Dry matter accumulation and yield characteristics of high-nitrogen efficient rice cultivars under different ecological conditions
-
摘要:目的
研究生态条件和施氮水平及其互作对氮高效水稻品种干物质积累、物质转运和产量的影响,为不同稻区不同施氮水平下选择适宜的水稻品种提供科学依据。
方法本试验于2019年在四川省大邑县(弱光寡照)和云南省永胜县(光温充足)两个生态点进行,以西南地区大范围种植的10个水稻品种为供试材料,采用两因素裂区设计,主区为不施氮(N0)、低氮120 kg/hm2 (N120)和高氮180 kg/hm2 (N180) 3个施氮水平,副区为10个品种。分别于拔节期、抽穗期和成熟期测定干物重,计算不同时期干物质积累和转运量,于收获后测定水稻产量。
结果水稻产量和干物质生产特性为生态条件、施氮水平、品种及其互作效应共同作用的结果。大邑生态点宜香优1108在N120下的产量比N180提高4.68%,永胜点德优4923在N120施氮水平下的产量比N180提高113.4 kg/hm2,结合产量和GGE模型分析,大邑生态点宜香优1108为低氮高效型,晶两优534和F优498为高氮高效型;永胜点德优4923为低氮高效型,中优295和丰优香占为高氮高效型。氮高效水稻干物质积累和转运特征因生态条件和施氮量的变化而变化。大邑低氮高效型品种产量主要来自拔节前干物质的积累和抽穗前光合产物的转化,产量优势在于足量的单位面积有效穗数,移栽至拔节期的群体生长率与产量(r=0.70**)和有效穗数(r=0.41*)呈显著正相关;大邑生态点高氮高效型品种抽穗至成熟期群体生长率和穗后干物质积累量对籽粒的贡献率明显高于其它品种,产量与抽穗至成熟期群体生长率(r=0.56**)和穗后干物质积累量对籽粒的贡献率(r=0.37*)呈显著正相关关系;永胜低氮高效型品种干物质积累特征在于拔节至抽穗期群体生长率和穗前干物质转化对籽粒的贡献率较高,千粒重较同处理平均值提高13.61%;永胜高氮高效型品种具有拔节至抽穗期高群体生长率的物质生产特性,产量优势在于较高的每穗颖花数,该点拔节至抽穗期群体生长率与产量(r = 0.60**)和每穗颖花数(r = 0.68**)均呈极显著正相关关系。
结论在大邑等弱光寡照地区,低氮高效型品种应保证前期较高的生长速率和穗前干物质转化对籽粒的贡献率;高氮高效型品种应保持抽穗后高群体生长率并增加穗后光合产物的积累。在永胜等光温充足地区,拔节至抽穗期较高的群体生长率是低氮高效型和高氮高效型品种共同的物质生产特征。
Abstract:ObjectivesThis study examines the dry matter accumulation, material transportation and yield of N-efficient rice cultivars in response to ecological conditions and N application levels. We aim to provide a scientific basis for selecting suitable rice cultivars in different ecological regions.
MethodsField experiments were conducted in two ecological sites; one with low light (Dayi County, Sichuan Province, DYS) and the other with sufficient light and temperature (Yongsheng County, Yunnan Province, YSY). Ten rice cultivars were used as test materials. Each cultivar was subjected to three N application levels (0, 120 and 180 kg/hm2). The rice dry matter accumulation (DMA) was measured at the jointing, heading, and maturity stages. The dry matter translocation's (DMT) contribution to yield was calculated and the rice yield was evaluated at harvest.
ResultsThe ecological condition, N level, cultivar, and their interaction affected rice yield and dry matter accumulation. Cultivar Yixiangyou 1108 in DYS and Deyou 4923 in YSY recorded higher yield at N120 than at N180. According to GGE model analysis, Yixiangyou 1108 was a low-N-efficient cultivar, Jingliangyou 534 and F-you 498 were high-N-efficient cultivars in DYS. Deyou 4923 was a low-N-efficient cultivar, Zhongyou 295 and Fengyouxiangzhan were high-N-efficient cultivars in YSY. The DMA and DMT of high-N-efficient cultivars were affected by ecological conditions and N levels. In DYS, the yield of low-N-efficient cultivar was driven by DMA and DMT before jointing, depending on the number of effective panicles per unit area. Pre-jointing population growth rate (PGR) was significantly and positively correlated with yield (r = 0.70**) and effective panicle number (r = 0.41*). In DYS, high-N-efficient cultivars had (P<0.05) higher DMT after heading and growth rate from heading to maturity compared to other cultivars. Rice yield was positively correlated with PGR from heading to maturity (r = 0.56**) and DMT after heading (r = 0.37*). The low-N-efficient cultivar in YSY had higher PGR from jointing to heading stage, higher DMT before heading, and the 1000-grain weight was 13.61% higher than the average value in the same treatment. In YSY, high-N-efficient cultivars had high PGR from jointing to heading stage. The yield advantage correlated to the high number of spikelets per panicle. The PGR from jointing to heading had a (P<0.05) positive correlation with yield (r = 0.60**) and spikelet number (r = 0.68**).
ConclusionsIn low-light areas such as DYS, low-N-efficient cultivars' high yield is dependent on rapid PGR and high DMT before the heading stage. In contrast, high-N-efficient cultivars yield depends on high PGR and dry mater accumulation after the heading stage. In areas with adequate light and temperature, such as YSY, the higher PGR from jointing to heading stage was a common feature of low and high N efficient cultivars.
-
Keywords:
- rice /
- ecological conditions /
- nitrogen fertilizer /
- dry matter production /
- yield
-
氮肥的合理施用是调控水稻产量的重要措施,其在我国水稻增产中发挥了重要作用[1-2]。然而盲目投入氮肥不仅导致稻米品质下降、环境污染等问题,还会降低水稻的产量和氮肥吸收利用率[3-5]。目前我国氮肥利用率仅为34%,远低于世界平均水平(46%)[6-7]。选育和推广种植高产且氮高效的水稻品种,是提高氮肥利用率、减少氮肥对环境污染的有效途径。氮肥利用率一般被定义为籽粒产量与供氮量的比值,目前普遍将籽粒产量高于相同氮处理下平均产量的品种定义为氮高效基因型[8-9]。有关氮高效水稻品种的相关特性,前人已进行了大量研究,从干物质积累[10-11]、光合生理[12-13]、基因组学分析[14-15]、氮素吸收利用[16-17]等方面研究了其营养元素吸收、光合物质生产、产量形成等特点。明确氮高效水稻品种达到高产的原因及其品种特性,不仅可以为氮高效水稻品种的选育和应用提供科学依据,还有助于稳定和提高我国粮食生产能力和效益,保障国家粮食安全。
水稻籽粒产量的形成实际上是干物质生产与分配的过程,不同时期的干物质积累量和向穗部的转运量能明显影响水稻产量[18-19]。梁健等[10]认为氮高效型水稻抽穗后群体生长率和干物质积累量与产量呈正相关。然而不同生态环境下水稻产量和干物质积累特性有明显差异,高光强地区水稻生育后期光合产物对产量的贡献比例较大且稳定,适宜的温度和湿度有助于抽穗后干物质的积累和转运,从而实现水稻高产[20-22]。目前有关氮高效水稻品种或不同生态条件对水稻干物质生产和产量形成影响的研究已较为深入,然而不同氮效率品种产量形成及干物质积累特征与生态条件及施氮水平的互作相关研究还不足。因此,本研究选取西南地区大邑(弱光寡照)和永胜(光温充足)两个典型生态稻区,研究两个生态条件下不同氮效率品种在不同施氮量下的水稻干物质积累、转运和产量形成特性,以期为不同生态稻区氮高效品种的选择提供理论与实践依据。
1. 材料与方法
1.1 试验材料
以西南地区近年来主推的籼型三系杂交稻和籼型两系杂交稻共计10个品种为供试材料,具体品种来源见表1。
表 1 供试水稻品种简介Table 1. Introduction of rice varieties品种类型
Variety type品种名称
Variety name亲本来源
Parental source品种缩写
Variety abbreviation籼型两系杂交稻
Two-line indica hybrid rice晶两优华占 Jingliangyouhuazhan 晶 4155S×华占 Jing 4155S×Huanzhan 2-JLYHZ 晶两优 534 Jingliangyou 534 晶 4155S×R534 Jing 4155S×R534 2-JLY 534 籼型三系杂交稻
Three-line indica hybrid rice宜香优 1108 Yixiangyou 1108 宜香 1A×宜恢1108 Yixiang 1A×Yihui 1108 3-YXY 1108 川优 6203 Chuanyou 6203 川 106A×成恢 3203 Chuan 106A×Chenghui 3203 3-CY 6203 宜香优 2168 Yixiangyou 2168 宜香 1A×HR2168 Yixiang 1A×HR2168 3-YXY 2168 丰优香占 Fengyouxiangzhan 粤丰 A×R6547 Yuefeng A×R6547 3-FYXZ 中优 295 Zhongyou 295 中 9A×禾恢 295 Zhong 9A×Hehui 295 3-ZY 295 F 优 498 F you 498 FS3A×蜀恢 498 FS3A×Shuhui 498 3-FY 498 宜香优 2115 Yixiangyou 2115 宜香 1A×雅恢 2115 Yixiang 1A×Yahui 2115 3-YXY 2115 德优 4923 Deyou 4923 德香 074A×R4923 Dexiang 074A×R4923 3-DY 4923 注:2—籼型两系杂交稻;3—籼型三系杂交稻。
Note: 2—Two-line indica hybrid rice; 3—Three-line indica hybrid rice.1.2 试验点概况
试验于2019年分别在四川省成都市大邑县(30°30′30′′N,103°36′15′′E)和云南省丽江市永胜县(26°43′31″N,100°41′27″E)实施,大邑地处四川盆地西平原区,海拔492 m,属弱光寡照区;永胜地处高原稻区,海拔1554 m,属光温充足区。水稻生育期气象资料见表2。土壤耕层基础肥力如下:大邑土壤有机质32 g/kg、碱解氮151 mg/kg、速效磷31.3 mg/kg、速效钾189 mg/kg、pH为5.79;永胜土壤有机质32 g/kg、碱解氮146 mg/kg、速效磷23.1mg/kg、速效钾210 mg/kg、pH为6.74。
表 2 两生态点气象因子差异Table 2. The meteorological factors at the two ecological sites气象因子
Meteorological factor移栽—拔节期
TS–JS拔节—抽穗期
JS–HS抽穗—成熟期
HS–MS全生育期
Whole growth period四川大邑
DYS云南永胜
YSY四川大邑
DYS云南永胜
YSY四川大邑
DYS云南永胜
YSY四川大邑
DYS云南永胜
YSY积温 (℃)
Accumulated temperature1145.3 1623.7 839.2 729.6 1010.6 994.5 2997.3 3347.8 降雨量 (mm)
Rainfall266.1 422.5 485.5 252.0 733.4 339.8 1487.6 1014.2 日照时数 (h)
Sunshine hour134.9 359.2 90.4 168.6 105.6 209.0 331.0 736.9 注:水稻生育期大邑为4月20日至9月24日,永胜为4月5日至10月10日。
Note:The growth period of rice in Dayi is April 20–September 24, in Yongsheng is April 5–October 10. TS—Transplanting stage; JS—Jointing stage; HS— Heading stage; MS—Maturing stage. DYS—Dayi County of Sichuan Province; YSY—Yongsheng county of Yunnan Province.1.3 试验设计
各试验点均采用两因素裂区试验设计,主区为施氮水平,包括N 180 kg/hm2 (N180)、120 kg/hm2 (N120)、0 kg/hm2 (N0) 3个处理;副区为品种,共10个品种,每个处理3次重复,共90个试验小区,小区面积10 m2。其中宽度为一个6行机作业标准宽度1.8 m,为方便机械作业,区组间预留2 m转弯道。小区间筑土埂并用塑料薄膜包裹,以防串水串肥,其他管理措施一致。两试验点采用当地育秧方式培育机插壮秧,机插行穴距为30 cm×20 cm,每穴2~4株苗。氮肥按基肥、蘖肥、穗肥比例为4∶3∶3施用;磷肥施用量均为P2O5 75 kg/hm2,作基肥一次性施用;钾肥施用量为K2O 150 kg/hm2,分基肥和穗肥两次等量施用。其他管理措施同当地常规高产栽培大田管理。
1.4 测定项目与方法
1.4.1 水稻群体干物质积累与转运特性
于拔节期、抽穗期、成熟期按水稻平均茎蘖数法取样,每小区取3穴,去根,分解为茎、叶、穗(拔节期分为茎、叶),装袋,在105℃下杀青60 min,75℃下烘干至恒重并称重,计算各处理植株干物质积累与分配。
1.4.2 产量及其构成因素测定
于成熟期调查60穴有效穗数,各小区按平均穗数取5穴,考察穗粒数、结实率、千粒重等产量构成因素。各小区剩余植株于成熟期单打单收,去杂称重并测定水分含量,按13.5%的标准含水量计算实际收获产量。
1.4.3 相关计算公式
群体生长率 [g/(m2·d)] = (M2–M1) / (T2–T1)
式中:T1、T2为取样时期;M1、M2分别为T1、T2时间的干物重。
穗前茎鞘干物质输出率(%) = (抽穗期茎鞘干物重–成熟期茎鞘干物重) /抽穗期茎鞘干物重×100
穗前茎鞘干物质转化对籽粒的贡献率(%) = (抽穗期茎鞘干物重–成熟期茎鞘干物重) /成熟期籽粒干物重×100
穗前叶片干物质输出率(%) = (抽穗期叶片干物重–成熟期叶片干物重) /抽穗期叶片干物重×100
穗前叶片干物质转化对籽粒的贡献率(%) = (抽穗期叶片干物重–成熟期叶片干物重) /成熟期籽粒干物重×100
穗前干物质转化对籽粒的贡献率(%)=穗前茎鞘干物质转化对籽粒的贡献率+穗前叶片干物质转化对籽粒的贡献率
穗后干物质积累量对籽粒的贡献率 (%) =(成熟期干物重–抽穗期干物重) /成熟期籽粒干物重×100
1.5 统计分析
用Microsoft Excel 2016整理数据。用SPSS 27.0系统软件分析数据,用LSD (least significant difference test)进行样本平均数的差异显著性比较,基于 R语言的R Studio软件的 GGE BiplotGUI软件包进行GGE模型分析。
2. 结果与分析
2.1 品种、施氮量、生态点及其互作对水稻干物质生产特性和产量的影响
由表3可知,杂交籼稻的干物质生产特性和产量是品种、氮肥处理、生态点共同作用的结果。品种、氮肥处理、生态点的主效和三者间的互作以及品种与氮肥间的互作效应极显著影响各时期群体生长率、穗前干物质转化和穗后干物质积累量对籽粒的贡献率,品种与生态点互作效应极显著影响拔节后群体生长率、穗前干物质转化和穗后干物质积累量对籽粒的贡献率,氮肥处理和生态点互作效应则主要影响抽穗前群体生长率和穗前干物质转化对籽粒的贡献率。此外,产量受到品种、氮肥处理、生态点的主效和品种与生态点、氮肥处理与生态点互作效应的极显著影响。
表 3 品种、氮肥和生态点对产量和干物质生产的作用分析(F值)Table 3. Effect of variety, N application, and location on rice yield and dry matter production (F-value)变异来源
Source of variation群体生长率 Population growth rate CDMTR CDMAH 产量
Yield移栽—拔节期
TS–JS拔节—抽穗期
JS–HS抽穗—成熟期
HS–MS品种 Variety (V) 3.07** 31.92** 3.85** 8.77** 4.17** 7.45** 氮肥处理 N treatment (N) 61.04** 38.76** 71.20** 21.32** 99.69** 208.02** 生态点 Location (L) 600.97** 9144.08** 568.64** 993.66** 917.97** 180.02** V×N 2.44** 8.87** 2.84** 3.86** 3.30** 0.99 V×L 1.22 35.83** 4.40** 3.45** 4.43** 2.71** N×L 22.08** 16.18** 1.11 6.82** 0.59 5.36** V×N×L 2.51** 8.29** 3.10** 7.51** 3.58** 1.18 注:CDMTR—穗前干物质转化对籽粒的贡献率;CDMAH—穗后干物质积累量对籽粒的贡献率;**—P<0.01。
Note:TS—Transplanting stage; JS—Jointing stage; HS—Heading stage; MS—Maturing stage; CDMTR—Contribution of dry matter transformation before heading for grain; CDMAH—Contribution of dry matter accumulation after heading for grain. **—P<0.01.2.2 生态条件和氮肥处理对水稻产量的影响
两个生态条件下,不同品种和氮肥处理的产量及其构成因素均有较大差异(表4)。在各氮肥处理下永胜的单位面积有效穗数比大邑提高17.10%~23.47%,从而产量较大邑提高12.28%~18.40%。氮肥主要通过增加单位面积有效穗数和每穗颖花数来显著提高产量,N120和N180处理的有效穗数比N0提高16.98%~23.55%,颖花数比N0提高12.78%~17.15%。不同品种间产量差异显著,且在两生态点不同氮肥处理下品种间差异有所不同。大邑生态点,N120处理下以宜香优1108和F优498产量最高,宜香优1108产量优势在于其有效穗数和千粒重较高,而F优498则归因于其每穗颖花数和结实率高;N180处理下F优498产量最高,该品种产量优势在于每穗颖花数和结实率较高,分别比同处理平均值高出10.27%和9.96%;10个品种中宜香优1108和川优6203在N120处理下的产量比N180处理下分别提高4.68%和7.02%,而其余品种的产量则随施氮量的增加而增加。永胜生态点,N120处理下以中优295和德优4923产量最高,其中中优295的每穗颖花数最高,德优4923籽粒灌浆充实,千粒重较同处理平均值高13.61%;N180处理下中优295和丰优香占产量最高,两个品种的产量优势均在于每穗颖花数较高,分别比同处理其他品种平均值提高了22.84%和18.33%;10个品种中川优6203、宜香优2115和德优4923在N120下的产量比N180处理分别高了142.95、360.05和113.37 kg/hm2,其它品种产量则随施氮量增加而增加。
表 4 两个生态点不同氮肥用量下10个品种水稻产量及产量构成因素Table 4. Yield and yield components of ten rice varieties under different N application rates in the Dayi and Yongsheng sites施氮量
N application
(kg/hm2)品种
Variety有效穗数 (×104/hm2)
Effective panicle number每穗颖花数
Spikelet number per panicle结实率 (%)
Seed-setting rate千粒重 (g)
1000-grain weight产量 (t/hm2)
Yield大邑
Dayi永胜
Yongsheng大邑
Dayi永胜
Yongsheng大邑
Dayi永胜
Yongsheng大邑
Dayi永胜
Yongsheng大邑
Dayi永胜
Yongsheng0 2-JLYHZ 213.7 a 262.7 a 177.1 ab 152.2 d 88.90 cd 94.68 bcd 22.24 f 21.02 f 6.875 bc 7.934 bc 3-YXY 1108 173.1 d 204.6 cd 149.7 c 157.5 c 85.49 de 98.30 a 30.40 cd 27.93 d 7.391 abc 8.812 a 2-JLY 534 187.0 bc 246.2 ab 172.1 b 146.8 e 89.31 cd 96.06 ab 22.57 f 23.07 e 7.003 bc 7.990 bc 3-CY 6203 178.4 cd 201.9 cd 142.3 cd 140.8 f 90.12 bc 95.05 bcd 30.90 c 29.19 c 7.223 abc 7.849 bcd 3-YXY 2168 194.9 b 193.8 cd 118.3 e 145.5 e 87.78 cd 91.46 e 33.19 b 28.84 c 6.633 c 7.365 d 3-FYXZ 139.4 g 175.1 cd 196.7 a 183.2 a 89.86 bc 93.40 cde 29.60 d 28.22 d 6.921 bc 8.400 ab 3-ZY 295 157.8 ef 178.2 cd 176.1 ab 170.5 b 83.61 ef 94.01 bcd 28.09 e 27.83 d 7.640 ab 7.860 bcd 3-FY 498 154.8 f 168.6 d 176.0 ab 171.4 b 95.43 a 96.04 ab 29.39 d 28.26 d 7.868 a 7.815 cd 3-YXY 2115 168.5 de 213.2 bc 123.7 de 119.2 g 93.30 ab 95.93 abc 35.93 a 33.16 a 7.068 abc 8.019 bc 3-DY 4923 169.1 de 189.5 cd 157.4 bc 159.0 c 81.58 f 92.54 de 32.59 b 31.71 b 7.388 abc 8.809 a 平均 Mean 173.7 B 203.4 B 158.9 A 154.5 B 88.54 A 94.75 A 29.49 A 27.92 A 7.201 B 8.085 B 120 2-JLYHZ 234.7 a 331.7 a 184.3 cd 169.7 c 85.12 cd 90.52 a 23.27 e 20.95 g 9.046 ab 10.326 abcd 3-YXY 1108 218.5 ab 261.6 bc 157.7 ef 172.1 bc 88.64 abc 88.62 abc 31.72 b 27.87 e 9.771 a 10.797 abcd 2-JLY 534 225.6 ab 298.2 ab 225.5 a 173.2 b 83.66 d 89.93 ab 22.27 e 23.02 f 9.219 ab 10.371 abcd 3-CY 6203 213.2 abc 228.8 cd 155.6 f 163.8 d 91.46 a 91.74 a 30.73 bc 29.12 c 8.723 abc 9.665 d 3-YXY 2168 221.7 ab 256.8 bcd 130.1 g 157.4 e 88.99 abc 86.73 bc 32.48 b 28.77cd 7.783c 9.755 cd 3-FYXZ 178.1 de 208.1 d 204.5 abc 209.2 a 88.76 abc 91.30 a 28.70 d 28.15 de 8.489 bc 10.825 abcd 3-ZY 295 172.4 e 229.7 cd 212.4 ab 210.0 a 86.25 bcd 86.50 c 28.32 d 27.76 e 8.739 abc 11.304 a 3-FY 498 175.9 de 207.6 d 196.8 bcd 209.3 a 92.10 a 91.81 a 29.12 cd 28.13 de 9.628 ab 10.882 abc 3-YXY 2115 190.0 cde 237.2 cd 151.5 f 144.2 f 90.45 ab 91.61 a 34.27 a 33.09 a 8.799 abc 10.044 bcd 3-DY 4923 201.4 bcd 249.3 bcd 177.5 de 160.8 d 74.65 e 89.14 abc 31.90 b 31.64 b 8.487 bc 11.035 ab 平均 Mean 203.2 A 250.9 A 179.6 A 177.0 A 87.01 A 89.79 B 29.28 A 27.85 A 8.868 A 10.500 A 续表 4 Table 4 continued 施氮量
N application
(kg/hm2)品种
Variety有效穗数 (×104/hm2)
Effective panicle number每穗颖花数
Spikelet number per panicle结实率 (%)
Seed-setting rate千粒重 (g)
1000-grain weight产量 (t/hm2)
Yield大邑
Dayi永胜
Yongsheng大邑
Dayi永胜
Yongsheng大邑
Dayi永胜
Yongsheng大邑
Dayi永胜
Yongsheng大邑
Dayi永胜
Yongsheng180 2-JLYHZ 240.8 a 352.7 a 183.2 cd 170.2 e 83.35 cd 82.93 c 23.40 f 20.82 g 9.315 ab 10.326 b 3-YXY 1108 197.4 bc 260.1 bc 166.5 de 175.5 d 86.78 bc 85.99 bc 31.68 c 27.73 e 9.334 ab 10.836 ab 2-JLY 534 235.8 a 301.7 b 192.7 bc 180.2 c 79.35 de 86.09 b 22.08 g 22.87 f 9.544 ab 10.641 ab 3-CY 6203 196.5 bc 224.6 cd 156.5 ef 162.1 f 84.16 bcd 90.87 a 29.42 d 28.99 c 8.151 b 9.522 b 3-YXY 2168 225.8 a 258.9 bc 128.6 g 158.1 g 87.28 bc 85.52 bc 32.90 b 28.64 cd 8.068 b 9.992 b 3-FYXZ 185.3 c 209.5 d 244.7 a 214.2 b 85.48 bc 89.16 a 27.97 e 28.09 de 9.099 ab 11.215 ab 3-ZY 295 171.7 c 236.6 cd 215.0 b 222.4 a 87.88 bc 85.82 bc 28.32 e 27.63 e 9.083 b 12.385 a 3-FY 498 180.6 c 204.6 d 197.6 bc 216.3b 93.76 a 90.45 a 30.47 d 28.06 de 10.27 a 11.162 ab 3-YXY 2115 196.5 bc 221.4 cd 134.1 fg 148.2 h 89.30 ab 90.14 a 35.69 a 32.94 a 9.809 a 9.684 b 3-DY 4923 216.8 ab 243.3 cd 173.5 cde 163.1 f 75.40 e 88.08 ab 33.01 b 31.52 b 8.900 ab 10.922 ab 平均 Mean 204.7 A 251.3 A 179.2 A 181.0 A 85.27 A 87.51 C 29.50 A 27.73 A 9.158 A 10.668 A 注:同列数据后不同小写字母表示同一氮肥处理下品种间在5%水平差异显著,不同大写字母表示氮肥处理间在5%水平差异显著。
Note: Values followed by different small letters indicate significant difference among varieties under the same N rate (P<0.05), and different capital letters indicate significant difference among N treatments (P<0.05).整体来看,不同生态条件和氮肥处理下10个品种间产量差异显著,而同一生长条件下产量随品种的改变而变化。因此将生态点和两个施氮处理作为环境,产量作为一个因素进行GGE模型分析(图1)。由图1可知,大邑的两个氮处理被分为一组,品种宜香优1108、晶两优534和F优498适合在该环境下生长,其中F优498在该环境中最高产;永胜的两个氮肥处理被分为一组,品种丰优香占、中优295和德优4923适合在该环境下生长,其中中优295在该环境下产量最高,这与表4的分析结果一致。而在本试验中,结合表4和图1可知,大邑生态点宜香优1108低氮处理产量更高,晶两优534和F优498高氮下产量最高;永胜德优4923则以低氮下产量更高,丰优香占和中优295高氮处理下产量最高。因此,在大邑生态点宜香优1108定义为低氮高效型,晶两优534和F优498定义为高氮高效型;在永胜生态点德优4923为低氮高效型,丰优香占、中优295为高氮高效型。
图 1 GGE双标图分析品种在不同环境下的适应性注:此图是基于环境–中心化的(Centering =2)、未定标的(Scaling =0)的品种–环境两向表。采用聚焦环境的特征值分配方法(SVP =2)。图中数字1~10分别代表品种晶两优华占、宜香优1108、晶两优534、川优6203、宜香优2168、丰优香占、中优295、F优498、宜香优2115、德优4923;N120、N180分别表示施氮量120、180 kg/hm2Figure 1. Adaptability of varieties in different environments based on GGE biplotNote:The biplot is based on environment–centered (Centering = 2) and un-scaled data (Scaling = 0), using environment-focused singular value partitioning (SVP = 2) method. The digital 1–10 in the figure represent variety of 2-JLYHZ, 3-YXY 1108, 2-JLY 534, 3-CY 6203, 3-YXY 2168, 3-FYXZ, 3-ZY 295, 3-FY 498, 3-YXY 2115, 3-DY 4923, respectively. N120 and N180 are the nitrogen application rates of 120 and 180 kg/hm2, respectively.2.3 氮肥处理对不同水稻品种各生育阶段干物质积累的影响
两个生态条件下,不同氮肥处理和品种的干物质积累特性均有明显差异(图2)。从不同生态点的干物质积累量来看,拔节期和抽穗期均以大邑更高,而成熟期永胜比大邑高22.12%~28.91%。各时期干物质积累量均随施氮量的增加而增加,且N0处理与其余两处理间差异明显。不同品种间干物质积累量亦差异显著,且两生态点间规律不同。大邑生态点N120处理下抽穗期和成熟期均以低氮高效型品种的干物质积累量最高,抽穗期N180处理下高氮高效型品种则偏低;永胜点N120处理拔节期低氮高效型干物质积累量最低,N180处理下抽穗和成熟期则以高氮高效型偏高。就群体生长率而言,移栽至拔节期大邑的群体生长率平均值是永胜的1.6~2.1倍,抽穗至成熟阶段则以永胜更高。不同施氮处理间移栽至拔节期和拔节至抽穗期的群体生长率均是随施氮量增加而增加,抽穗至成熟期则以N120处理的群体生长率(PGR)最高。不同氮效率品种间各生育时期群体生长率差异显著,大邑点N120处理下移栽至拔节期低氮高效型PGR比同处理平均值高14.73%,在N180处理下抽穗前高氮高效型品种的PGR均偏低,而抽穗至成熟期该类型品种的PGR则明显高于其它品种。永胜生态点,N120处理移栽至拔节期以低氮高效型最低,而拔节至抽穗期该类型品种的群体生长率比同处理平均值高12.04%,拔节至抽穗期N180处理下以高氮高效型品种PGR最大。
图 2 不同施氮量下水稻品种各生育阶段干物质积累量注:红色图标为低氮高效型,黑色图标为高氮高效型,灰色图标表示其它品种;红色横线为各处理平均值;DMA—干物质积累量,PGR—群体生长率;TS—移栽期;JS—拔节期,HS—抽穗期,MS—成熟期;N0、N120、N180表示施氮量分别为0、120、180 kg/hm2。Figure 2. Dry matter accumulation of rice varieties across the growth stages under different nitrogen application ratesNote: Red icons are low-N-efficient cultivars, and black icons are high-N-efficient cultivars, and gray icons are the left cultivars. The red horizontal line is the average value of each treatment. DMA—Dry matter accumulation; PGR—Population growth rate. TS—Transplanting stage; JS—Jointing stage; HS—Heading stage; MS—Maturing stage. N0, N120, and N180 indicate N application rates of 0, 120 and 180 kg/hm2, respectively.2.4 氮肥处理对不同水稻品种中后期不同部位干物重的影响
图3表明,在水稻生育中、后期,两生态点间干物质在不同部位的分配有明显差异。抽穗期大邑叶片的干物重明显高于永胜,成熟期两生态点间叶片干物重则无显著差异,而成熟期茎鞘和穗部的干物重以永胜更高。氮肥处理间比较发现,除成熟期穗部干物重以N120处理的最高外,其余时期的茎、叶、穗干物重均随施氮量的增加而增加。从供试品种间差异来看,大邑生态点N120处理下低氮高效型品种在抽穗期茎鞘、叶片干物重和成熟期茎鞘干物重均高于同处理其它品种,N180处理下高氮高效型品种抽穗期穗部干物重明显偏低。永胜点N120处理下抽穗期和成熟期穗部干物重均以低氮高效型品种最高,分别比同处理其他品种的平均值高37.14%和13.38%,N180处理下高氮高效型中后期茎鞘干物重则远高于其他品种。
图 3 不同施氮量下各水稻品种抽穗期和成熟期茎鞘、叶片和穗的干物重注:红色图标为低氮高效型,黑色图标为高氮高效型,灰色图标表示其它品种;红色横线为各处理平均值;HS—抽穗期,MS—成熟期;N0、N120、N180表示施氮量分别为0、120、180 kg/hm2Figure 3. Dry matter weights of stem-sheath, leaf and panicle of various rice varieties at the heading and maturing stages under different nitrogen application ratesNote: Red icons are low-N-efficient cultivars, and black icons are high-N-efficient cultivars, and gray icons are the left varieties. The red horizontal line is the average value of each treatment. HS—Heading stage; MS—Maturing stage. N0, N120, and N180 indicate N application rates of 0, 120 and 180 kg/hm2, respectively.2.5 氮肥处理对不同水稻品种后期干物质输出转化的影响
抽穗前茎鞘和叶片积累的光合产物向穗部的转运特性及抽穗后穗部物质的积累直接影响水稻产量。由图4可知,两生态点间物质积累与转化特性有较大差异,穗前茎鞘和叶片的干物质输出率与穗前茎鞘和叶片干物质转化对籽粒的贡献率均是大邑高于永胜,而永胜的穗后干物质积累量对籽粒的贡献率比大邑高出61.91%~87.72%,表明大邑生态点成熟期穗部物质主要源于抽穗前茎鞘和叶片积累的干物质的转化,而永胜生态点主要来自抽穗后光合产物的积累。从氮肥处理来看,两生态点N0处理的穗前茎鞘干物质输出率、穗前茎鞘干物质转化对籽粒的贡献率和穗前干物质转化对籽粒的贡献率均高出两施氮处理28%以上。两施氮处理间,除N180处理下大邑生态点穗前叶片干物质输出率与穗前叶片干物质转化对籽粒的贡献率以及大邑和永胜的穗后干物质积累量对籽粒的贡献率低于N120外,其余指标均是N180高于N120。不同品种间比较发现,大邑N120处理下低氮高效型品种的穗前茎鞘和叶片干物质转化对籽粒的贡献率以及穗前干物质转化对籽粒的贡献率均最高,其穗后干物质积累量对籽粒的贡献率则明显低于其他品种;N180处理下,高氮高效型品种穗前茎鞘、叶片的干物质输出率与干物质转化对籽粒的贡献率以及穗前干物质转化对籽粒的贡献率均偏低,而穗后干物质积累量对籽粒的贡献率则最高,分别为78.30%和64.88%。永胜生态点N120处理下低氮高效型品种的穗前茎鞘干物质输出率与穗前茎鞘干物质转化对籽粒的贡献率、穗前干物质转化对籽粒的贡献率均为最高,而该品种穗后干物质积累量对籽粒的贡献率则低于其他品种。
图 4 不同氮肥处理下各水稻品种穗前干物质运转率与穗后干物质积累量注:红色图标为低氮高效型,黑色图标为高氮高效型,灰色图标表示其它品种;红色横线为各处理平均值;N0、N120、N180表示施氮量分别为0、120、180 kg/hm2。Figure 4. Dry matter translocation before the heading stage and accumulation after the heading stage of rice varieties under different nitrogen ratesNote: Red icons are low-N-efficient cultivars, and black icons are high-N-efficient cultivars, and gray icons are the left varieties. The red horizontal line is the average value of each treatment. N0, N120 and N180 indicate nitrogen application rates of 0, 120 and 180 kg/hm2, respectively2.6 产量及产量构成因素与物质生产的相关性分析
从表5可以看出,两生态点的物质生产和产量及产量构成因素间的相关性不尽相同。大邑点产量与移栽至拔节期和抽穗至成熟期群体生长率、穗后干物质积累量对籽粒的贡献率呈极显著或显著正相关,而与穗前干物质转化对籽粒的贡献率呈显著负相关。对产量构成因素而言,仅有效穗数与移栽至拔节和抽穗至成熟期PGR呈显著正相关。永胜点产量与各时期群体生长率呈显著或极显著正相关,与穗前干物质转化对籽粒的贡献率呈负相关,与穗后干物质积累量对籽粒的贡献率呈正相关,但未达显著水平。有效穗数与移栽至拔节和抽穗至成熟期PGR、穗后干物质积累量对籽粒的贡献率呈显著正相关,每穗颖花数与拔节至抽穗和抽穗至成熟期PGR呈显著正相关,结实率与移栽至拔节和抽穗至成熟期群体生长率、穗后干物质积累量对籽粒的贡献率呈极显著或显著负相关,与穗前干物质转化对籽粒的贡献率呈显著正相关。综合来看,两个生态点的产量和有效穗数均与移栽至拔节和抽穗至成熟期的群体生长率、穗后干物质积累量对籽粒的贡献率呈正相关关系,与穗前干物质转化对籽粒的贡献率呈负相关,永胜点产量和每穗颖花数还与拔节至抽穗期PGR呈极显著正相关。
表 5 品种、氮肥和生态点与产量和干物质生产的相关性分析Table 5. Correlation analysis between variety, N application, yield, yield components and dry matter productionat different ecological sites项目
Item群体生长率 Population growth rate (PGR) CDMTR CDMAH 移栽—拔节期
TS–JS拔节—抽穗期
JS–HS抽穗—成熟期
HS–MS大邑 Dayi 产量 Yield 0.700** 0.111 0.555** –0.366* 0.365* 有效穗数 Effective panicle 0.414* –0.058 0.400* –0.287 0.305 每穗颖花数 Spikelets per ear 0.334 –0.126 0.270 –0.210 0.173 结实率 Seed-setting rate –0.132 –0.339 0.060 –0.184 0.146 千粒重 1000-grain weight 0.034 0.277 –0.117 0.108 –0.090 永胜 Yongsheng 产量 Yield 0.447* 0.596** 0.659** –0.329 0.303 有效穗数 Effective panicle 0.387* 0.094 0.531** –0.352 0.383* 每穗颖花数 Spikelets per ear 0.101 0.680** 0.366* –0.012 –0.048 结实率 Seed-setting rate –0.653** –0.206 –0.691** 0.410* –0.362* 千粒重 1000-grain weight 0.066 –0.186 –0.195 –0.037 0.014 注: CDMTR—穗前干物质转化对籽粒的贡献率;CDMAH—穗后干物质积累量对籽粒的贡献率。*—P<0.05;**—P<0.01。 Note: TS—Transplanting stage; JS—Jointing stage; HS—Heading stage; MS—Maturing stage; CDMTR—Contribution of dry matter transformation before heading for grain; CDMAH—Contribution of dry matter accumulation after heading for grain. *—P<0.05; **—P<0.01. 3. 讨论
3.1 氮高效品种的干物质生产和产量形成特征
关于如何提高水稻对氮素的吸收与利用来有效增产并减少氮肥施用,目前已有大量的研究[23-24],对于水稻干物质生产与高产的协同机制,前人也有较多阐述[10, 25-26]。梁健等[10]和李敏等[25]研究认为,抽穗前适当控制群体生长,抽穗后保持较高的群体生长水平及较高的收获指数和干物质积累量,是氮高效型品种达到高产的重要物质生产特性。也有研究者认为水稻产量与抽穗前干物质转运量呈显著正相关,或决定于抽穗至成熟阶段的光合生产能力[27]。本研究结果显示,大邑点低氮高效型品种移栽至拔节期群体生长率和穗前干物质转化对籽粒的贡献率较高,结合产量构成因素(表4)分析,该类型品种产量优势在于较高的有效穗数,相关分析(表5)表明移栽至拔节期的PGR与产量(r = 0.70**)和有效穗数(r = 0.41*)呈显著正相关关系。因此,在大邑等“弱光寡照”地区低氮肥条件下,保证水稻前期的生长速度是提高单位面积有效穗数、实现水稻高产的主要途径。本研究中大邑点高氮高效型品种抽穗后群体生长率和穗后干物质积累量对籽粒的贡献率明显高于其它品种,而水稻抽穗后干物质积累速率直接影响抽穗后群体生长率和籽粒灌浆情况[18]。相关分析结果显示,抽穗至成熟期PGR与产量(r = 0.56**)呈极显著正相关,穗后干物质积累量对籽粒的贡献率与产量(r = 0.37*)呈显著正相关关系。缪小建等[28]认为,大穗型品种齐穗期茎鞘和叶片非结构性碳水化合物积累较少,且在主要输出期的转运量低,生长后期出现非结构性碳水化合物再积累现象,而本研究中高氮高效型品种产量优势在于每穗颖花数较高,这表明在弱光寡照地区高氮肥处理下,应在保证足量群体颖花数的情况下提高抽穗后水稻干物质生长速率和穗部光合产物的积累,以确保较高的结实率和千粒重,提高库容量进而增加产量。永胜生态点低氮高效型品种具有拔节至抽穗期PGR高和穗前光合产物转化率高的物质生产特性,同时千粒重较同处理平均值高13.61%。前人研究认为光照较强的地区实现高产的关键是足穗大穗[29],因此在永胜等“光照充足、湿度较小”的生态环境和低氮肥处理下,应提高水稻在拔节期至抽穗期间的干物质积累速率,并在保证足够单位面积有效穗数的情况下,促进籽粒充实灌浆,从而有效提高水稻产量。前人研究结果显示,增施氮肥能提高水稻各时期干物质积累速率,并提高穗粒数进而促进产量的增加[30]。本研究中,永胜点高氮高效型品种在高氮肥处理下拔节至抽穗期的群体生长率较高,且每穗颖花数较大,相关分析也显示该点拔节至抽穗期PGR与产量(r= 0.60**)和每穗颖花数(r= 0.68**)呈极显著正相关。表明在永胜等光温充足的地区,高氮肥处理下应提高水稻拔节至抽穗期的干物质积累速率,以促进抽穗后光合产物在籽粒中的积累,确保较高的群体颖花量,从而增加产量。
3.2 不同氮效率品种对施氮量和生态条件的响应
水稻干物质的生产特性是光合产物在植株不同器官中积累与分配的结果,而基因型、栽培措施、生态条件及其互作效应对水稻干物质生产特性存在极显著的影响[20,31]。本研究结果显示,N0处理的穗前茎鞘干物质输出率、穗前茎鞘干物质转化对籽粒的贡献率和穗前干物质转化对籽粒的贡献率均高出两施氮处理28%以上(图4),而缪小建等[32]、陈丽楠等[33]研究指出氮素穗肥的施用显著降低抽穗后茎鞘非结构性碳水化合物的转运量和转化率,本试验中低氮高效型呈现穗前干物质转化对籽粒的贡献率高,高氮高效型呈现穗后干物质积累量对籽粒的贡献率高的特征,说明氮高效品种在低氮处理下能更多的将茎鞘和叶片中储存的非结构性碳水化合物转运到籽粒中,而氮高效型品种在高氮肥处理下能有效利用穗肥,延缓叶片衰老,提高穗后冠层光合能力,更利于穗后物质的生产与转运[34]。
有关生态环境对水稻干物质生产的影响,虽有诸多报道[23,35-36]但结论不一。王勋等[35]研究认为光照充足、昼夜温差大的生态环境能提高水稻抽穗后干物质积累量及全生育期生长速度。徐春梅等[22]报道,不同生态条件对水稻干物质生产的影响因品种而异,温光条件好的地区提高籼稻品种齐穗前群体生长率,提高杂交粳稻齐穗后群体生长率。在本研究中,各类氮高效品种群体生长率特性在不同生态点表现不同,永胜氮高效品种拔节至抽穗期PGR高,结合气象因子分析结果(表2),永胜点拔节至抽穗期降雨量低于大邑,日照时数较大邑更高,且拔节至抽穗期PGR与该时期降雨量呈显著负相关(r = 0.66*),因此水稻生长中期低降雨量有利于干物质的生产和积累,保证群体生物量的快速提高。大邑生态点低氮高效型品种和高氮高效型品种干物质积累特征分别为拔节前PGR高和抽穗后PGR高,气象因子显示这两个时期大邑的日照时数均低于永胜点49%以上,而黄丽芬等[37]的光氮互作对水稻干物质积累影响试验结果表明,拔节期和成熟期遮光均能最大限度地增加水稻地上部干物质积累量,但都是在高氮处理下,这与本试验结果有所不同,分析其原因可能是由于气象因子、氮肥处理以及品种间互作效应导致。对于氮肥、气象因子与品种间互作对水稻干物质积累的影响和反应机理等问题,尚需今后进一步深入研究。
4. 结论
不同生态条件下低氮高效型和高氮高效型品种实现高产的途径不同。大邑等弱光寡照地区,对于低氮高效型品种应保证水稻前期的生长速度,提高抽穗前茎鞘和叶片干物质的转运率,以增加单位面积有效穗数实现高产;对于高氮高效型品种,应在抽穗前适当控制群体生长,抽穗后保持较高的群体生长率并提高穗后光合产物的积累,保证足够的每穗颖花数以提高产量。在永胜等光温充足的地区,对于低氮高效型品种,应保持拔节至抽穗期较高的群体生长水平及较高的穗前干物质转化对籽粒的贡献率,在保证适当单位面积有效穗数的情况下,促进籽粒充实;对于高氮高效品种,拔节至抽穗期较高的群体生长率及较高的每穗颖花数是实现高产高效生产的重要特征。
-
图 1 GGE双标图分析品种在不同环境下的适应性
注:此图是基于环境–中心化的(Centering =2)、未定标的(Scaling =0)的品种–环境两向表。采用聚焦环境的特征值分配方法(SVP =2)。图中数字1~10分别代表品种晶两优华占、宜香优1108、晶两优534、川优6203、宜香优2168、丰优香占、中优295、F优498、宜香优2115、德优4923;N120、N180分别表示施氮量120、180 kg/hm2
Figure 1. Adaptability of varieties in different environments based on GGE biplot
Note:The biplot is based on environment–centered (Centering = 2) and un-scaled data (Scaling = 0), using environment-focused singular value partitioning (SVP = 2) method. The digital 1–10 in the figure represent variety of 2-JLYHZ, 3-YXY 1108, 2-JLY 534, 3-CY 6203, 3-YXY 2168, 3-FYXZ, 3-ZY 295, 3-FY 498, 3-YXY 2115, 3-DY 4923, respectively. N120 and N180 are the nitrogen application rates of 120 and 180 kg/hm2, respectively.
图 2 不同施氮量下水稻品种各生育阶段干物质积累量
注:红色图标为低氮高效型,黑色图标为高氮高效型,灰色图标表示其它品种;红色横线为各处理平均值;DMA—干物质积累量,PGR—群体生长率;TS—移栽期;JS—拔节期,HS—抽穗期,MS—成熟期;N0、N120、N180表示施氮量分别为0、120、180 kg/hm2。
Figure 2. Dry matter accumulation of rice varieties across the growth stages under different nitrogen application rates
Note: Red icons are low-N-efficient cultivars, and black icons are high-N-efficient cultivars, and gray icons are the left cultivars. The red horizontal line is the average value of each treatment. DMA—Dry matter accumulation; PGR—Population growth rate. TS—Transplanting stage; JS—Jointing stage; HS—Heading stage; MS—Maturing stage. N0, N120, and N180 indicate N application rates of 0, 120 and 180 kg/hm2, respectively.
图 3 不同施氮量下各水稻品种抽穗期和成熟期茎鞘、叶片和穗的干物重
注:红色图标为低氮高效型,黑色图标为高氮高效型,灰色图标表示其它品种;红色横线为各处理平均值;HS—抽穗期,MS—成熟期;N0、N120、N180表示施氮量分别为0、120、180 kg/hm2
Figure 3. Dry matter weights of stem-sheath, leaf and panicle of various rice varieties at the heading and maturing stages under different nitrogen application rates
Note: Red icons are low-N-efficient cultivars, and black icons are high-N-efficient cultivars, and gray icons are the left varieties. The red horizontal line is the average value of each treatment. HS—Heading stage; MS—Maturing stage. N0, N120, and N180 indicate N application rates of 0, 120 and 180 kg/hm2, respectively.
图 4 不同氮肥处理下各水稻品种穗前干物质运转率与穗后干物质积累量
注:红色图标为低氮高效型,黑色图标为高氮高效型,灰色图标表示其它品种;红色横线为各处理平均值;N0、N120、N180表示施氮量分别为0、120、180 kg/hm2。
Figure 4. Dry matter translocation before the heading stage and accumulation after the heading stage of rice varieties under different nitrogen rates
Note: Red icons are low-N-efficient cultivars, and black icons are high-N-efficient cultivars, and gray icons are the left varieties. The red horizontal line is the average value of each treatment. N0, N120 and N180 indicate nitrogen application rates of 0, 120 and 180 kg/hm2, respectively
表 1 供试水稻品种简介
Table 1 Introduction of rice varieties
品种类型
Variety type品种名称
Variety name亲本来源
Parental source品种缩写
Variety abbreviation籼型两系杂交稻
Two-line indica hybrid rice晶两优华占 Jingliangyouhuazhan 晶 4155S×华占 Jing 4155S×Huanzhan 2-JLYHZ 晶两优 534 Jingliangyou 534 晶 4155S×R534 Jing 4155S×R534 2-JLY 534 籼型三系杂交稻
Three-line indica hybrid rice宜香优 1108 Yixiangyou 1108 宜香 1A×宜恢1108 Yixiang 1A×Yihui 1108 3-YXY 1108 川优 6203 Chuanyou 6203 川 106A×成恢 3203 Chuan 106A×Chenghui 3203 3-CY 6203 宜香优 2168 Yixiangyou 2168 宜香 1A×HR2168 Yixiang 1A×HR2168 3-YXY 2168 丰优香占 Fengyouxiangzhan 粤丰 A×R6547 Yuefeng A×R6547 3-FYXZ 中优 295 Zhongyou 295 中 9A×禾恢 295 Zhong 9A×Hehui 295 3-ZY 295 F 优 498 F you 498 FS3A×蜀恢 498 FS3A×Shuhui 498 3-FY 498 宜香优 2115 Yixiangyou 2115 宜香 1A×雅恢 2115 Yixiang 1A×Yahui 2115 3-YXY 2115 德优 4923 Deyou 4923 德香 074A×R4923 Dexiang 074A×R4923 3-DY 4923 注:2—籼型两系杂交稻;3—籼型三系杂交稻。
Note: 2—Two-line indica hybrid rice; 3—Three-line indica hybrid rice.表 2 两生态点气象因子差异
Table 2 The meteorological factors at the two ecological sites
气象因子
Meteorological factor移栽—拔节期
TS–JS拔节—抽穗期
JS–HS抽穗—成熟期
HS–MS全生育期
Whole growth period四川大邑
DYS云南永胜
YSY四川大邑
DYS云南永胜
YSY四川大邑
DYS云南永胜
YSY四川大邑
DYS云南永胜
YSY积温 (℃)
Accumulated temperature1145.3 1623.7 839.2 729.6 1010.6 994.5 2997.3 3347.8 降雨量 (mm)
Rainfall266.1 422.5 485.5 252.0 733.4 339.8 1487.6 1014.2 日照时数 (h)
Sunshine hour134.9 359.2 90.4 168.6 105.6 209.0 331.0 736.9 注:水稻生育期大邑为4月20日至9月24日,永胜为4月5日至10月10日。
Note:The growth period of rice in Dayi is April 20–September 24, in Yongsheng is April 5–October 10. TS—Transplanting stage; JS—Jointing stage; HS— Heading stage; MS—Maturing stage. DYS—Dayi County of Sichuan Province; YSY—Yongsheng county of Yunnan Province.表 3 品种、氮肥和生态点对产量和干物质生产的作用分析(F值)
Table 3 Effect of variety, N application, and location on rice yield and dry matter production (F-value)
变异来源
Source of variation群体生长率 Population growth rate CDMTR CDMAH 产量
Yield移栽—拔节期
TS–JS拔节—抽穗期
JS–HS抽穗—成熟期
HS–MS品种 Variety (V) 3.07** 31.92** 3.85** 8.77** 4.17** 7.45** 氮肥处理 N treatment (N) 61.04** 38.76** 71.20** 21.32** 99.69** 208.02** 生态点 Location (L) 600.97** 9144.08** 568.64** 993.66** 917.97** 180.02** V×N 2.44** 8.87** 2.84** 3.86** 3.30** 0.99 V×L 1.22 35.83** 4.40** 3.45** 4.43** 2.71** N×L 22.08** 16.18** 1.11 6.82** 0.59 5.36** V×N×L 2.51** 8.29** 3.10** 7.51** 3.58** 1.18 注:CDMTR—穗前干物质转化对籽粒的贡献率;CDMAH—穗后干物质积累量对籽粒的贡献率;**—P<0.01。
Note:TS—Transplanting stage; JS—Jointing stage; HS—Heading stage; MS—Maturing stage; CDMTR—Contribution of dry matter transformation before heading for grain; CDMAH—Contribution of dry matter accumulation after heading for grain. **—P<0.01.表 4 两个生态点不同氮肥用量下10个品种水稻产量及产量构成因素
Table 4 Yield and yield components of ten rice varieties under different N application rates in the Dayi and Yongsheng sites
施氮量
N application
(kg/hm2)品种
Variety有效穗数 (×104/hm2)
Effective panicle number每穗颖花数
Spikelet number per panicle结实率 (%)
Seed-setting rate千粒重 (g)
1000-grain weight产量 (t/hm2)
Yield大邑
Dayi永胜
Yongsheng大邑
Dayi永胜
Yongsheng大邑
Dayi永胜
Yongsheng大邑
Dayi永胜
Yongsheng大邑
Dayi永胜
Yongsheng0 2-JLYHZ 213.7 a 262.7 a 177.1 ab 152.2 d 88.90 cd 94.68 bcd 22.24 f 21.02 f 6.875 bc 7.934 bc 3-YXY 1108 173.1 d 204.6 cd 149.7 c 157.5 c 85.49 de 98.30 a 30.40 cd 27.93 d 7.391 abc 8.812 a 2-JLY 534 187.0 bc 246.2 ab 172.1 b 146.8 e 89.31 cd 96.06 ab 22.57 f 23.07 e 7.003 bc 7.990 bc 3-CY 6203 178.4 cd 201.9 cd 142.3 cd 140.8 f 90.12 bc 95.05 bcd 30.90 c 29.19 c 7.223 abc 7.849 bcd 3-YXY 2168 194.9 b 193.8 cd 118.3 e 145.5 e 87.78 cd 91.46 e 33.19 b 28.84 c 6.633 c 7.365 d 3-FYXZ 139.4 g 175.1 cd 196.7 a 183.2 a 89.86 bc 93.40 cde 29.60 d 28.22 d 6.921 bc 8.400 ab 3-ZY 295 157.8 ef 178.2 cd 176.1 ab 170.5 b 83.61 ef 94.01 bcd 28.09 e 27.83 d 7.640 ab 7.860 bcd 3-FY 498 154.8 f 168.6 d 176.0 ab 171.4 b 95.43 a 96.04 ab 29.39 d 28.26 d 7.868 a 7.815 cd 3-YXY 2115 168.5 de 213.2 bc 123.7 de 119.2 g 93.30 ab 95.93 abc 35.93 a 33.16 a 7.068 abc 8.019 bc 3-DY 4923 169.1 de 189.5 cd 157.4 bc 159.0 c 81.58 f 92.54 de 32.59 b 31.71 b 7.388 abc 8.809 a 平均 Mean 173.7 B 203.4 B 158.9 A 154.5 B 88.54 A 94.75 A 29.49 A 27.92 A 7.201 B 8.085 B 120 2-JLYHZ 234.7 a 331.7 a 184.3 cd 169.7 c 85.12 cd 90.52 a 23.27 e 20.95 g 9.046 ab 10.326 abcd 3-YXY 1108 218.5 ab 261.6 bc 157.7 ef 172.1 bc 88.64 abc 88.62 abc 31.72 b 27.87 e 9.771 a 10.797 abcd 2-JLY 534 225.6 ab 298.2 ab 225.5 a 173.2 b 83.66 d 89.93 ab 22.27 e 23.02 f 9.219 ab 10.371 abcd 3-CY 6203 213.2 abc 228.8 cd 155.6 f 163.8 d 91.46 a 91.74 a 30.73 bc 29.12 c 8.723 abc 9.665 d 3-YXY 2168 221.7 ab 256.8 bcd 130.1 g 157.4 e 88.99 abc 86.73 bc 32.48 b 28.77cd 7.783c 9.755 cd 3-FYXZ 178.1 de 208.1 d 204.5 abc 209.2 a 88.76 abc 91.30 a 28.70 d 28.15 de 8.489 bc 10.825 abcd 3-ZY 295 172.4 e 229.7 cd 212.4 ab 210.0 a 86.25 bcd 86.50 c 28.32 d 27.76 e 8.739 abc 11.304 a 3-FY 498 175.9 de 207.6 d 196.8 bcd 209.3 a 92.10 a 91.81 a 29.12 cd 28.13 de 9.628 ab 10.882 abc 3-YXY 2115 190.0 cde 237.2 cd 151.5 f 144.2 f 90.45 ab 91.61 a 34.27 a 33.09 a 8.799 abc 10.044 bcd 3-DY 4923 201.4 bcd 249.3 bcd 177.5 de 160.8 d 74.65 e 89.14 abc 31.90 b 31.64 b 8.487 bc 11.035 ab 平均 Mean 203.2 A 250.9 A 179.6 A 177.0 A 87.01 A 89.79 B 29.28 A 27.85 A 8.868 A 10.500 A 续表 4 Table 4 continued 施氮量
N application
(kg/hm2)品种
Variety有效穗数 (×104/hm2)
Effective panicle number每穗颖花数
Spikelet number per panicle结实率 (%)
Seed-setting rate千粒重 (g)
1000-grain weight产量 (t/hm2)
Yield大邑
Dayi永胜
Yongsheng大邑
Dayi永胜
Yongsheng大邑
Dayi永胜
Yongsheng大邑
Dayi永胜
Yongsheng大邑
Dayi永胜
Yongsheng180 2-JLYHZ 240.8 a 352.7 a 183.2 cd 170.2 e 83.35 cd 82.93 c 23.40 f 20.82 g 9.315 ab 10.326 b 3-YXY 1108 197.4 bc 260.1 bc 166.5 de 175.5 d 86.78 bc 85.99 bc 31.68 c 27.73 e 9.334 ab 10.836 ab 2-JLY 534 235.8 a 301.7 b 192.7 bc 180.2 c 79.35 de 86.09 b 22.08 g 22.87 f 9.544 ab 10.641 ab 3-CY 6203 196.5 bc 224.6 cd 156.5 ef 162.1 f 84.16 bcd 90.87 a 29.42 d 28.99 c 8.151 b 9.522 b 3-YXY 2168 225.8 a 258.9 bc 128.6 g 158.1 g 87.28 bc 85.52 bc 32.90 b 28.64 cd 8.068 b 9.992 b 3-FYXZ 185.3 c 209.5 d 244.7 a 214.2 b 85.48 bc 89.16 a 27.97 e 28.09 de 9.099 ab 11.215 ab 3-ZY 295 171.7 c 236.6 cd 215.0 b 222.4 a 87.88 bc 85.82 bc 28.32 e 27.63 e 9.083 b 12.385 a 3-FY 498 180.6 c 204.6 d 197.6 bc 216.3b 93.76 a 90.45 a 30.47 d 28.06 de 10.27 a 11.162 ab 3-YXY 2115 196.5 bc 221.4 cd 134.1 fg 148.2 h 89.30 ab 90.14 a 35.69 a 32.94 a 9.809 a 9.684 b 3-DY 4923 216.8 ab 243.3 cd 173.5 cde 163.1 f 75.40 e 88.08 ab 33.01 b 31.52 b 8.900 ab 10.922 ab 平均 Mean 204.7 A 251.3 A 179.2 A 181.0 A 85.27 A 87.51 C 29.50 A 27.73 A 9.158 A 10.668 A 注:同列数据后不同小写字母表示同一氮肥处理下品种间在5%水平差异显著,不同大写字母表示氮肥处理间在5%水平差异显著。
Note: Values followed by different small letters indicate significant difference among varieties under the same N rate (P<0.05), and different capital letters indicate significant difference among N treatments (P<0.05).表 5 品种、氮肥和生态点与产量和干物质生产的相关性分析
Table 5 Correlation analysis between variety, N application, yield, yield components and dry matter productionat different ecological sites
项目
Item群体生长率 Population growth rate (PGR) CDMTR CDMAH 移栽—拔节期
TS–JS拔节—抽穗期
JS–HS抽穗—成熟期
HS–MS大邑 Dayi 产量 Yield 0.700** 0.111 0.555** –0.366* 0.365* 有效穗数 Effective panicle 0.414* –0.058 0.400* –0.287 0.305 每穗颖花数 Spikelets per ear 0.334 –0.126 0.270 –0.210 0.173 结实率 Seed-setting rate –0.132 –0.339 0.060 –0.184 0.146 千粒重 1000-grain weight 0.034 0.277 –0.117 0.108 –0.090 永胜 Yongsheng 产量 Yield 0.447* 0.596** 0.659** –0.329 0.303 有效穗数 Effective panicle 0.387* 0.094 0.531** –0.352 0.383* 每穗颖花数 Spikelets per ear 0.101 0.680** 0.366* –0.012 –0.048 结实率 Seed-setting rate –0.653** –0.206 –0.691** 0.410* –0.362* 千粒重 1000-grain weight 0.066 –0.186 –0.195 –0.037 0.014 注: CDMTR—穗前干物质转化对籽粒的贡献率;CDMAH—穗后干物质积累量对籽粒的贡献率。*—P<0.05;**—P<0.01。 Note: TS—Transplanting stage; JS—Jointing stage; HS—Heading stage; MS—Maturing stage; CDMTR—Contribution of dry matter transformation before heading for grain; CDMAH—Contribution of dry matter accumulation after heading for grain. *—P<0.05; **—P<0.01. -
[1] 梁健, 李军, 李晓峰, 等. 淮北地区水稻品种氮肥群体最高生产力及氮素吸收利用特性[J]. 作物学报, 2016, 42(8): 1188–1200. Liang J, Li J, Li X F, et al. Yield, nitrogen absorption and utilization of rice varieties with the highest population productivity of nitrogen fertilization in Huaibei area[J]. Acta Agronomica Sinica, 2016, 42(8): 1188–1200. DOI: 10.3724/SP.J.1006.2016.01188 Liang J, Li J, Li X F, et al. Yield, Nitrogen absorption and utilization of rice varieties with the highestpopulation productivity of nitrogen fertilization in huaibei area [J]. Acta Agronomica Sinica, 2016, 42(8): 1188–1200. DOI: 10.3724/SP.J.1006.2016.01188
[2] 李俊周, 邵鹏, 彭廷, 等. 施氮量对杂交水稻Y两优886产量、稻米品质及氮肥吸收利用的影响[J]. 杂交水稻, 2017, 32(6): 50–54. Li J Z, Shao P, Peng T, et al. Effects of nitrogen rate on grain yield, quality and nitrogen uptake and utilization of hybrid rice Y-liangyou 886[J]. Hybrid Rice, 2017, 32(6): 50–54. Li J Z, Shao P, Peng T, et al. Effects of nitrogen rate on grain yield, quality and nitrogen uptake andutilization of hybrid rice Y-liangyou 886 [J]. Hybrid Rice, 2017, 32(6): 50–54.
[3] 魏海燕, 王亚江, 孟天瑶, 等. 机插超级粳稻产量、品质及氮肥利用率对氮肥的响应[J]. 应用生态学报, 2014, 25(2): 488–496. Wei H Y, Wang Y J, Meng T Y, et al. Response of yield, quality and nitrogen use efficiency to nitrogen fertilizer from mechanical transplanting super japonica rice[J]. Chinese Journal of Applied Ecology, 2014, 25(2): 488–496. Wei H Y, Wang Y J, Meng T Y, et al. Response of yield, quality and nitrogen use efficiency to nitrogen fertilizer from mechanicaltransplanting super japonica rice [J]. Chinese Journal of Applied Ecology, 2014, 25(2): 488–496.
[4] Bhattacharyya P, Roy K S, Neogi S, et al. Effects of rice straw and nitrogen fertilization on greenhouse gas emissions and carbon storage in tropical flooded soil planted with rice[J]. Soil & Tillage Research, 2012, 124: 119–130.
[5] 巨晓棠, 谷保静. 我国农田氮肥施用现状、问题及趋势[J]. 植物营养与肥料学报, 2014, 20(4): 783–795. Ju X T, Gu B J. Status-quo, problem and trend of nitrogen fertilization in China[J]. Journal of Plant Nutrition and Fertilizers, 2014, 20(4): 783–795. DOI: 10.11674/zwyf.2014.0401 Ju X T, Gu B J. Status-quo, problem and trend of nitrogen fertilization in China [J]. Journal of Plant Nutrition and Fertilizers, 2014, 20(4): 783–795. DOI: 10.11674/zwyf.2014.0401
[6] 于飞, 施卫明. 近10年中国大陆主要粮食作物氮肥利用率分析[J]. 土壤学报, 2015, 52(6): 1311–1324. Yu F, Shi W M. Nitrogen use efficiencies of major grain crops in China in recent 10 years[J]. Acta Pedologica Sinica, 2015, 52(6): 1311–1324. Yu F, Shi W M. Nitrogen use efficiencies of major grain crops in China in recent 10 years [J]. Acta Pedologica Sinica, 2015, 52(6): 1311–1324.
[7] Ladha J K, Pathak H, Krupnik T J, et al. Efficiency of fertilizer nitrogen in cereal production: Retrospects and prospects[J]. Advances in Agronomy, 2005, 87: 85–156.
[8] 戢林, 李廷轩, 张锡洲, 余海英. 氮高效利用基因型水稻根系形态和活力特征[J]. 中国农业科学, 2012, 45(23): 4770–4781. Ji L, Li T X, Zhang X Z, Yu H Y. Root morphological and activity characteristics of rice genotype with high nitrogen utilization efficiency[J]. Scientia Agricultura Sinica, 2012, 45(23): 4770–4781. DOI: 10.3864/j.issn.0578-1752.2012.23.003 Ji L, Li T X, Zhang X Z, Yu H Y. Root morphological and activity characteristics of rice genotype with high nitrogen utilization efficiency [J]. Scientia Agricultura Sinica, 2012, 45(23): 4770–4781. DOI: 10.3864/j.issn.0578-1752.2012.23.003
[9] 张亚丽, 樊剑波, 段英华, 等. 不同基因型水稻氮利用效率的差异及评价[J]. 土壤学报, 2008, 45(2): 267–273. Zhang Y L, Fan J B, Duan Y H, et al. Variation of nitrogen use efficiency of rice different in genotype and its evaluation[J]. Acta Pedologica Sinica, 2008, 45(2): 267–273. DOI: 10.3321/j.issn:0564-3929.2008.02.011 Zhang Y L, Fan J B, Duan Y H, et al. Variation of nitrogen use efficiency of rice different in genotype and its evaluation [J]. Acta PedologicaSinica, 2008, 45(2): 267–273. DOI: 10.3321/j.issn:0564-3929.2008.02.011
[10] 梁健, 赵晨, 韩超, 等. 淮北地区氮高效高产型粳稻品种群体生长特征研究[J]. 中国水稻科学, 2017, 31(4): 400–408. Liang J, Zhao C, Han C, et al. Characteristics of population growth in japonica rice varieties with high nitrogen use efficiency and high yield in Huaibei area[J]. Chinese Journal of Rice Science, 2017, 31(4): 400–408. Liang J, Zhao C, Han C, et al. Characteristics of population growth in japonica rice varieties with high nitrogen use efficiency and high yield in huaibei area [J]. Chinese Journal of Rice Science, 2017, 31(4): 400–408.
[11] 李娜, 杨志远, 代邹, 等. 不同氮效率水稻根系形态和氮素吸收利用与产量的关系[J]. 中国农业科学, 2017, 50(14): 2683–2695. Li N, Yang Z Y, Dai Z, et al. The relationships between root morphology, N absorption and utilization and grain yield in rice with different N use efficiencies[J]. Scientia Agricultura Sinica, 2017, 50(14): 2683–2695. DOI: 10.3864/j.issn.0578-1752.2017.14.005 Li N, Yang Z Y, Dai Z, et al. The relationships between root morphology, N absorption and utilization and grain yield in rice with different N use efficiencies [J]. Scientia Agricultura Sinica, 2017, 50(14): 2683–2695. DOI: 10.3864/j.issn.0578-1752.2017.14.005
[12] 安久海, 刘晓龙, 徐晨, 等. 氮高效水稻品种的光合生理特性[J]. 西北农林科技大学学报(自然科学版), 2014, 42(12): 29–38, 45. An J H, Liu X L, Xu C, et al. Photosynthetic physiological characteristics of rice varieties with high nitrogen use efficiencies[J]. Journal of Northwest A& F University (Natural Science Edition), 2014, 42(12): 29–38, 45. An J H, Liu X L, Xu C, et al. Photosynthetic physiological characteristics of rice varieties withhigh nitrogen use efficiencies [J]. Journal of Northwest A&F University(Natural Science Edition), 2014, 42(12): 29–38, 45.
[13] Zhu Y C, Li T, Xu J, et al. Leaf width gene LW5/D1 affects plant architecture and yield in rice by regulating nitrogen utilization efficiency[J]. Plant Physiology and Biochemistry, 2020, 157: 359–369. DOI: 10.1016/j.plaphy.2020.10.035
[14] Wu K, Wang S S, Song W Z, et al. Enhanced sustainable green revolution yield via nitrogen-responsive chromatin modulation in rice[J]. Science, 2020, 367: 2046. DOI: 10.1126/science.aaz2046
[15] Tang W J, Ye J, Yao X M, et al. Genome-wide associated study identifies NAC42-activated nitrate transporter conferring high nitrogen use efficiency in rice[J]. Nature Communications, 2019, 10(1): 5279. DOI: 10.1038/s41467-019-13187-1
[16] 孙永健, 孙园园, 蒋明金, 等. 施肥水平对不同氮效率水稻氮素利用特征及产量的影响[J]. 中国农业科学, 2016, 49(24): 4745–4756. Sun Y J, Sun Y Y, Jiang M J, et al. Effects of fertilizer levels on nitrogen utilization characteristics and yield in rice cultivars with different nitrogen use efficiencies[J]. Scientia Agricultura Sinica, 2016, 49(24): 4745–4756. DOI: 10.3864/j.issn.0578-1752.2016.24.007 Sun Y J, Sun Y Y, Jiang M J, et al. Effects of fertilizer levels on nitrogen utilization characteristics andyield in rice cultivars with different nitrogen use efficiencies [J]. Scientia Agricultura Sinica, 2016, 49(24): 4745–4756. DOI: 10.3864/j.issn.0578-1752.2016.24.007
[17] 胡香玉, 钟旭华, 彭碧琳, 等. 减氮条件下高产水稻品种的产量形成和氮素利用特征[J]. 核农学报, 2019, 33(12): 2460–2471. Hu X Y, Zhong X H, Peng B L, et al. Yield formation and characteristics of nitrogen utilization in high-yielding rice varieties under reduced nitrogen input[J]. Journal of Nuclear Agricultural Sciences, 2019, 33(12): 2460–2471. DOI: 10.11869/j.issn.100-8551.2019.12.2460 Hu X Y, Zhong X H, Peng B L, et al. Yield formation and characteristics of nitrogen utilization in high-yielding rice varieties under reduced nitrogen input [J]. Journal of Nuclear Agricultural Sciences, 2019, 33(12): 2460–2471. DOI: 10.11869/j.issn.100-8551.2019.12.2460
[18] 邓飞, 王丽, 刘利, 等. 不同生态条件下栽培方式对水稻干物质生产和产量的影响[J]. 作物学报, 2012, 38(10): 1930–1942. Deng F, Wang L, Liu L, et al. Effects of cultivation methods on dry matter production and yield of rice under different ecological conditions[J]. Acta Agronomica Sinica, 2012, 38(10): 1930–1942. Deng F, Wang L, Liu L, et al. Effects of cultivation methods on dry matter production and yield of riceunder different ecological conditions [J]. Acta AgronomicaSinica, 2012, 38(10): 1930–1942.
[19] 刘琦, 胡剑锋, 周伟, 等. 四川盆地不同类型水稻品种机插栽培的干物质生产及产量特性分析[J]. 中国水稻科学, 2019, 33(1): 37–48. Liu Q, Hu J F, Zhou W, et al. Dry matter production and yield characteristics of machine-transplanted rice varieties falling into different types in Sichuan basin[J]. Chinese Journal of Rice Science, 2019, 33(1): 37–48. Liu Q, Hu J F, Zhou W, et al. Dry matter production and yield characteristics of machine-transplanted rice varietiesfalling into different types in Sichuan basin [J]. Chinese Journal of Rice Science, 2019, 33(1): 37–48.
[20] 张驰, 何连华, 廖爽, 等. 不同生态条件下播期对机插杂交籼稻日产量的影响[J]. 作物学报, 2020, 46(10): 1579–1590. Zhang C, He L H, Liao S, et al. Effect of sowing date on daily yield of mechanical indica hybrid rice under different ecological conditions[J]. Acta Agronomica Sinica, 2020, 46(10): 1579–1590. Zhang C, He L H, Liao S, et al. Effect of sowing date on daily yield of mechanical indica hybrid rice under different ecological conditions [J]. Acta Agronomica Sinica, 2020, 46(10): 1579–1590.
[21] Wang D P, Laza M, Cassman K G, et al. Temperature explains the yield difference of double-season rice between tropical and subtropical environments[J]. Field Crops Research, 2016, 198: 303–311. DOI: 10.1016/j.fcr.2016.05.008
[22] 徐春梅, 袁立伦, 陈松, 等. 长江下游不同生态区双季优质晚稻生长特性和温光利用差异[J]. 中国水稻科学, 2020, 34(5): 457–469. Xu C M, Yuan L L, Chen S, et al. Difference in growth characteristics, utilization of temperature and illumination of double-cropping high quality late rice in different ecological regions of the lower reaches of the Yangtze River[J]. Chinese Journal of Rice Science, 2020, 34(5): 457–469. Xu C M, Yuan L L, Chen S, et al. Difference in growth characteristics, utilization of temperature and illumination of double-cropping high quality late rice in different ecological regions of the lower reaches of the Yangtze River [J]. Chinese Journal of Rice Science, 2020, 34(5): 457–469.
[23] Sun H Y, Qian Q, Wu K, et al. Heterotrimeric G proteins regulate nitrogen-use efficiency in rice[J]. Nature Genetics, 2015, 46(6): 652–656.
[24] Hu B, Wang W, Ou S J, et al. Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies[J]. Nature Genetics, 2015, 47(7): 834–838. DOI: 10.1038/ng.3337
[25] 李敏, 张洪程, 杨雄, 等. 水稻高产氮高效型品种的物质积累与转运特性[J]. 作物学报, 2013, 39(1): 101–109. Li M, Zhang H C, Yang X, et al. Characteristics of dry matter accumulation and translocation in rice cultivars with high yield and high nitrogen use efficiency[J]. Acta Agronomica Sinica, 2013, 39(1): 101–109. DOI: 10.3724/SP.J.1006.2013.00101 Li M, Zhang H C, Yang X, et al. Characteristics of dry matter accumulation and translocation in rice cultivars with high yield and high nitrogen use efficiency [J]. Acta Agronomica Sinica, 2013, 39(1): 101–109. DOI: 10.3724/SP.J.1006.2013.00101
[26] Wu L L, Yuan S, Huang L Y, et al. Physiological mechanisms underlying the high-grain yield and high-nitrogen use efficiency of elite rice varieties under a low rate of nitrogen application in China[J]. Frontiers in Plant Science, 2016, 7: 1024.
[27] 凌启鸿, 张洪程, 蔡建中, 等. 水稻高产群体质量及其优化控制探讨[J]. 中国农业科学, 1993, 26(6): 1–11. Ling Q H, Zhang H C, Cai J Z, et al. Investigation on the population quality of high yield and its optimizing control programme in rice[J]. Scientia Agricultura Sinica, 1993, 26(6): 1–11. Ling Q H, Zhang H C, Cai J Z, et al. Investigation on the population quality of high yield and its optimizing control programme in rice [J]. Scientia Agricultura Sinica, 1993, 26(6): 1–11.
[28] 缪小建, 王绍华, 李刚华, 丁艳锋. 大中穗型水稻品种灌浆期非结构性碳水化合物运转特征[J]. 南京农业大学学报, 2009, 32(2): 1–4. Miao X J, Wang S H, Li G H, Ding Y F. Translocation of non-structural carbohydrates in large and medium panicle rice cultivars during grain filling stage[J]. Journal of Nanjing Agricultural University, 2009, 32(2): 1–4. Miao X J, Wang S H, Li G H, Ding Y F. Translocation of non-structural carbohydrates in large andmedium panicle rice cultivars during grain filling stage [J]. Journal of Nanjing Agricultural University, 2009, 32(2): 1–4.
[29] 李旭毅, 孙永健, 程洪彪, 等. 两种生态条件下氮素调控对不同栽培方式水稻干物质积累和产量的影响[J]. 植物营养与肥料学报, 2011, 17(4): 773–781. Li X Y, Sun Y J, Cheng H B, et al. Effects of nitrogen regulation on dry matter accumulation and grain yield of rice under different cultivation models and two kinds of ecological conditions[J]. Journal of Plant Nutrition and Fertilizers, 2011, 17(4): 773–781. DOI: 10.11674/zwyf.2011.0500 Li X Y, Sun Y J, Cheng H B, et al. Effects of nitrogen regulation on dry matter accumulation and grain yield of rice under different cultivation models and two kinds of ecological conditions [J]. Journal of Plant Nutrition and Fertilizers, 2011, 17(4): 773–781. DOI: 10.11674/zwyf.2011.0500
[30] 孙永健. 水氮互作对水稻产量形成和氮素利用特征的影响及其生理基础[D]. 四川成都: 四川农业大学博士学位论文, 2010. Sun Y J. Effects of water- nitrogen interaction on yield formation and characteristics of nitrogen utilization in rice and its physiological basis[D]. Chengdu: PhD Dissertation of Sichuan Agricultural University, 2010.
[31] 解保胜, 赵黎明, 那永光, 等. 温光条件与寒地水稻产量和源库特征的关系[J]. 生态学杂志, 2016, 35(4): 917–924. Xie B S, Zhao L M, Na Y G, et al. Effects of temperature and sunlight conditions on yield and source / sink characteristics of rice in cold region[J]. Chinese Journal of Ecology, 2016, 35(4): 917–924. Xie B S, Zhao L M, Na Y G, et al. Effects of temperature and sunlight conditions on yield and source / sink characteristics of rice in cold region [J]. Chinese Journal of Ecology, 2016, 35(4): 917–924.
[32] 缪小建, 王绍华, 李刚华, 丁艳锋. 疏花对杂交水稻灌浆期非结构性碳水化合物运转及稻米品质的影响[J]. 杂交水稻, 2008, 23(5): 55–59. Miao X J, Wang S H, Li G H, Ding Y F. Effects of spikelet-removing on non-structural carbohydrate translocation in filling stage and grain quality of hybrid rice[J]. Hybrid Rice, 2008, 23(5): 55–59. DOI: 10.3969/j.issn.1005-3956.2008.05.020 Miao X J, Wang S H, Li G H, Ding Y F. Effects of spikelet-removing on non-structural carbohydrate translocation in filling stage and grain quality of hybrid rice [J]. Hybrid Rice, 2008, 23(5): 55–59. DOI: 10.3969/j.issn.1005-3956.2008.05.020
[33] 陈丽楠, 彭显龙, 刘元英, 等. 养分管理对寒地水稻干物质积累及运转的影响[J]. 东北农业大学学报, 2010, 41(5): 52–56. Chen L N, Peng X L, Liu Y Y, et al. Effect of nutrient management on dry matter accumulation and translocation of rice in cold area[J]. Journal of Northeast Agricultural University, 2010, 41(5): 52–56. DOI: 10.3969/j.issn.1005-9369.2010.05.012 Chen L N, Peng X L, Liu Y Y, et al. Effect of nutrient management on dry matter accumulation and translocation of rice in cold area [J]. Journal of Northeast Agricultural University, 2010, 41(5): 52–56. DOI: 10.3969/j.issn.1005-9369.2010.05.012
[34] Zhou W, Yang Z P, Wang T, et al. Environmental compensation effect and synergistic mechanism of optimized nitrogen management increasing nitrogen use efficiency in indica hybrid rice[J]. Frontiers in Plant Science, 2019, 10: 245. DOI: 10.3389/fpls.2019.00245
[35] 王勋, 戴廷波, 姜东, 等. 不同生态环境下水稻基因型产量形成与源库特性的比较研究[J]. 应用生态学报, 2005, 16(4): 615–619. Wang X, Dai T B, Jiang D, et al. Yield-formation and source-sink characteristics of rice genotypes under two different eco-environments[J]. Chinese Journal of Applied Ecology, 2005, 16(4): 615–619. DOI: 10.3321/j.issn:1001-9332.2005.04.006 Wang X, Dai T B, Jiang D, et al. Yield-formation and source-sink characteristics of rice genotypes under two different eco-environments [J]. Chinese Journal of Applied Ecology, 2005, 16(4): 615–619. DOI: 10.3321/j.issn:1001-9332.2005.04.006
[36] 岳伟, 陈金华, 阮新民, 等. 安徽省沿江地区双季稻光热资源利用效率变化特征及对气象产量的影响[J]. 中国生态农业学报, 2019, 27(6): 929–940. Yue W, Chen J H, Ruan X M, et al. Variation in characteristics of light and heat resource utilization efficiency of double-season rice and its impact on meteorological yield along the Yangtze River in Anhui Province[J]. Chinese Journal of Eco-Agriculture, 2019, 27(6): 929–940. Yue W, Chen J H, Ruan X M, et al. Variation in characteristics of light and heat resource utilization efficiency of double-season rice and its impact on meteorological yield along the Yangtze River in Anhui Province [J]. Chinese Journal of Eco-Agriculture, 2019, 27(6): 929–940.
[37] 黄丽芬, 全晓艳, 张蓉, 等. 光氮及其互作对水稻干物质积累与分配的影响[J]. 中国水稻科学, 2014, 28(2): 167–176. Huang L F, Quan X Y, Zhang R, et al. Interactive effects of light intensity and nitrogen supply on dry matter production and distribution of rice[J]. Chinese Journal of Rice Science, 2014, 28(2): 167–176. DOI: 10.3969/j.issn.1001-7216.2014.02.008 Huang L F, Quan X Y, Zhang R, et al. Interactive effects of light intensity and nitrogen supply on dry matter production and distribution of rice [J]. Chinese Journal of Rice Science, 2014, 28(2): 167–176. DOI: 10.3969/j.issn.1001-7216.2014.02.008
-
期刊类型引用(13)
1. 覃金华,洪卫源,冯向前,李子秋,周子榆,王爱冬,李瑞杰,王丹英,张运波,陈松. 基于氮肥运筹下水稻产量与品质协同的农艺生理指标解析. 作物学报. 2025(02): 485-502 . 百度学术
2. 杨爱峥,迟浩诚,王秋菊,王小芳,沙炎,李茉. 东北黑土区秸秆和生物炭混施对土壤氮素与大豆氮素利用的影响. 农业机械学报. 2025(05): 523-533 . 百度学术
3. 姜艳喜,严洪冬,苏德峰,焦少杰,王黎明,马子竣,吴振阳. 高粱杂交种氮高效利用综合评价. 农学学报. 2024(02): 7-15 . 百度学术
4. 刘建新,曾宜跃,吕孝财,高青山. 水稻氮高效材料筛选与品种测试方法探讨. 粮油与饲料科技. 2024(01): 212-214 . 百度学术
5. 李洪亮,孙玉友,魏才强,张艳茗,曲金玲,程杜娟,解忠,宋泽,刘春光,姜龙,徐德海,时新瑞. 天然火山石板熔岩台地土壤条件对水稻稻米品质的影响. 中国农业大学学报. 2024(10): 172-186 . 百度学术
6. 胡明明,李志欣,丁峰,陈凯瑞,廖琴,吴子牛,熊莹,付浩,罗永恒,陈宗奎,杨志远,孙永健,马均. 不同水旱轮作模式下秸秆还田与精量减氮对水稻产量、氮素吸收利用及土壤氮含量的影响. 植物营养与肥料学报. 2024(08): 1500-1514 . 本站查看
7. 郭保卫,王岩,蔡嘉鑫,唐健,唐闯,胡雅杰,邢志鹏,张洪程. 氮肥用量对机插优质晚稻光合物质生产的影响. 核农学报. 2023(04): 833-843 . 百度学术
8. 闫聪硕,杨莉莉,周奇,陈林,支金虎. 我国水稻不同产区施氮量与产量分析比较. 农业科技与装备. 2023(01): 17-19+22 . 百度学术
9. 赵懿,陈海斌,杜建军,施新育,张振华,范如芹. 不同施肥模式对华南典型红壤菜地肥力与氮肥利用率的影响. 江苏农业学报. 2023(03): 692-698 . 百度学术
10. 何艳江. 水稻栽培技术与提高水稻种植效益的措施浅析. 农村实用技术. 2023(06): 64-65 . 百度学术
11. 肖大康,胡仁,韩天富,张卫峰,侯俊,任科宇. 氮肥用量和运筹对我国水稻产量及其构成因子影响的整合分析. 中国水稻科学. 2023(05): 529-542 . 百度学术
12. 龙俊江,祝孟洋,周丁香,郭章亮,徐华勤,童治军. 增施生物炭对灌浆期低温胁迫下晚稻抗氧化酶活性和产量的影响. 中国稻米. 2023(06): 33-38 . 百度学术
13. 张悦,邹积祥,张彬,伍龙梅,黄庆,陆秀明,包晓哲,杨陶陶,陈青春. 氮肥和栽植密度对超级稻生长特性和产量的影响. 广东农业科学. 2022(09): 161-171 . 百度学术
其他类型引用(9)