信息
    通讯作者:

    刘占军E-mail:zjliu@nwsuaf.edu.cn

Current status of fertilization, distribution of N and P in soil profiles and techniques for reducing fertilizer application and improving efficiency in China’s apple orchards

  • 摘要:
    目的 

    全面认知我国苹果园施肥现状,明确苹果园土壤剖面氮磷分布特征,探究减肥增效和地力提升的果园管理技术,为我国苹果产业高质量发展提供理论依据和技术支撑。

    方法 

    基于文献资料,制定我国苹果合理化肥施用量;采用实地调查和文献数据相结合的方法,明确和评价我国苹果主产区化肥施用现状;通过田间采样与室内分析,明晰灌区和非灌区苹果园土壤硝态氮和Olsen-P剖面变化特征;基于文献资料,集成苹果园减肥增效、地力提升和优质高产的管理技术。

    结果 

    我国苹果园化肥合理施用量为N 150~420 kg/hm2、P2O5 90~330 kg/hm2和K2O 120~420 kg/hm2。目前我国苹果园化肥平均施用量分别为N 905 kg/hm2、P2O5 570 kg/hm2和K2O 675 kg/hm2,氮、磷、钾过量施肥现象普遍且较为严重;施肥结构上,重化肥轻有机肥现象明显,有机肥养分占比仅7.0%。旱作体系下,8年生苹果园土壤与农田相比,0—600 cm土壤剖面硝态氮含量差异不显著,25年生苹果园土壤在20—500 cm土层硝态氮含量显著高于农田,且在120 cm土层出现215 mg/kg的硝态氮峰值;灌区25年生苹果园0—800 cm土壤剖面硝态氮含量均高于100 mg/kg,在380 cm土层出现265 mg/kg的硝态氮峰值,且140—600 cm土层硝态氮含量显著高于旱作25年生苹果园土壤。土壤Olsen-P含量整体表现为0—100 cm土层下降、100—400 cm土层增加和400—600 cm土层基本稳定的趋势;旱作体系下,土壤Olsen-P含量在0—60 cm土层表现为25年生苹果园土壤 > 8年生苹果园土壤 ≈ 农田土壤,而在60—600 cm土层Olsen-P含量差异不显著;灌区25年生苹果园在60—120 cm土层土壤Olsen-P含量高于旱作25年生苹果园,且在80—100 cm土层出现一个14.5 mg/kg的峰值,460—560 cm土层也表现为灌溉果园的Olsen-P含量高于雨养果园的趋势。水肥一体化和推荐施肥是现实苹果园减肥增效的关键技术,有机无机肥配施、果园生草、施用生物炭是提高苹果园肥料利用效率及土壤肥力的重要途径。

    结论 

    我国苹果园过量施肥和不平衡施肥问题严重;高量施肥背景下长期苹果种植导致土壤深层剖面硝态氮和有效磷累积,无效化风险高,且灌溉加剧了氮、磷的淋溶风险;水肥一体化和苹果养分专家系统等推荐施肥,以及有机无机肥配施、果园生草、施用生物炭等是实现我国苹果园减肥增效和地力提升的关键技术,在今后苹果园管理方面,应加强不同生态区适宜的综合技术研究。

    Abstract:
    Objectives 

    The current status of fertilization and the ensuing N and P contents in soil profiles of China's main apple production areas were studied by reviewing published data, field surveys, and relevant laboratory analysis. We evaluated the techniques based on their potential to reduce fertilizer use, improve fertilizer use efficiency, and enhance soil fertility of apple orchards in China.

    Methods 

    The reasonable application rates of fertilizers were established according to the literature data; the status of chemical fertilizers applied in main apple-producing regions was determined by field surveys and literature data; the contents of NO3-N and Olsen-P in soil profiles treated with and without irrigation were examined through field sampling and laboratory analysis; the techniques for reducing the application rates of fertilizers and increasing their efficiency, improving soil fertility, and underpinning high yield and quality for apple were integrated based on the literature.

    Results 

    According to literature, the ational chemical fertilization rates for apple orchards in China were N 150–420 kg/hm2, P2O5 90–330 kg/hm2, and K2O 120–420 kg/hm2. However, the actual average rates were N 905 kg/hm2, P2O5 570 kg/hm2 and K2O 675 kg/hm2, showing a severe over-application of N, P and K fertilizers. Moreover, farmers eferred synthetic fertilizers to organic fertilizer, with an organic nutrient proportion of only 7.0%. In the rainfed orchards, the NO3-N content in 0–600 cm soil profile of the 8-year old apple orchards was similar to that in nearby farmlands, while the NO3-N content in 20–500 cm soil depth in 25-year old orchards were significantly higher than that in farmlands, with a peak value of 215 mg/kg in the 120 cm soil layer. In irrigated 25-year old orchards, the NO3-N content was higher than 100 mg/kg across the 800 cm soil profile, and the peak value was 265 mg/kg observed in the 380 cm soil layer. Notably, the NO3-N contents in 140–600 cm soil depth in irrigated 25-year orchards were significantly higher than the value recorded for rainfed 25-year apple orchards. The soil Olsen-P contents decreased in 0–100 cm layer but increased in 100–400 cm, and stabilized in 400–600 cm. In rainfed orchards, the Olsen-P contents in 0–60 cm layer followed the trend of 25-year orchards>8-year orchards and farmlands, while in 60–600 cm soil depth, the differenc in Olsen-P contents was not significant among the land-use types. Interestingly, the Olsen-P content in the 60–120 cm soil depth of irrigated 25-year orchard soils was higher than the value recorded for the rainfed 25-year orchards, the peak value of 14.5 mg/kg was observed in the 80–100 cm soil layer, and similar changes of Olsen-P content were observed in 460–560 cm depth. In general, our findings showed that over and imbalanced fertilization was poplula in China’s apple orchards. Long-term excessive fertilization resulted in the considerable accumulation of NO3-N and Olsen-P in deep soil profiles, and irrigation exaggerated their leaching, resulting in their unavailability for plant growth.

    Conclusions 

    Fertilzation and nutrient expert system for apple can effectively reduce both water and nutrient input. Increasing organic fertilizer proportion can increase the even supply of nutrients. Grass covering and biochar application efficiently hold nutrients, improve organic matter content and fertile soil. Future studies should focus on the integrated application of the techniques that are suitable for different ecological regions.

  • 我国苹果种植面积和总产量均居世界首位,占比分别高达43.3%和48.6%[1]。“改革开放”至今,我国苹果产业迅速发展,已成为区域经济和农民增收的支柱产业[23]。然而,与世界上苹果生产发达国家相比,我国苹果园管理较为粗放,施肥过量问题突出,不仅造成肥料利用率低、果实品质下降,还引起土壤酸化及大气、水体污染等生态环境问题[45]。因此,基于文献数据整理与实地调查数据相结合的方法,全面分析我国苹果园施肥现状,明确苹果园氮磷剖面分布特征,探究苹果减肥增效技术途径,旨在为实现国家化肥用量零增长战略和苹果产业高质量发展提供理论依据和数据支撑。

    1) 通过Web of Science (http://apps.webofknowledge.com)、中国知网 (http://www.cnki.net) 和谷歌学术 (http://scholar.google.com) 数据库,以“苹果”和“施肥”为关键词,搜集2005—2020年发表的关于我国苹果园施肥量文章,共搜集有效文章20篇;2) 实地调查数据源于2017—2020年作者课题组在陕西省苹果主产县 (洛川、长武、白水、乾县、凤翔、礼泉) 开展的苹果园施肥调查,共计1594份有效的调查问卷数据;3) 苹果园土壤剖面硝态氮和Olsen-P含量来源于作者课题组实测数据。

    我国苹果园立地条件差、土壤贫瘠,化肥的施用对苹果增产发挥了关键作用[6]。近20年,我国苹果园过量施肥与不平衡施肥问题突出且较为普遍[78]

    基于文献资料[4,911],提出了环渤海湾和黄土高原两大主产区、黄河故道重要产区,以及西南冷凉区和新疆特色产区苹果氮、磷、钾化肥合理施用量 (表1)。黄河故道产区土壤氮、磷供应能力与黄土高原相近,但钾素含量偏低[1213],因此氮、磷推荐量与黄土高原产区相同,同时上调施钾量;西南冷凉产区土壤氮、钾供应能力与环渤海湾产区接近,磷素供应能力与黄土高原产区相近,因此氮、钾推荐量借鉴环渤海湾产区,磷肥用量和黄土高原产区相当[1315];新疆特色产区除有灌溉条件外,土壤特性与黄土高原较为相似,但钾素供应能力更强[13,16],因此与黄土高原主产区氮、磷推荐量一致,并下调施钾量。表1中推荐施肥量范围对应的苹果产量范围为15000~45000 kg/hm2,对未挂果或挂果初期产量较低的果树,施肥量可采纳推荐施肥量下限,一方面供应未挂果树体营养生长,另一方面可满足低量级苹果产量的养分需求。此外,倡导苹果园加大有机肥投入量,建议农家肥类 (牛羊粪等) 有机肥用量为30000 kg/hm2,或饼肥3000 kg/hm2,或腐殖酸3000 kg/hm2[4]。与国外苹果生产发达国家推荐施肥量 (N 150~200 kg/hm2、P2O5 100~150 kg/hm2、K2O 150~200 kg/hm2相比[1718],我国苹果园推荐施肥量普遍偏高,这主要与我国苹果园立地条件差、土壤有机质含量低,以及水肥供应和苹果生长匹配性差等有关[2]。因此,评价我国苹果施肥是否过量或过量程度时,不能与苹果生产发达国家推荐施肥数据简单对比,或得出施肥过量多少倍来衡量。当然,我国苹果园施肥过量现象确实较为普遍,且部分产区过量施肥问题突出,强化减肥增效仍是今后我国苹果园施肥管理的重要内容。

    表  1  我国苹果主产区氮磷钾合理施肥量[4, 911]
    Table  1.  The reasonable application rates of N, P and K fertilizers for China’s apple orchards
    苹果主产区 Major apple-producing regionN (kg/hm2)P2O5 (kg/hm2)K2O (kg/hm2)
    环渤海湾 Bohai Bay150~36090~180150~390
    黄土高原 The Loess Plateau240~420180~330150~375
    黄河故道 Ancient region of Yellow River240~420180~330210~420
    西南冷凉区 The cold highland in southwest China150~360180~330150~390
    新疆 Xinjiang240~420180~330120~300
    注(Note):施肥量上下限范围对应的苹果产量水平为 15000~45000 kg/hm2 The apple yield range of 15000–45000 kg/hm2 is corresponded to the upper and lower limitations of fertilization.
    下载: 导出CSV 
    | 显示表格

    依据文献资料[711, 1933]和作者课题组实地调研数据,我国苹果园化肥氮 (N)、磷 (P2O5)、钾 (K2O) 施用量分别为512~1355、242~647、293~889 kg/hm2,平均值分别为905、570和675 kg/hm2 (图1)。陕西省苹果园化肥氮、磷、钾施用量高达1056、644、889 kg/hm2,山东省则分别为541、343、410 kg/hm2。环渤海湾主产区,河北和辽宁苹果园氮、磷、钾化肥用量比山东平均高出100、150、100 kg/hm2 (图1),这可能主要与山东省果园管理水平高以及技术推广应用较好有关[34]。黄土高原主产区,山西、甘肃和河南苹果园氮、磷、钾化肥用量明显低于陕西省,这主要与陕西公认的苹果优生区和较好的经济效益驱动有关[9];甘肃苹果园表现为高氮磷低钾的施肥特点,这是当地苹果园缺氮富钾的土壤特性与果农经验施肥叠加效应的结果[35]。除甘肃外,陕西、山西、河南、山东、辽宁、云南和新疆苹果园施肥量均表现为氮 > 钾 > 磷,这主要与苹果生产中,氮促进苹果生长、钾改善果实品质等有关[19, 36]

    图  1  苹果主产省区苹果园平均施肥现状
    Figure  1.  Fertilization status of apple orchards in each apple-producing province

    综合表1图1可知,我国苹果园过量施氮现象较为普遍,尤其是云南、陕西和甘肃,施氮量均超过900 kg/hm2,氮素资源浪费严重,且环境风险高[37];除河南苹果园施磷量相对合理之外,其他主产省区均存在不同程度的过量施磷现象,尤其是陕西和甘肃施磷量分别高达644和647 kg/hm2,由于磷容易被土壤固定,淋溶风险相对较小,因此无论有无灌溉条件,各苹果主产区过量施磷可能导致的环境问题经常被低估甚至忽视[38];钾肥用量除甘肃和河南较为合理外,其他主产省区苹果园施钾量均不同程度过量,尤其是陕西和云南,施钾量分别高达889和579 kg/hm2,加剧了苹果“苦痘病”风险[20,39]。我国苹果园普遍的过量施肥除了由于果农缺乏施肥指导、追求高产以及经济利益驱动外[6],也与当前以复合肥为主的肥料类型[78]配方不合理以及施用量和时期与苹果养分需求匹配性差有关。作者课题组在黄土高原苹果主产区实地调查发现,肥料销售商良好的服务态度,如送货到园、收后结账等,加大了小农户经营模式下少量剩余化肥的入园量,间接导致过量施肥。

    从施肥结构看,我国苹果园施肥以化肥为主,有机肥用量少且养分占比低[78]。以陕西省为例,1994—2017年氮磷钾化肥用量整体呈增加趋势,尤其是2008年以后化肥氮磷钾施用量急剧增加;与之相反,有机肥养分投入占比从1994年的51.00%下降到2006年的6.64%,2006—2017年基本稳定在7% (图2)。有机肥养分占比的降低一方面与化肥养分投入量过高有关;另一方面也应认识到生产中果农对有机肥肥田作用的认知是普遍的,但目前苹果主产区传统的畜禽粪便等有机肥源缺乏,加之商品有机肥较高的价格导致苹果园有机肥养分投入占比不高。今后我国苹果园应加强有机肥投入量,实现苹果园地力的维持和提升。

    图  2  陕西省1994—2017年苹果园施肥情况[7, 9-10]
    Figure  2.  Fertilization status of apple orchards in Shaanxi Province during 1994–2017

    苹果园长期过量施肥势必导致土壤剖面养分大量累积,尤其是氮、磷,因其水体及大气环境污染风险高而备受关注[5, 37]。姜远茂[38]指出我国在苹果生产中氮、磷损失途径和阻遏技术方面近乎空白。因此,作者课题组对黄土高原苹果主产区雨养果园 (洛川县) 和灌溉果园 (凤翔县) 土壤剖面硝态氮和Olsen-P分布进行测定,其结果见图3图4

    图  3  农田及苹果园系统下土壤硝态氮剖面分布
    Figure  3.  Soil nitrate distribution in soil profile under cropland and apple orchards systems
    图  4  农田及苹果园系统下土壤Olsen-P剖面分布
    Figure  4.  Soil Olsen-P distribution in soil profile under cropland and apple orchards systems

    与农田、菜地系统相比,果园系统土壤剖面硝态氮含量高,长期淋溶至深层后其污染程度大、修复难度高[40]。高量施氮下,研究苹果园系统土壤硝态氮剖面分布及其淋溶特征是评价果园氮素管理的重要内容。

    图3可知,雨养系统下,8年生苹果园土壤0—6 m剖面硝态氮含量与农田系统变化趋势一致,且其含量差异不大;25年生苹果园土壤剖面硝态氮含量在20—500 cm剖面均显著高于农田和8年生苹果园土壤,且在120 cm土层出现215 mg/kg的硝态氮峰值;在540—600 cm土层,农田、8年生和25年生苹果园硝态氮含量差异不显著。Huang等[41]在陕西长武雨养苹果园系统也发现相似的测定结果。与雨养果园相比,灌区25年树龄苹果园0—8 m土壤剖面硝态氮含量明显偏高,整个剖面硝态氮含量均高于100 mg/kg,且在380 cm土层出现265 mg/kg的硝态氮峰值 (图3)。可见,黄土高原区雨养苹果园土壤剖面硝态氮含量随树龄增大而增加,6 m土壤剖面基本可以满足雨养果园硝态氮淋溶特征研究;灌溉加剧了土壤硝态氮向深层淋溶,800 cm土层较高的硝态氮含量 (102.7 mg/kg) 表明地下水硝酸盐污染风险极高。邓林等[42]研究发现关中地区 (包括凤翔、礼泉、乾县等陕西省苹果主产县) 地下水硝酸盐含量超标严重,指出长期施肥灌溉等农业活动是造成该区域地下水硝酸盐激增的主要原因。孟秦倩[43]研究表明苹果树根系95%以上分布在0—300 cm土层,300 cm以下土层根系分布较少。因此,雨养区25年树龄苹果园300 cm以下土层中大量的硝态氮累积,虽然因缺水产生深层淋溶风险低,但由于苹果根系难以吸收利用而造成无效化程度高;灌区25年树龄苹果园300—800 cm土层大量累积的硝态氮,苹果根系的氮素再利用程度也低,且持续灌溉则会进一步增加硝态氮的深层淋溶风险。因此,无论是雨养还是灌区苹果园,都应控制氮肥的过量投入,避免肥料资源浪费,降低潜在的水体或大气污染等环境风险[5,37]

    磷的土壤固定作用强,剖面淋失经常被低估。然而,长期过量施磷或施用有机肥,均可导致土壤磷素的淋溶损失,且灌溉进一步加剧磷的深层淋溶[44]。Ge等[45]研究发现环渤海湾苹果主产区土壤Olsen-P含量高达70.2 mg/kg,明显高于50 mg/kg的淋溶风险阈值。黄土高原成龄苹果园土壤Olsen-P平均含量仅为26.9 mg/kg[13],然而黄土高原苹果主产区近年来化肥施磷量急剧增加,以及普遍的有机肥投入,6–9月频繁的季节性强降雨均会加剧土壤磷的垂直淋溶风险。因此,高量施磷背景下,明晰苹果园系统土壤磷剖面特征对评估施磷环境效益至关重要,但相关研究至今鲜见报道。

    图4表明,雨养果园土壤剖面Olsen-P含量表现为0—100 cm降低、100—400 cm增加和400—600 cm稳定的变化趋势;灌区25年生苹果园Olsen-P剖面变化特征与之相似,但在80—100 cm土层出现一个14.5 mg/kg的Olsen-P峰值,且在460—560 cm土层出现Olsen-P增加的趋势。雨养果园系统,土壤Olsen-P含量差异主要出现在0—60 cm土层,表现为25年生果园 > 8年生果园≈农田。与雨养区苹果园相比,灌区25年生苹果园土壤Olsen-P含量在60—120 cm明显偏高,说明灌溉导致Olsen-P发生淋溶;灌区25年生苹果园460—560 cm土层偏高的Olsen-P含量可能与灌溉促进速效磷随苹果深根系分布向下移动有关[46]。然而,缺乏灌区农田和低树龄苹果园深层土壤Olsen-P剖面分布作为对照,因此该土层是否发生了磷的深层淋溶仍有待于进一步研究。

    综上可知,苹果园高量施氮导致深层土壤硝态氮大量累积,尤其是灌区苹果园硝态氮向深层淋溶明显,地下水污染风险高。因此,我国苹果园尤其是灌区果园应严格执行“氮肥总量控制、分期调控”的施肥原则[47]。长期高量施磷背景下,25年树龄苹果园0—20 cm土层Olsen-P含量仅为60.0 mg/kg,这主要与黄土高原土壤磷背景值低以及土壤磷吸附能力强有关[48]。此外,灌区果园发生磷素淋溶至60—120 cm土层仍在苹果根系主要分布层内[43],磷素淋溶及无效化风险低。因此,苹果园磷肥应采用“恒量监控”、集中施用及配施有机肥等措施,减少土壤固定,提高磷肥利用效率[47]。此外,环渤海湾、黄河故道和西南冷凉区等苹果主产区与黄土高原产区相比土层厚度较薄[49],且土壤剖面氮、磷分布特征研究极少[50]。因此,黄土高原主产区土壤深剖面氮、磷分布特征将为评估其他苹果主产区土壤氮磷淋失风险研究提供参考。今后应加强环渤海湾、黄河故道等苹果主产区土壤氮磷剖面分布特征研究,为优化区域苹果园氮磷施肥管理提供数据支撑。

    苹果园肥水高效利用与地力培肥是实现我国苹果产业优质高效发展的关键技术[51]。当前相关研究碎片化特点突出,系统间的比较研究较为缺乏,总结前人成果旨在为区域适宜技术的研发、集成与示范推广提供理论依据。

    水肥一体化施肥技术是基于滴灌系统发展而成的节水、节肥、高产、高效的农业工程技术。徐呈祥等[52]研究发现水肥一体化技术可使苹果园开始结果年限提早,且“大小年”幅度有所降低。目前,滴灌式水肥一体化技术在苹果园应用较为广泛。陕西[5354]、山东[55]、北京[56]和新疆[57]地区的研究结果均表明,滴灌施肥在提高苹果产量、改善果实品质及提高苹果园水肥利用效率等方面效果显著。然而,我国苹果产区分布广,地形复杂,气候尤其是降雨条件差异较大,水肥一体化技术具体参数的确定及设备的选择仍需进一步研究[6];同时今后应加强与现代信息技术相结合的精准施肥技术研究、因地制宜的水肥一体化体系研究[3]

    化肥在农业各项增产措施中的作用占30%~50%[58],我国苹果产量的快速增加与化肥的大量施用密切相关[59]。我国苹果园户均规模小[60]、农机推广部门指导施肥相对缺失,加剧了果农盲目追求高产高收益这一经验施肥模式,导致过量和不平衡施肥问题突出[37,45]。发展、建立和优化适合我国分散经营的苹果园推荐施肥方法对实现苹果园减肥增效至关重要。苹果养分资源综合管理技术体系包括基于专家经验的树相诊断技术、基于目标产量的土壤测试、叶片分析矫正的推荐技术以及基于目标产量的作物反应推荐技术[47]。树相诊断法虽然形成了一套相对量化的苹果树树相诊断表,但对于老龄果农仍以自己经验为指导,对于年轻果农而言相对抽象,推广应用不易。测土配方施肥是应用最为广泛的基于土壤测试的推荐技术,对改善当前苹果园施肥结构具有一定促进作用,即提高有机肥投入、消减化肥施用量[61],但因土样采集、测定等过程需要时间、劳力、资金投入,农机部门测定结果反馈滞后,加之多年生果树单年产量反应不明显等特点,小农户经营的苹果园测土配方施肥技术落地实际欠佳。叶片营养诊断法[62]和光谱诊断法[63]是基于目标产量的叶片分析推荐施肥技术,但局限于氮素的估计精度达到实用化水平。张福锁等[47]指出建立适合我国分散经营的“苹果养分管理推荐系统”具有较好的应用前景。通过借鉴小麦、玉米和水稻养分专家系统推荐施肥方法[64],作者课题组基于养分专家系统架构,依托国家重点研发计划“肥料养分推荐方法与限量标准”项目支持,构建了基于产量反应和农学效率的苹果园推荐施肥模型,研发出方便科研人员和农技推广人员使用的微信版苹果养分专家系统,为解决小面积、碎片化果园管理下合理施肥提供新方案。目前建立的苹果养分专家系统田间验证效果较好,但与粮食作物相比,苹果建模数据较少,因此仍需进一步改进和优化,进而提高不同生态区苹果推荐施肥的准确性。

    我国苹果园立地条件差,土壤有机质仅1.0%左右[65],围绕土壤有机质开展苹果园地力提升技术研究是实现苹果产业高质量发展的内在要求。陕西[6669]、山东[70]、甘肃[71]、新疆[7273]等地田间试验均表明,绿肥种植可显著提高苹果园土壤有机质含量,改善土壤氮、磷、钾养分状况,增强土壤酶和微生物活性。值得注意的是,文献报道的不同苹果主产区适宜的绿肥种类差别较大,如陕西渭北旱塬种植三叶草[6667]或小油菜[68],山东种植长柔毛野豌豆[70],甘肃种植箭舌豌豆[71],新疆伊犁地区和南部地区分别种植紫花苜蓿[74]和肥田萝卜或毛苕子[7273]效果较好。此外,黄土高原和环渤海湾两大苹果主产区田间试验结果也均表明,有机无机肥配施和施用生物炭也能显著提高苹果园土壤有机质、氮、磷、钾含量以及土壤酶和微生物活性[7576],且对苹果产量提高和品质改善效果明显[53,77]。相关研究表明,与单施化肥相比,有机无机肥配施能够提高旱作苹果园0—40 cm土壤的持水和导水性能[78],减少氨挥发损失[79];添加生物质炭也明显改善苹果园土壤物理性状和减少氮肥气态损失,同时降低苹果园磷素淋失量,提高氮磷肥利用率[8081]。闫明灏等[82]和巩庆利等[83]基于渭北旱塬无灌溉条件长期定位试验发现,行间种植生草 (小油菜)+有机无机肥配施能显著提高旱区果园苹果产量及水分利用效率,且土壤有机质提升、土壤养分含量改善,以及土壤酶和微生物活性增强效果更为显著。李喜凤等[76]研究发现,与单施相比,生物炭与有机肥混施对苹果园土壤有机碳含量、苹果植株生长及产量提高的效果更好。王玫等[84]研究进一步表明,生物炭与有机肥配合施用可显著提高连作条件下平邑甜茶幼苗的生物量和根系呼吸速率,提高土壤酶活性,增加土壤中真菌的多样性和丰富度,改善连作土壤环境。可见,苹果园种植绿肥、有机无机肥料配施、施用生物炭等单项或综合技术模式均能显著提高苹果园土壤有机质等肥力水平。然而,由于苹果树为多年生,树体具有贮藏营养的特点,因此不同有机培肥措施的肥田效果,以及苹果产量-品质的耦合研究需要基于多年试验才能获得较为确定的结论,今后应加强绿肥种植、有机无机肥配施、生物质炭等单项或综合措施的地力提升效果的比较研究,筛选出不同生态区 (如降雨量) 适宜的果园地力提升模式。

    我国苹果生产格局由环渤海湾产区向黄土高原优生区“西移”特征明显[85],以小农户为主的经营模式还将长期存在[34],单纯追求高产的经验施肥模式短期内仍将持续,土壤中养分大量累积的现象可能持续加剧。因此,今后我国苹果园养分管理应注重以下几个方面:1) 苹果作为区域经济的支柱产业,政府应做好施肥区域布局,重视和加强科学施肥宣传与指导,使果农施肥趋向于科学化;2) 科研人员应不断完善和筛选出不同生态区最适宜的水肥一体化、有机无机肥配施等高效施肥模式,加快其示范、推广及应用;3) 加强“苹果养分专家系统”等简单易懂的计算机推荐施肥方法研究,推进苹果园施肥管理适应信息时代需求;4) 实现不同苹果主产区减肥增效和地力提升相结合,技术研究与推广应用相结合,助力我国苹果产业向高质量发展。

  • 图  1   苹果主产省区苹果园平均施肥现状

    Figure  1.   Fertilization status of apple orchards in each apple-producing province

    图  2   陕西省1994—2017年苹果园施肥情况[7, 9-10]

    Figure  2.   Fertilization status of apple orchards in Shaanxi Province during 1994–2017

    图  3   农田及苹果园系统下土壤硝态氮剖面分布

    Figure  3.   Soil nitrate distribution in soil profile under cropland and apple orchards systems

    图  4   农田及苹果园系统下土壤Olsen-P剖面分布

    Figure  4.   Soil Olsen-P distribution in soil profile under cropland and apple orchards systems

    表  1   我国苹果主产区氮磷钾合理施肥量[4, 911]

    Table  1   The reasonable application rates of N, P and K fertilizers for China’s apple orchards

    苹果主产区 Major apple-producing regionN (kg/hm2)P2O5 (kg/hm2)K2O (kg/hm2)
    环渤海湾 Bohai Bay150~36090~180150~390
    黄土高原 The Loess Plateau240~420180~330150~375
    黄河故道 Ancient region of Yellow River240~420180~330210~420
    西南冷凉区 The cold highland in southwest China150~360180~330150~390
    新疆 Xinjiang240~420180~330120~300
    注(Note):施肥量上下限范围对应的苹果产量水平为 15000~45000 kg/hm2 The apple yield range of 15000–45000 kg/hm2 is corresponded to the upper and lower limitations of fertilization.
    下载: 导出CSV
  • [1]

    FAO (Food and Agriculture Organization). FAO statistical databases[DB/OL]. http://www.fao.org, 2020-12-10.

    [2] 葛顺峰, 姜远茂. 国内外苹果产量差、氮效率差及我国苹果节氮潜力分析[J]. 中国果树, 2017, (4): 94–97.

    Ge S F, Jiang Y M. Analysis on the poor yield and nitrogen efficiency of apples at home and abroad and the nitrogen-saving potential of Chinese apples[J]. China Fruits, 2017, (4): 94–97.

    [3] 王金政, 毛志泉, 丛佩华, 等. 新中国果树科学研究70年—苹果[J]. 果树学报, 2019, 36(10): 1255–1263.

    Wang J Z, Mao Z Q, Cong P H, et al. Fruit scientific research in new China in the past 70 years: Apple[J]. Journal of Fruit Science, 2019, 36(10): 1255–1263.

    [4] 姜远茂, 葛顺峰, 毛志泉, 等. 苹果高效平衡施肥技术[J]. 中国果树, 2017, (4): 1–4, 13.

    Jiang Y M, Ge S F, Mao Z Q, et al. Balanced fertilization technology of apple[J]. China Fruits, 2017, (4): 1–4, 13.

    [5]

    Pang J Z, Wang X K, Peng C H, et al. Nitrous oxide emissions from soils under traditional cropland and apple orchard in the semi-arid Loess Plateau of China[J]. Agriculture, Ecosystems and Environment, 2019, 269: 116–124. DOI: 10.1016/j.agee.2018.09.028

    [6] 葛顺峰, 朱占玲, 魏绍冲, 等. 中国苹果化肥减量增效技术途径与展望[J]. 园艺学报, 2017, 44(9): 1681–1692.

    Ge S F, Zhu Z L, Wei S C, et al. Technical approach and research prospect of saving and improving efficiency of chemical fertilizers for apple in China[J]. Acta Horticulturae Sinica, 2017, 44(9): 1681–1692.

    [7] 胡道春, 金龙, 武瑞婵. 黄土高原苹果园施肥现状调查分析[J]. 陕西农业科学, 2017, 63(11): 44–49. DOI: 10.3969/j.issn.0488-5368.2017.11.016

    Hu D C, Jin L, Wu R C. Investigation and analysis of fertilization status in apple orchard on Loess Plateau[J]. Shaanxi Journal of Agricultural Sciences, 2017, 63(11): 44–49. DOI: 10.3969/j.issn.0488-5368.2017.11.016

    [8] 魏绍冲, 姜远茂. 山东省苹果园肥料施用现状调查分析[J]. 山东农业科学, 2012, 44(2): 77–79. DOI: 10.3969/j.issn.1001-4942.2012.02.022

    Wei S C, Jiang Y M. Investigation on fertilization status in apple orchards of Shandong Province[J]. Shandong Agricultural Sciences, 2012, 44(2): 77–79. DOI: 10.3969/j.issn.1001-4942.2012.02.022

    [9] 王圣瑞, 马文奇, 徐文华, 等. 陕西省苹果施肥状况与评价[J]. 干旱区农业研究, 2004, (1): 146–151.

    Wang S R, Ma W Q, Xu W H, et al. Status and evaluation of fertilization for apples in Shaanxi Province[J]. Agricultural Research in the Arid Areas, 2004, (1): 146–151.

    [10] 王小英, 同延安, 刘芬, 等. 陕西省苹果施肥状况评价[J]. 植物营养与肥料学报, 2013, 19(1): 206–213. DOI: 10.11674/zwyf.2013.0124

    Wang X Y, Tong Y A, Liu F, et al. Evaluation of the situation of fertilization in apple fields in Shaanxi Province[J]. Journal of Plant Nutrition and Fertilizers, 2013, 19(1): 206–213. DOI: 10.11674/zwyf.2013.0124

    [11] 李燕青, 丁文涛, 李壮, 等. 辽宁省苹果主产区果园施肥现状调查与评价[J]. 中国果树, 2017, (6): 94–98.

    Li Y Q, Ding W T, Li Z, et al. Investigation and evaluation of fertilization in apple orchards in Liaoning Province[J]. China Fruits, 2017, (6): 94–98.

    [12] 李建刚, 侯宗海, 张旭美, 等. 江苏丰县苹果主产区果园土壤养分状况的调查[J]. 西北林学院学报, 2015, 30(2): 65–69. DOI: 10.3969/j.issn.1001-7461.2015.02.11

    Li J G, Hou Z H, Zhang X M, et al. State of soil nutrients of apple orchards in the major production area of Feng County in Jiangsu Province[J]. Journal of Northwest Forestry University, 2015, 30(2): 65–69. DOI: 10.3969/j.issn.1001-7461.2015.02.11

    [13] 张东, 郑立伟, 韩明玉, 等. 黄土高原成龄富士苹果园土壤养分含量标准值研究[J]. 园艺学报, 2016, 43(1): 121–131.

    Zhang D, Zheng L W, Han M Y, et al. Studies of the standard range of the soil nutrients in apple orchard in Loess Plateau[J]. Acta Horticulturae Sinica, 2016, 43(1): 121–131.

    [14] 黄国嫣, 龚占斌, 王进, 等. 西南冷凉高地昭通苹果园土壤养分现状分析与评价[J]. 中国农学通报, 2019, 35(23): 66–71. DOI: 10.11924/j.issn.1000-6850.casb18030117

    Huang G Y, Gong Z B, Wang J, et al. Apple orchards in Zhaotong located in southwest cold highland: Current status of soil nutrients[J]. Chinese Agricultural Science Bulletin, 2019, 35(23): 66–71. DOI: 10.11924/j.issn.1000-6850.casb18030117

    [15] 陈昕楠, 王丽霞, 庞力豪, 等. 山东烟台苹果产区土壤pH值、有机质含量和速效养分含量调查[J]. 中国果树, 2019, (5): 25–28, 40.

    Chen X N, Wang L X, Pang L H, et al. Analysis of soil pH, organic matter and available nutrient contents in apple growing areas of Yantai in Shandong[J]. China Fruits, 2019, (5): 25–28, 40.

    [16] 刘君. 伊犁河谷苹果园土壤养分状况调查[J]. 浙江农业科学, 2013, (5): 544, 549.

    Liu J. Investigation on soil nutrient status of apple orchard in Yili River Valley[J]. Journal of Zhejiang Agricultural Sciences, 2013, (5): 544, 549.

    [17]

    Neilsen G H, Neilsen D. Nutritional requirements of apple[A]. Ferree D C, Warrington I J. Apples: botany, production and uses[M]. Wallingford, Oxon, UK: CABI Publishing, 2003. 267–302.

    [18]

    Siddique M, Ali S, Javed A S. Macronutrient assessment in apple growing region of Punjab[J]. Soil Environment, 2009, 28(2): 184–192.

    [19] 赵帅翔, 张卫峰, 姜远茂, 等. 黄土高原苹果过量施氮因素分析[J]. 植物营养与肥料学报, 2017, 23(2): 484–491. DOI: 10.11674/zwyf.16166

    Zhao S X, Zhang W F, Jiang Y M, et al. Factors leading to excessive nitrogen fertilization on apple in the Loess Plateau[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(2): 484–491. DOI: 10.11674/zwyf.16166

    [20] 王红叶, 李云国, 蔡兆翔, 等. 云南高原特色苹果施肥现状分析[J]. 中国果树, 2018, (3): 95–97.

    Wang H Y, Li Y G, Cai Z X, et al. Analysis of current fertilization status in apple orchards in Yunnan Plateau[J]. China Fruits, 2018, (3): 95–97.

    [21] 李帼英, 王花. 甘肃天水苹果施肥现状调查[J]. 中国果树, 2019, (2): 102–105.

    Li G Y, Wang H. Investigation on fertilization of apple orchards in Tianshui, Gansu[J]. China Fruits, 2019, (2): 102–105.

    [22] 李秉强. 静宁县南部果园施肥现状及建议[J]. 农业科技与信息, 2018, (5): 71–72, 76.

    Li B Q. Suggestions and status analysis on orchard fertilization in southern Jingning County[J]. Agricultural Science-Technology and Information, 2018, (5): 71–72, 76.

    [23] 柴仲平, 蒋平安, 王雪梅, 等. 新疆几种主要特色果树施肥现状调查研究[J]. 中国农学通报, 2008, 24(11): 231–234.

    Chai Z P, Jiang P A, Wang X M, et al. The investigation research of fertilization about several main characteristic fruit trees in Xinjiang[J]. Chinese Agricultural Science Bulletin, 2008, 24(11): 231–234.

    [24] 刘君. 伊犁州苹果园肥力与施肥现状[J]. 北方果树, 2014, (1): 50–52. DOI: 10.3969/j.issn.1001-5698.2014.02.034

    Liu J. Study on soil fertility and fertilization status of apple orchards in Yili[J]. Northern Fruits, 2014, (1): 50–52. DOI: 10.3969/j.issn.1001-5698.2014.02.034

    [25] 李玘, 尹兴, 张丽娟, 等. 河北燕山苹果产区土壤肥力与施肥现状评价[J]. 中国果树, 2019, (6): 32–37.

    Li Q, Yin X, Zhang L J, et al. Evaluation of soil fertility and fertilization status in Yanshan apple-producing area of Hebei Province[J]. China Fruits, 2019, (6): 32–37.

    [26] 郑成娟, 刘会芳, 刘忠华, 等. 滦南县北圈村苹果施肥现状分析[J]. 河北农业科学, 2017, 21(6): 32–35, 52.

    Zheng C J, Liu H F, Liu Z H, et al. Analysis on status of fertilization for apple in Beiquan Village of Luannan County[J]. Journal of Hebei Agricultural Sciences, 2017, 21(6): 32–35, 52.

    [27] 赵娜, 刘全清, 陈延军, 等. 曲周县苹果园施肥现状及评价[J]. 黑龙江农业科学, 2013, (1): 41–42. DOI: 10.3969/j.issn.1002-2767.2013.01.015

    Zhao N, Liu Q Q, Chen Y J, et al. The current status of fertilization and its evaluation of Quzhou apple orchard[J]. Heilongjiang Agricultural Sciences, 2013, (1): 41–42. DOI: 10.3969/j.issn.1002-2767.2013.01.015

    [28] 张延亮, 李达. 胶东地区苹果氮磷钾肥使用现状和效益分析[J]. 农业与技术, 2020, 40(23): 32–33.

    Zhang Y L, Li D. Application status and benefit analysis of nitrogen, phosphorus and potassium fertilizers for apple in Jiaodong area[J]. Agriculture and Technology, 2020, 40(23): 32–33.

    [29] 李磊, 张强, 闫敏, 等. 山西省苹果施肥现状调查[J]. 北方园艺, 2018, (24): 177–185.

    Li L, Zhang Q, Yan M, et al. Evaluation of the situation of fertilization in apple fields in Shanxi Province[J]. Northern Horticulture, 2018, (24): 177–185.

    [30] 郑小春, 卢海蛟, 车金鑫, 等. 白水县苹果产量及施肥现状调查[J]. 西北农林科技大学学报, 2011, 39(9): 145–151, 158.

    Zheng X C, Lu H J, Che J X, et al. Investigation of present yield and fertilization on Fuji apple in Baishui County[J]. Journal of Northwest A&F University, 2011, 39(9): 145–151, 158.

    [31] 杨秀山, 赵鲁邦, 张东, 等. 洛川县苹果果园施肥现状与对策[J]. 陕西农业科学, 2017, 63(1): 61–63. DOI: 10.3969/j.issn.0488-5368.2017.01.018

    Yang X S, Zhao L B, Zhang D, et al. Fertilization status and countermeasures of apple orchard in Luochuan County[J]. Shaanxi Agricultural Sciences, 2017, 63(1): 61–63. DOI: 10.3969/j.issn.0488-5368.2017.01.018

    [32] 赵佐平, 同延安, 刘芬, 等. 渭北旱塬苹果园施肥现状分析评估[J]. 中国生态农业学报, 2012, 20(8): 1003–1009. DOI: 10.3724/SP.J.1011.2012.01003

    Zhao Z P, Tong Y A, Liu F, et al. Assessment of current condition of household fertilization of apples in Weibei Plateau[J]. Chinese Journal of Eco-Agriculture, 2012, 20(8): 1003–1009. DOI: 10.3724/SP.J.1011.2012.01003

    [33] 李建刚, 侯宗海, 董元华. 丰县果树施肥的现状、存在问题及建议[J]. 江西农业学报, 2014, 26(11): 79–81. DOI: 10.3969/j.issn.1001-8581.2014.11.021

    Li J G, Hou Z H, Dong Y H. Present situation, existent problems of fertilization for fruit tree in Feng County and suggestions[J]. Acta Agriculturae Jiangxi, 2014, 26(11): 79–81. DOI: 10.3969/j.issn.1001-8581.2014.11.021

    [34] 李林光. 创新发展思路, 加快山东省苹果产业高质量发展[J]. 落叶果树, 2020, 52(4): 1–4.

    Li L G. Innovating development ideas to speed up the high-quality development of apple industry in Shandong Province[J]. Deciduous Fruits, 2020, 52(4): 1–4.

    [35] 张先茂, 孙世琨. 甘肃省苹果园土壤有效养分状况调查与评价[J]. 江西农业, 2019, (18): 125–128. DOI: 10.3969/j.issn.1674-1479.2019.02.105

    Zhang X M, Sun S K. Investigation and evaluation of soil available nutrient status of apple orchard in Gansu Province[J]. Jiangxi Agriculture, 2019, (18): 125–128. DOI: 10.3969/j.issn.1674-1479.2019.02.105

    [36] 李书田, 崔荣宗, 同延安, 等. 钾肥用量和施用时期对苹果产量、品质和果园钾素平衡的影响[J]. 中国果树, 2016, (5): 11–18, 28.

    Li S T, Cui R Z, Tong Y A, et al. Effects of potassium application rate and application period on apple yield, quality and potassium balance in orchard[J]. China Fruits, 2016, (5): 11–18, 28.

    [37]

    Liu Z J, Ma P Y, Zhai B N, et al. Soil moisture decline and residual nitrate accumulation after converting cropland to apple orchard in a semiarid region: Evidence from the Loess Plateau[J]. Catena, 2019, 181: 104080. DOI: 10.1016/j.catena.2019.104080

    [38] 葛顺峰, 姜远茂. 苹果减肥如何减[J]. 果农之友, 2015, (12): 21–22.

    Ge S F, Jiang Y M. Synergistically fill the gap in apple's fertilizer reduction technology[J]. Fruit Growers' Friend, 2015, (12): 21–22.

    [39]

    Zúñiga C E, Jarolmasjed S, Sinha R, et al. Spectrometric techniques for elemental profile analysis associated with bitter pit in apples[J]. Postharvest Biology and Technology, 2017, 128: 121–129. DOI: 10.1016/j.postharvbio.2017.02.009

    [40]

    Zhou J Y, Gu B J, Schlesinger W H, et al. Significant accumulation of nitrate in Chinese semi-humid croplands[J]. Scientific Reports, 2016, 6: 25088. DOI: 10.1038/srep25088

    [41]

    Huang Y N, Chang Q R, Li Z. Land use change impacts on the amount and quality of recharge water in the loess tablelands of China[J]. Science of the Total Environment, 2018, 628-629: 443–452. DOI: 10.1016/j.scitotenv.2018.02.076

    [42] 邓林, 王文科, 杨晓婷, 等. 关中盆地地下水硝酸盐含量的空间变异特征[J]. 干旱区资源与环境, 2008, 22(10): 152–155.

    Deng L, Wang W K, Yang X T, et al. Spatial variability of nitrate content of groundwater in Guanzhong Basin[J]. Journal of Arid Land Resources and Environment, 2008, 22(10): 152–155.

    [43] 孟秦倩. 黄土高原山地苹果园土壤水分消耗规律与果树生长响应[D]. 杨凌: 西北农林科技大学博士学位论文, 2011: 1–141.

    Meng Q Q. Soil moisture consumption pattern and growth response of hilly apple orchard in the Loess Plateau[D]. Yangling: PhD Dissertation of Northwest A&F University, 2011.1–141.

    [44] 杨学云, 李生秀, Brookes P C. 灌溉与旱作条件下长期施肥土剖面磷的分布和移动[J]. 植物营养与肥料学报, 2004, 10(3): 250–254. DOI: 10.3321/j.issn:1008-505X.2004.03.006

    Yang X Y, Li S X, Brookes P C. Phosphorus distribution and leaching in loessial soil profile with long-term fertilization under irrigation and rainfed condition[J]. Journal of Plant Nutrition and Fertilizers, 2004, 10(3): 250–254. DOI: 10.3321/j.issn:1008-505X.2004.03.006

    [45]

    Ge S F, Zhu Z L, Peng L, et al. Soil nutrient status and leaf nutrient diagnosis in the main apple producing regions in China[J]. Horticulture Plant Journal, 2018, 4: 89–93. DOI: 10.1016/j.hpj.2018.03.009

    [46]

    Wang Y Q, Shao M A, Liu Z P, et al. Characteristics of dried soil layers under apple orchards of different ages and their applications in soil water managements on the Loess Plateau[J]. Pedosphere, 2015, 25: 546–554. DOI: 10.1016/S1002-0160(15)30035-7

    [47] 张福锁, 马文奇, 陈新平, 等. 养分资源综合管理理论与技术概论[M]. 北京: 中国农业大学出版社, 2006.119–124.

    Zhang F S, Ma W Q, Chen X P, et al. Introduction to comprehensive management theory and technology of nutrient resources[M]. Beijing: China Agricultural University Press, 2006.119–124.

    [48]

    Liu Z J, Hou L Y, Zhu Y J, et al. Vertical distribution and regulation of Olsen-phosphorus in 6-m soil profiles after farmland-to-apple orchard conversion on the Chinese Loess Plateau[J]. Catena, 2021, 202: 105254. DOI: 10.1016/j.catena.2021.105254

    [49] 王绍强, 朱松丽, 周成虎. 中国土壤土层厚度的空间变异性特征[J]. 地理研究, 2001, 20: 161–169. DOI: 10.3321/j.issn:1000-0585.2001.02.005

    Wang S Q, Zhu S L, Zhou C H. Characteristics of spatial variability of soil thickness in China[J]. Geographical Research, 2001, 20: 161–169. DOI: 10.3321/j.issn:1000-0585.2001.02.005

    [50] 张大鹏, 姜远茂, 彭福田, 等. 常规施肥和滴灌施肥对苹果园土壤硝态氮分布的影响[J]. 山东农业科学, 2011, (10): 54–56. DOI: 10.3969/j.issn.1001-4942.2011.03.015

    Zhang D P, Jiang Y M, Peng F T, et al. Effects of conventional fertilization and fertigation on distribution of nitrate in apple orchard[J]. Shandong Agricultural Sciences, 2011, (10): 54–56. DOI: 10.3969/j.issn.1001-4942.2011.03.015

    [51] 陈学森, 郝玉金, 杨洪强, 等. 我国苹果产业优质高效发展的10项关键技术[J]. 中国果树, 2010, (4): 65–67.

    Chen X S, Hao Y J, Yang H Q, et al. Ten key technologies for high quality and efficient development of apple industry in China[J]. China Fruits, 2010, (4): 65–67.

    [52] 徐呈祥, 马艳萍. 苹果滴灌应用研究进展与述评[J]. 南京农专学报, 2000, 16(4): 32–39.

    Xu C X, Ma Y P. Advancement and review of applied researches on apple drip-irrigation[J]. Journal of Nanjing Agricultural Technology College, 2000, 16(4): 32–39.

    [53] 赵佐平, 高义民, 刘芬, 等. 化肥有机肥配施对苹果叶片养分、品质及产量的影响[J]. 园艺学报, 2013, 40(11): 2229–2236. DOI: 10.3969/j.issn.0513-353X.2013.11.015

    Zhao Z P, Gao Y M, Liu F, et al. Effects of organic manure application combined with chemical fertilizers on the leaf nutrition, quality and yield of Fuji apple[J]. Acta Horticulturae Sinica, 2013, 40(11): 2229–2236. DOI: 10.3969/j.issn.0513-353X.2013.11.015

    [54] 李云, 田琳. 果园简易水肥一体化的创新技术[J]. 北方果树, 2018, (5): 29–30.

    Li Y, Tian L. Innovative technology of simple water and fertilizer integration in orchard[J]. Northern Fruits, 2018, (5): 29–30.

    [55] 张大鹏, 姜远茂, 彭福田, 等. 滴灌施氮对苹果氮素吸收和利用的影响[J]. 植物营养与肥料学报, 2012, 18(4): 1013–1018. DOI: 10.11674/zwyf.2012.11272

    Zhang D P, Jiang Y M, Peng F T, et al. Effects of N application with dripping irrigation on N absorption and utilization of apple[J]. Journal of Plant Nutrition and Fertilizers, 2012, 18(4): 1013–1018. DOI: 10.11674/zwyf.2012.11272

    [56] 王志平, 周继华, 刘宝文, 等. 环绕滴灌施肥制度对苹果产量、水分利用和品质的影响[J]. 北方园艺, 2016, (5): 27–29.

    Wang Z P, Zhou J H, Liu B W, et al. Management of fertigation with surround drip irrigation on the influence of the yield, quality and WUE of apple trees[J]. Northern Horticulture, 2016, (5): 27–29.

    [57] 孙霞, 柴仲平, 蒋平安. 滴灌条件下水氮耦合对南疆红富士苹果品质的影响[J]. 核农学报, 2011, 25(5): 1042–1046.

    Sun X, Chai Z P, Jiang P A. Effect of water and nitrogen coupling on quality of red Fuji apple under drop irrigation condition in the south of Xinjiang[J]. Journal of Nuclear Agricultural Sciences, 2011, 25(5): 1042–1046.

    [58]

    Stewart W M, Dibb D W, Johnston A E, et al. The contribution of commercial fertilizer nutrients to food production[J]. Agronomy Journal, 2005, 97: 1–6. DOI: 10.2134/agronj2005.0001

    [59] 李树强, 葛颜祥. 兼顾生态效益的最佳施肥量研究—以全国苹果化肥投入为例[J]. 广东农业科学, 2019, 46(2): 131–138.

    Li S Q, Ge Y X. Study on the optimal fertilizer application with ecological benefits in mind—A case of apple fertilizer input in China[J]. Guangdong Agricultural Sciences, 2019, 46(2): 131–138.

    [60] 高晶晶, 彭超, 史清华. 中国化肥高用量与小农户的施肥行为研究—基于1995—2016年全国农村固定观察点数据的发现[J]. 管理世界, 2019, (10): 120–132. DOI: 10.3969/j.issn.1002-5502.2019.04.012

    Gao J J, Peng C, Shi Q H. Study on the high chemical fertilizer consumption and fertilization behavior of small rural household in China: Discovery from 1995 to 2016 national fixed point survey data[J]. Management World, 2019, (10): 120–132. DOI: 10.3969/j.issn.1002-5502.2019.04.012

    [61] 张聪颖, 冯晓龙, 霍学喜. 我国苹果主产区测土配方施肥技术实施效果评价—基于倾向得分匹配法的实证分析[J]. 农林经济管理学报, 2017, 16(3): 343–350.

    Zhang C Y, Feng X L, Huo X X. Effect evaluation of soil testing and formulated fertilization technology in major apple production areas: An empirical analysis with propensity score matching methods[J]. Journal of Agro-Forestry Economics and Management, 2017, 16(3): 343–350.

    [62] 马海洋, 同延安, 路永莉, 等. 诊断施肥综合法(DRIS)在渭北旱塬红富士苹果营养诊断中的应用[J]. 干旱地区农业研究, 2013, 31(2): 84–88, 99. DOI: 10.3969/j.issn.1000-7601.2013.02.016

    Ma H Y, Tong Y A, Lu Y L, et al. Application of DRIS in foliar nutrition diagnosis of Fuji apple trees in Weibei dryland of Shaanxi Province[J]. Agricultural Research in the Arid Areas, 2013, 31(2): 84–88, 99. DOI: 10.3969/j.issn.1000-7601.2013.02.016

    [63] 张瑶, 郑立华, 李民赞, 等. 基于光谱特征分析的苹果树叶片营养素预测模型构建[J]. 农业工程学报, 2013, 29(8): 171–178.

    Zhang Y, Zheng L H, Li M Z, et al. Construction of apple tree leaves nutrients prediction model based on spectral analysis[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(8): 171–178.

    [64] 何萍, 金继运, Pampolino M F, Johnston A M. 基于作物产量反应和农学效率的推荐施肥方法[J]. 植物营养与肥料学报, 2012, 18(2): 499–505. DOI: 10.11674/zwyf.2012.11248

    He P, Jing J Y, Pampolino M F, Johnston A M. Pampolino, Adrian M. Johnston. Approach and decision support system based on crop yield response and agronomic efficiency[J]. Journal of Plant Nutrition and Fertilizers, 2012, 18(2): 499–505. DOI: 10.11674/zwyf.2012.11248

    [65] 张强, 李民吉, 周贝贝, 等. 环渤海湾和黄土高原“富士”苹果园土壤养分与果实矿质元素关系的多变量分析[J]. 园艺学报, 2017, (8): 1439–1449.

    Zhang Q, Li M J, Zhou B B, et al. Multivariate analysis of relationship between soil nutrient and fruit mineral elements of 'Fuji' apple orchards in Circum-Bohai and Loess Plateau producing regions of China[J]. Acta Horticulturae Sinica, 2017, (8): 1439–1449.

    [66] 杜毅飞, 方凯凯, 王志康, 等. 生草果园土壤微生物群落的碳源利用特征[J]. 环境科学, 2015, (11): 4260–4267.

    Du Y F, Fang K K, Wang Z K, et al. Carbon source utilization characteristics of soil microbial community for apple orchard with interplanting herbage[J]. Environmental Science, 2015, (11): 4260–4267.

    [67] 刘富庭, 张林森, 李雪薇, 等. 生草对渭北旱地苹果园土壤有机碳组分及微生物的影响[J]. 植物营养与肥料学报, 2014, 20(2): 355–363. DOI: 10.11674/zwyf.2014.0211

    Liu F T, Zhang L S, Li X W, et al. Effects of inter-row planting grasses on soil organic carbon fractions and soil microbial community of apple orchard in Weibei dryland[J]. Journal of Plant Nutrition and Fertilizers, 2014, 20(2): 355–363. DOI: 10.11674/zwyf.2014.0211

    [68]

    Zheng W, Zhao Z Y, Gong Q L, et al. Responses of fungal-bacterial community and network to organic inputs vary among different spatial habitats in soil[J]. Soil Biology and Biochemistry, 2018, 125: 54–63. DOI: 10.1016/j.soilbio.2018.06.029

    [69] 吕丽霞, 王维, 王秀荣, 等. 渭北苹果园绿肥不同深度翻压腐解及养分释放规律[J]. 果树学报, 2018, 35(5): 586–595.

    Lü L X, Wang W, Wang X R, et al. Release of nutrients during the decomposition of green manure in different levels of the soil in an apple orchard in Weibei highland[J]. Journal of Fruit Science, 2018, 35(5): 586–595.

    [70] 陈学森, 张瑞洁, 王艳廷, 等. 苹果园种植长柔毛野豌豆结合自然生草对土壤综合肥力的影响[J]. 园艺学报, 2016, 43(12): 2325–2334.

    Chen X S, Zhang R J, Wang Y T, et al. Effects of growing hairy vetch (Vicia villosa) on the soil nutrient, enzyme activities and microorganisms in apple orchard[J]. Acta Horticulturae Sinica, 2016, 43(12): 2325–2334.

    [71] 郭鹏. 苹果园种植绿肥翻压还田替代化肥施用量试验[J]. 农业科技与信息, 2020, (12): 73–74. DOI: 10.3969/j.issn.1003-6997.2020.12.031

    Guo P. Experiment on the amount of green manure planted in apple orchard instead of chemical fertilizer[J]. Agricultural Science-Technology and Information, 2020, (12): 73–74. DOI: 10.3969/j.issn.1003-6997.2020.12.031

    [72] 李杨辉, 张朝阳, 席林乔, 等. 苹果园间作苜蓿绿肥对土壤理化性质的影响[J]. 塔里木大学学报, 2020, (3): 72–79. DOI: 10.3969/j.issn.1009-0568.2020.03.009

    Li Y H, Zhang Z Y, Xi L Q, et al. Effects of intercropping alfalfa green manure on soil physical and chemical properties in apple orchard[J]. Journal of Tarim University, 2020, (3): 72–79. DOI: 10.3969/j.issn.1009-0568.2020.03.009

    [73] 王林娜, 张朝阳, 王栋, 等. 南疆苹果园间作绿肥品种筛选[J]. 浙江农业科学, 2020, (7): 1303–1305.

    Wang L N, Zhang Z Y, Wang D, et al. Screening of green manure varieties for intercropping in apple orchards in southern Xinjiang[J]. Journal of Zhejiang Agricultural Sciences, 2020, (7): 1303–1305.

    [74] 秦景逸, 张云, 王秀梅, 等. 绿肥间作模式对苹果园土壤养分含量的影响[J]. 北方园艺, 2016, (11): 169–172.

    Qin J Y, Zhang Y, Wang X M, et al. Effect of interplanting green manure on soil nutrient content of apple orchard[J]. Northern Horticulture, 2016, (11): 169–172.

    [75] 弓萌萌, 王红, 张雪梅, 等. 不同有机肥施用量对苹果园土壤养分及酶活性的影响[J]. 西北林学院学报, 2019, (3): 74–78, 97. DOI: 10.3969/j.issn.1001-7461.2019.03.11

    Gong M M, Wang H, Zhang X M, et al. Effects of different organic fertilizer amounts on soil nutrient and enzyme activity of apple orchard[J]. Journal of Northwest Forestry University, 2019, (3): 74–78, 97. DOI: 10.3969/j.issn.1001-7461.2019.03.11

    [76] 李喜凤, 杨小妮, 罗艳君, 等. 生物炭及有机肥对苹果园土壤有机碳组分及果树生长的影响[J]. 西北农业学报, 2017, 26(4): 617–624. DOI: 10.7606/j.issn.1004-1389.2017.04.018

    Li X F, Yang X N, Luo Y J, et al. Effect of combination of biochar and organic fertilizers on soil organic carbon fractions, growth and yield of apple orchard[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2017, 26(4): 617–624. DOI: 10.7606/j.issn.1004-1389.2017.04.018

    [77] 张玲, 田丽, 勾薇, 等. 生物炭及沼液对苹果园土壤和叶片营养及果实产量品质的影响[J]. 中国果树, 2015, (4): 10–13.

    Zhang L, Tian L, Gou W, et al. Effects of biochar and biogas slurry on soil and leaf nutrition and fruit yield and quality in apple orchard[J]. China Fruits, 2015, (4): 10–13.

    [78] 王宪玲, 赵志远, 马艳婷, 等. 基于CT扫描技术研究有机无机肥长期配施对土壤物理特征的影响[J]. 植物营养与肥料学报, 2020, 26(9): 1647–1655. DOI: 10.11674/zwyf.20012

    Wang X L, Zhao Z Y, Ma Y T, et al. Study on the effects of long-term application of chemical fertilizer combined with manure on soil physical properties of apple orchard based on CT scanning technology[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(9): 1647–1655. DOI: 10.11674/zwyf.20012

    [79] 葛顺峰, 姜远茂, 彭福田, 等. 春季有机肥和化肥配施对苹果园土壤氨挥发的影响[J]. 水土保持学报, 2010, 24(5): 199–203.

    Ge S F, Jiang Y M, Peng F T, et al. Effect of chemical fertilizers application combined with organic manure on ammonia volatilization in apple orchard[J]. Journal of Soil and Water Conservation, 2010, 24(5): 199–203.

    [80] 葛顺峰, 周乐, 门永阁, 等. 添加不同碳源对苹果园土壤氮磷淋溶损失的影响[J]. 水土保持学报, 2013, 27(2): 31–35.

    Ge S F, Zhou L, Men Y G, et al. Effect of carbon application on nitrogen and phosphorus leaching in apple orchard soils[J]. Journal of Soil and Water Conservation, 2013, 27(2): 31–35.

    [81] 刘会, 朱占玲, 彭玲, 等. 生物质炭改善果园土壤理化性状并促进苹果植株氮素吸收[J]. 植物营养与肥料学报, 2018, 24(2): 454–460. DOI: 10.11674/zwyf.17155

    Liu H, Zhu Z L, Peng L, et al. Applying biochar to improve soil physical and chemical properties and nitrogen utilization by apple trees[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(2): 454–460. DOI: 10.11674/zwyf.17155

    [82] 闫明灏, 翟丙年, 于昕阳, 等. 水肥优化管理对渭北旱塬红富士苹果水分利用的影响[J]. 西北农林科技大学学报(自然科学版), 2016, 44(1): 81–90.

    Yan M H, Zhai B N, Yu X Y, et al. Effect of optimized water and fertilizer management on water use of Fuji apple in Weibei Dryland[J]. Journal of Northwest A& F University(Natural Science Edition), 2016, 44(1): 81–90.

    [83] 巩庆利, 翟丙年, 郑伟, 等. 渭北旱地苹果园生草覆盖下不同肥料配施对土壤养分和酶活性的影响[J]. 生态学报, 2018, 29(1): 205–212.

    Gong Q L, Zhai B N, Zheng W, et al. Effects of grass cover combined with different fertilization regimes on soil nutrients and enzyme activities in apple orchard in Weibei dryland, China[J]. Acta Ecologica Sinica, 2018, 29(1): 205–212.

    [84] 王玫, 徐少卓, 刘宇松, 等. 生物炭配施有机肥可改善土壤环境并减轻苹果连作障碍[J]. 植物营养与肥料学报, 2018, 24(1): 220–227. DOI: 10.11674/zwyf.17073

    Wang M, Xu S Z, Liu Y S, et al. Improvement of soil properties and control of apple replanting disease by combined application of biochar and organic fertilizer[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(1): 220–227. DOI: 10.11674/zwyf.17073

    [85] 王利民, 刘佳, 高建孟. 中国苹果空间分布格局及年际动态变化分析[J]. 中国农业信息, 2019, 31(4): 84–93. DOI: 10.12105/j.issn.1672-0423.20190409

    Wang L M, Liu J, Gao J M. Analysis of spatial pattern and inter-annual dynamics of apple planting area in China[J]. China Agricultural Information, 2019, 31(4): 84–93. DOI: 10.12105/j.issn.1672-0423.20190409

  • 期刊类型引用(26)

    1. 赵会芳,刘双安,刘晓燕. 洛川县苹果园化肥减量增效施肥模式. 北方果树. 2025(01): 26-29+33 . 百度学术
    2. 彭静,吕明露,刘春铃,武文菊,张瑞瑞,郭子森,丁琰峰,主春福,朱占玲,葛顺峰. 减磷配施生物炭对盆栽苹果土壤磷有效性及幼苗磷吸收的影响. 中国果树. 2025(03): 17-22 . 百度学术
    3. 高嵩涓,张宇亭,曹卫东. “绿肥果茶园”新理念、效应及应用. 植物营养与肥料学报. 2025(03): 588-596 . 本站查看
    4. 王中华,杨青松,李晓刚,董彩霞,徐阳春. 生物有机肥对果园生产的影响研究进展. 果树资源学报. 2024(01): 109-114 . 百度学术
    5. 李淑艳. 基于农机和水肥一体化模式探讨苹果种植中化肥合理施用量. 中国农机装备. 2024(01): 85-87 . 百度学术
    6. 覃寒晗,汪秋依,倪伟,谢洪梅,关亚菲,朱占玲,葛顺峰,姜远茂. 高钾条件下镁对苹果植株生长和光合碳代谢的影响. 植物生理学报. 2024(06): 998-1006 . 百度学术
    7. 杨睿晴,李艳杰,赵鑫,柳鹭,杨建豪,王琛,张丽娟. 河北矮砧密植苹果园养分投入与叶片营养状况分析与评价. 河北农业大学学报. 2024(04): 17-27 . 百度学术
    8. 周罕觅,马林爽,孙旗立,陈佳庚,李纪琛,苏裕民,陈诚,吴奇. 基于多目标综合评价的苹果水氮综合调控. 中国农业科学. 2024(18): 3654-3670 . 百度学术
    9. 刘亚南,白美健,李益农,张宝忠,史源,吴现兵,史力诚. 黄金梨树氮素营养状况对不同水氮用量的响应. 灌溉排水学报. 2023(01): 8-15 . 百度学术
    10. 王梦樊,吉艳芝,刘娉妤,郭艳杰,张丽娟. 果园土壤氮损失监测方法研究进展. 植物营养与肥料学报. 2023(03): 553-572 . 本站查看
    11. 史浩田,王明达,赵家锐,张振兴,徐新朋,刘占军. 基于产量反应和农学效率的苹果养分专家系统构建及验证. 植物营养与肥料学报. 2023(03): 496-510 . 本站查看
    12. 邵俊飞,尹静,李贵杰,孙洪助,李慧敏,张金军,丁方军. 化肥减量配合有机肥部分替代对土壤性状及苹果产量和品质的影响. 山东农业科学. 2023(03): 124-131 . 百度学术
    13. 李廷强,郝点. 我国耕地“非粮化”现状及其复耕培肥技术研究进展. 应用生态学报. 2023(06): 1703-1712 . 百度学术
    14. 豆鑫,王浦,贺军强,卢幸蓉,庞宏兵,张英驰,赵亚龙. 不同肥料配施对矮砧密植苹果幼树生长发育的影响. 中国果菜. 2023(07): 37-41 . 百度学术
    15. 安绪华. 临沂市果园土壤养分状况与地力提升措施. 中国农技推广. 2023(08): 66-69 . 百度学术
    16. 李思奇,王志慧,常玉瑶,吉艳芝,郭艳杰,刘俊,张丽娟,王娅静. 河北永定河流域葡萄园土壤硝态氮空间分布特征. 中国农业科学. 2023(17): 3399-3411 . 百度学术
    17. 周罕觅,孙旗立,牛晓丽,陈佳庚,马林爽,苏裕民,李纪琛. 滴灌节水减氮对苹果幼树生长与光合特征的影响. 灌溉排水学报. 2023(11): 49-57 . 百度学术
    18. 安绪华,刘庆娟,闫宏,孙玉莹,郭学习. 临沂市苹果园化肥投入现状与土壤养分状况调查. 农业科技通讯. 2022(03): 157-160 . 百度学术
    19. 黄海琴. 苹果园秋季综合管理技术研究. 种子科技. 2022(05): 40-42 . 百度学术
    20. 张铎,李岚涛,林迪,郑龙辉,耿赛男,石纹碹,盛开,苗玉红,王宜伦. 施磷水平对菊芋块茎产量、品质、植株生理特性与磷利用率的影响. 草业学报. 2022(06): 139-149 . 百度学术
    21. 郭路航,王贺鹏,李妍,许傲,李文超,孙志梅,马文奇. 河北太行山山前平原葡萄园土壤硝态氮累积特征及影响因素. 水土保持学报. 2022(03): 280-285 . 百度学术
    22. 程冬冬,唐亚福,刘艳,李俊银,姚媛媛,杨越超. 活化腐植酸肥料对苹果幼树的生长和养分利用的影响. 中国土壤与肥料. 2022(04): 83-90 . 百度学术
    23. 胡化涛,费丽彬,邓明江,王忆,许雪峰,韩振海. 陇东地区苹果园应用生物活性素的效应. 干旱地区农业研究. 2022(04): 88-98 . 百度学术
    24. 杨粉莉. 咸阳市绿色生态苹果园高质量发展的实践与探索. 果树资源学报. 2022(06): 81-84+90 . 百度学术
    25. 解斌,赵德英,陈艳辉,程存刚,安秀红,厉恩茂,袁继存,康国栋,周江涛,李燕青. 不同品种苹果幼树对氮磷亏缺的生理响应. 植物营养与肥料学报. 2022(11): 2106-2117 . 本站查看
    26. 区惠平,彭嘉宇,周柳强,黄金生,朱晓晖,曾艳,谢如林,谭宏伟,雷秋良. 百色芒果主产区果园施肥状况及减施潜力分析. 南方农业学报. 2021(12): 3375-3381 . 百度学术

    其他类型引用(34)

图(4)  /  表(1)
计量
  • 文章访问数:  1664
  • HTML全文浏览量:  823
  • PDF下载量:  160
  • 被引次数: 60
出版历程
  • 收稿日期:  2020-12-15
  • 录用日期:  2021-05-11
  • 网络出版日期:  2021-08-13
  • 刊出日期:  2021-07-24

目录

/

返回文章
返回