Effects of deep storage water irrigation amount on the phosphorus utilization of winter wheat and loss risk down to deep soil
-
摘要:目的
汛前储水灌溉是陕西关中地区雨洪资源高效利用的重要方式。研究不同深蓄储水灌溉量对农田土壤磷素利用、累积与流失状况的影响,以实现农田的“高”磷吸收和“低”磷淋溶。
方法在陕西宝鸡峡灌区进行小麦田间试验,供试小麦品种为‘小偃22’。设置储水灌溉量分别为0、80、120、140、160和180 cm ,分别记为CK、D80、D120、D140、D160、D180,共6个处理。在小麦拔节期、开花期和成熟期,测定冬小麦植株各营养器官生物量、磷素含量及农田0—200 cm土层土壤速效磷含量,计算冬小麦吸磷量、磷肥利用效率和磷素盈亏。
结果与CK处理相比,D80、D120、D140、D160、D180处理冬小麦产量分别提高了8.85%、24.71%、30.99%、17.91%、9.90%,成熟期籽粒磷素累积量分别提高了37.55%、46.34%、38.09%、28.23%、22.11%,小麦植株磷素吸收效率分别增加10.10%、12.47%、10.25%、7.59%、5.95%,有效磷表观盈余量分别降低了13.82%、17.05%、14.02%、10.39%、8.13%。随着储水灌溉量的增加,成熟期小麦植株磷素累积量呈先增加后降低的趋势,以D120处理磷素累积量最高,显著高于D160和D180处理,因此其磷素表观盈余量最低(78.83 kg/hm2),显著低于D160、D180处理。D120处理相较D160和D180有助于小麦花前磷素转运和花后磷素累积;D80处理相较D120处理小麦花前磷素转运有所降低,但在花后磷素累积上表现出补偿作用;D140处理虽然降低了花后的磷素累积,但通过提高花前磷素转运实现了平衡。值得注意的是,D80、D120和D140处理之间的成熟期植株磷素累积量与籽粒磷素累积量差异不显著。另外,由于土壤中20—100 cm土层速效磷含量远低于该地磷素淋溶的环境阈值(39.9 mg/kg),尽管存在高水平的磷盈余,在适宜储水灌溉量下也不会引发磷淋失。然而,当储水深度大于160 cm时,对深层土壤中速效磷产生了明显的影响,导致土壤磷素发生淋失。
结论在西北地区,适宜的储水灌溉量为80~140 cm,既可以提高小麦磷素吸收,又可以控制土壤中速效磷含量处于适宜范围,降低土壤磷素盈余,进而获得较低的土壤磷素环境风险。
Abstract:ObjectivesDeep storage water irrigation before rain season is an efficient utilization way of rainwater and flood resources in central Shaanxi Province. As the potential risks of nutrient leaching, and reduced fertilizer utilization efficiency due to large irrigation water volume, we studied the effect of storage water irrigation volumes on wheat P utilization, apparent P balance, and leaching risks down to deep soil.
MethodsA field experiment on wheat was conducted in the Baojixia Irrigation Area of the Guanzhong Plain (Caoxinzhuang Farm, Yangling Demonstration Zone), with winter wheat cultivar ‘Xiaoyan 22’ as the test material. The treated storage irrigation water volumes were 0, 80, 120, 140, 160, and 180 cm, denoted as CK, D80, D120, D140, D160, and D180, respectively. The biomass and P contents in various organs of winter wheat were analyzed for the calculation of wheat phosphorus uptake, phosphorus fertilizer utilization efficiency, and apparent P surplus. The available phosphorus content in 0−200 cm soil layers were measured for the assessment of P leaching down to deep soil.
ResultsCompared with CK, treatment D80, D120, D140, D160, and D180 increased winter wheat yield by 8.85%, 24.71%, 30.99%, 17.91%, and 9.90%, increased the grain P accumulation at maturity stage by 37.55%, 46.34%, 38.09%, 28.23%, and 22.11%, enhanced phosphorus absorption efficiency of wheat plants by 10.10%, 12.47%, 10.25%, 7.59%, 5.95%, and decreased phosphorus apparent surplus by 13.82%, 17.05%, 14.02%, 10.39%, and 8.13%, respectively. With the increase of water storage irrigation volume, the P accumulation in wheat showed a trend of first increasing and then decreasing, reaching the highest value at D120. And the apparent P surplus showed a trend of declining first and then rising, the lowest P surplus (78.83 kg/hm2) was recorded at D120, which was significantly lower than that at D160 and D180 treatments. Compared with D160 and D180, D120 treatment was more conducive to pre flowering phosphorus transport and post flowering phosphorus assimilation in wheat. D80 treatment showed lower phosphorus transport before flowering compared to D120 wheat, but showed a compensatory effect on phosphorus accumulation after flowering. Although D140 treatment reduced phosphorus accumulation after flowering, it achieved balance by increasing phosphorus transport before flowering. It was worth noting that there was no significant differences in plant and grain phosphorus accumulation between D80, D120, and D140 treatments. In addition, due to the fact that the available phosphorus content in the 20−100 cm soil layer was much lower than the environmental threshold for phosphorus leaching in the area (39.9 mg/kg), the high level of phosphorus surplus did not cause phosphorus leaching when the water storage water irrigation amounts was less than 140 cm, however, it did when the water storage depth was greater than 160 cm.
ConclusionsAppropriate storage water irrigation volume significantly improves the efficiency of wheat phosphorus absorption and utilization, and controls the soil available phosphorus content within threshold of P leaching, and reduces phosphorus surplus in soil. The suitable irrigation volume for water storage is 80–140 cm in the Northwest area.
-
陕西省地下水资源超采严重,其开发利用程度高达68%,位列西北地区地下水资源开采第一位[1−2]。另外,该地区强降水频次和强度以及极端次降水量呈增加趋势,汛期洪水弃水增多,达到182.22×108 m3,导致陕西地区地表水资源利用率降低[2−6]。前人研究发现,利用农田深层土壤在丰水期蓄积雨水,有助于调节土壤水分状况,应对气候干旱,延长灌溉水的利用时间,实现水资源的异时利用[7−8]。利用水库汛前或汛期泄水进行灌溉,既可将水库中排泄的水储蓄在土壤中,又满足了干旱季节作物的水分需要,促进作物地上部和根部的生长发育。作物庞大的根系体积有利于汛期土壤水的下渗,可补充深层地下水,改善地下水环境[9−10]。然而,在西北冬小麦–夏玉米轮作农田土壤中,化肥连年施用造成土壤中养分残留和累积,大量的灌溉可能驱动养分下渗,进入地下水,造成水污染[11−12]。因此,在该地区应用深蓄储水灌溉技术需要重点关注适宜的灌水量。
西北种植区化肥使用量逐年增加[13],其中约42%的养分被作物吸收利用,其余多被土壤固定,尤其是磷。大量灌溉和雨水不可避免地造成土壤中的部分氮、磷养分向深层移动,有可能进入地下水[14−16]。据估计,我国农田每年约19.5 kg/hm2的磷素进入水体中,比美国高8倍,是造成我国水体富营养化的主要因素之一[17]。土壤中有效磷含量与土壤渗漏水可溶性磷之间存在线性关系[18−19]。土壤中速效磷含量随土壤水分含量的增加而上升,并且随入渗水分向下迁移,灌水量越大,速效磷的淋失量越大,磷素的利用率越低[20−21]。但也有研究发现,充足灌溉会提高土壤对磷的吸附能力,降低土壤速效磷的含量[22]。由灌溉引起的土壤温度、pH值和氧化还原电位的变化,也间接影响着土壤磷的释放[23]。磷素盈亏与土壤有效磷含量存在线性正相关关系[24]。国内外长期定位试验结果表明,磷每盈余100 kg/hm2,土壤有效磷含量提高2~6 mg/kg[25−26]。而土壤含水量与植物对磷的吸收密切相关,也间接影响土壤中磷素的平衡[27]。Bai等[28]采用分段线性模型对不同类型土壤进行研究,发现杨凌塿土中Olsen-P含量的临界点为39.9 mg/kg,当土壤Olsen-P含量超过这一限制时,土壤溶液中的磷含量会急剧上升,磷的淋溶损失风险增大。也有研究者直接通过养分收支平衡原理估算土壤残留的养分,作为评估农业生态环境质量的一个指标,指出氮、磷、钾盈余量的环境安全阈值为20%氮盈余率、80%磷素盈余率和20%钾盈余率[29]。
水分与植物养分吸收、土壤养分盈余之间存在密切关系,综合考虑土壤磷素残留和迁移规律,用土壤中速效磷阈值+化肥残留阈值指标来综合评价其淋溶程度的研究尚显缺乏[30]。本试验研究了不同储水灌溉水量下,农田磷素的平衡状况和盈余磷素去向,以阐明土壤磷的残留淋溶规律,并采用数理统计学方法,建立评价模型,以探求“高”磷吸收和“低”磷淋溶下适宜的储水灌溉水量。
1. 材料与方法
1.1 试验区概况
本试验于2021年10月至2022年6月在陕西省杨凌示范区曹新庄试验农场(34°20′N, 108°07′E)进行。该农场位于关中平原中部,属于温带季风性气候,四季分明,年平均气温12.9℃,平均海拔521 m,无霜期220天,年平均降雨量637.6 mm,主要集中在7—9月,且多暴雨,秋季则多连阴雨。试验地土壤为塿土,0—20 cm土壤基础理化性质为:有机质13.12 g/kg,速效氮17.98 mg/kg,速效磷16.96 mg/kg,速效钾216 mg/kg,pH 8.12。土壤田间持水量为0.23~0.26 g/g (质量含水率),土壤容重为1.43 g/cm3,饱和含水量为0.313 g/g。试验期间气温及降雨量见图1。
1.2 试验设计
采用小麦–玉米轮作体系,供试品种选用当地普遍种植的‘小堰22’。小麦季施三元复合肥(N–P2O5–K2O为24–14–6)+商品颗粒有机肥(NY525—2012标准),播种前作为基肥一次性施入,折合总施氮量(N) 200 kg/hm2,施磷量(P2O5) 130 kg/hm2,施钾量(K2O)为60 kg/hm2。冬小麦种植行距为70 cm,播种量为225 kg/hm2。设置80 (D80)、120 (D120)、140 (D140)、160 (D160)和180 cm (D180) 5个储水灌溉土层深度处理,以未深蓄储水灌溉作为对照(CK)。其余田间管理按照当地农民种植习惯,在2021年12月30日,根据土壤墒情和麦苗长势进行冬灌1次,灌水量为67.5 mm。采用3次重复,随机区组设计,小区面积为18 m2 (长6 m、宽3 m),并在小区四周埋深2 m塑料膜做隔水处理,防止水分侧向运移。按照水文频率分析结果,春季有雨洪发生,确定2022年3月28日(播种后160天)进行一次深蓄储水灌溉处理,各小区自初始含水率灌至饱和含水率,不同处理灌水量见表1。
表 1 不同储水深度需要的灌水量Table 1. Irrigation quota required for different water storage depths处理
Treatment深蓄储水灌溉深度
Water storage
irrigation depth
(cm)深蓄储水灌溉量
Deep storage irrigation
requirement
(mm)D80 80 121.686 D120 120 169.393 D140 140 197.529 D160 160 225.124 D180 180 265.313 CK 0 0 1.3 采样方法
产量测定:在小麦成熟期,每小区选有代表性的1 m2植株收集地上穗部分,自然风干后麦穗脱粒,称量籽粒干重用以计算小麦产量。
在小麦的开花期和成熟期采集有代表性的植株10株,并按茎鞘、叶片、穗轴+颖壳、籽粒进行分类,鲜样在105℃下杀青30 min,75℃下烘干至恒重称重,然后将植株样品粉碎过1 mm筛,采用H2SO4−H2O2法消煮,用SEAL-AA3型连续流动分析仪测定得到植株各器官中全磷含量。
在播种前、灌水前(拔节期)、灌水后10天后(拔节后期)、灌水后20天(抽穗期)以及作物开花期(灌水后28天后)、灌浆期、成熟期使用土钻采集土壤样品,深度为200 cm,前100 cm每10 cm取1层,100 cm后每20 cm取样。按照土壤常规方法测定土壤养分[31],每个小区在3个不同部位取土,同一层的土壤样品充分混合,室内风干,磨细过0.25 mm筛,用0.5 mol/L NaHCO3浸提,连续流动分析仪测定Olsen-P含量。
1.4 计算公式
冬小麦对磷素吸收累积分配利用的相关指标参照前人[32−33]研究,计算公式如下:
植株各器官磷素累积量(kg/hm2)=植株各器官干物质质量(kg/hm2)×植株各器官磷素含量
植株磷素累积总量(kg/hm2)=Σ植株各器官磷素累积量
植株各器官的磷素分配(%)=植株各器官磷素累积量/植株磷素累积总量×100
花前磷素转运量(kg/hm2)=开花期营养器官磷素累积量−成熟期营养器官磷素累积量
花后磷素累积量(kg/hm2)=成熟期植株磷素累积量−开花期植株磷素累积量
花前磷素转运率(%)=花前营养器官磷素转运量/花前营养器官磷素累积量×100
花后磷素累积率(%)=花后植株磷素累积量/成熟期植株磷素累积量×100
磷素收获指数(kg/kg)=籽粒磷素累积量/植株磷素累积量
磷素吸收效率(%)=植株磷素累积总量/施肥量×100
磷素利用效率(kg/kg)=籽粒产量/植株磷素累积总量
土壤表观磷素盈余(kg/hm2)=年施入磷量−年作物吸收磷量
磷素盈余率(%)=[(输入量−作物地上部带走量)/作物地上部带走量]×100
1.5 统计分析
数据采用Microsoft Excel 2010进行相关性分析,用SPSS 26软件进行方差分析。
2. 结果与分析
2.1 不同深蓄储水灌溉对冬小麦成熟期不同器官磷素累积分配的影响
表2显示,灌水显著增加了植株对磷素的吸收,总体上随灌水深度的增加,植株成熟期营养器官磷素累积量及分配比例呈现先升高后降低的趋势,而籽粒磷素分配比例趋势相反。其中籽粒、茎鞘、叶片、穗轴+颖壳的磷素累积量分别在D120、D120、D140、D80处理达到最高,分别为41.504、3.265、1.477、5.412 kg/hm2。与不灌水(CK)相比,储水灌溉处理籽粒、茎鞘、叶片、穗轴+颖壳的磷素累积量分别提高了14.02%~30.76%、79.55%~184.65%、57.97%~185.41%和120.33%~246.03%。成熟期各器官磷素分配比例以籽粒最高,所占地上部磷素累积量比例超过80%;叶片分配比例最低,均不超过3.1%。籽粒磷素分配比例以CK处理最高,为90.72%,与CK处理相比,D80、D120、D140、D160、D180处理成熟期籽粒磷素累积量分别提高了37.55%、46.34%、38.09%、28.23%、22.11%。茎鞘和叶片磷素分配比例均为D140处理最高,分别为6.78%和3.04%;穗轴+颖壳磷素分配比例D80处理最高,CK处理最低。
表 2 不同储水灌溉深度下冬小麦成熟期各器官磷素累积量及在全株磷中的占比Table 2. Accumulation and proportion of phosphorus in different organs of winter wheat at maturity stage under different storage water irrigation depths处理
Treatment茎鞘 Stem and sheath 叶片 Leaf 穗轴+颖壳 Spike axis + glume 籽粒 Grain 累积量
Accumulation
(kg/hm2)比例
Proportion
(%)累积量
Accumulation
(kg/hm2)比例
Proportion
(%)累积量
Accumulation
(kg/hm2)比例
Proportion
(%)累积量
Accumulation
(kg/hm2)比例
Proportion
(%)CK 1.147 a 3.29 a 0.518 b 1.48 b 1.564 b 4.52 b 31.740 b 90.72 a D80 2.059 a 4.21 a 0.817 ab 1.69 ab 5.412 a 11.21 a 39.810 a 82.89 ab D120 3.265 a 6.47 a 1.206 ab 2.35 ab 5.199 a 10.28 a 41.504 a 80.90 b D140 3.263 a 6.78 a 1.477 a 3.04 a 4.370 a 9.01 ab 39.178 a 81.17 ab D160 2.924 a 6.48 a 1.083 ab 2.36 ab 4.642 a 10.54 a 36.190 ab 80.62 b D180 2.203 a 5.00 a 0.832 ab 1.92 ab 3.446 ab 8.07 ab 36.219 ab 84.95 ab 注:同列数值后不同小写字母表示不同处理在0.05水平上差异显著。
Note: Different lowercase letters following the values within the same column indicate significant difference among treatments at 0.05 level.2.2 不同储水深度对小麦花前磷素转运和花后磷素积累的影响
在冬小麦开花期,D120和D140处理地上部营养器官磷素累积量较CK处理显著提高(表3,P<0.05),分别增加30.36%和39.56%,D140处理地上部营养器官磷素累积量最高,为39.13 kg/hm2,显著高于D80、D160和D180处理(P<0.05),与D120处理差异不显著。植株花前磷素转运量和转运比例受储水深度的影响显著,随着储水深度增加,小麦植株花前磷素转运量和转运比例呈先增加后减小的趋势,在D140达到峰值。储水深度对植株花后磷素累积量和累积比例有着不同程度的影响,各处理植株花后磷素累积量和累积比例的变化趋势与花前磷素转运量和转运比例相反,花后磷素累积量以D80处理最高,为18.22 kg/hm2,其次为D120处理(14.63 kg/hm2),D180和D160处理相近,分别为11.96和11.74 kg/hm2,D140处理较小,为9.16 kg/hm2。
表 3 冬小麦花前磷素转运和花后磷素累积量及其所占的比例Table 3. Amount and proportion of pre-anthesis phosphorous transport and post-anthesis phosphorus accumulation in winter wheat处理
Treatment营养器官磷素累积量 (kg/hm2)
P accumulation in vegetative organs花前磷素转运
P export before anthesis花后磷素累积
P accumulation after anthesis开花期
Anthesis stage成熟期
Maturity stage量 (kg/hm2)
Amount比例 (%)
Proportion量 (kg/hm2)
Amount比例 (%)
ProportionCK 28.04 d 3.32 b 24.81 ab 78.22 a 6.93 d 21.78 c D80 29.88 cd 8.29 a 21.59 b 54.21 c 18.22 a 45.79 a D120 36.55 ab 9.67 a 26.88 ab 65.00 b 14.63 b 35.00 b D140 39.13 a 9.11 a 30.02 a 76.31a 9.16 cd 23.69 c D160 33.10 bc 8.65 a 24.45 ab 67.36 b 11.74 bc 32.64 b D180 30.74 cd 6.48 ab 24.26 ab 67.10 b 11.96 bc 32.90 b 注:同列数值后不同小写字母表示不同处理在0.05水平上差异显著。
Note: Different lowercase letters following the values within the same column indicate significant difference among treatments at 0.05 level.2.3 不同深蓄储水灌溉对剖面土壤速效磷含量的影响
通过对不同深蓄储水灌溉下各层土壤速效磷含量分析(图2)可以看出,在冬小麦整个生育期内,土壤中速效磷整体随土层深度增加呈现出先减小后增大的趋势。具体表现为3个层级:0—20 cm土层中的速效磷含量在20 mg/kg左右,在20—100 cm土层中,速效磷含量较低,普遍低于10 mg/kg,而100—200 cm土层中速效磷含量迅速增加,其浓度范围为20—100 mg/kg。
图 2 不同时期土壤速效磷含量注:上图为在冬小麦拔节期(灌溉前)、拔节后期(灌水后10 d)、抽穗期(灌水后20 d)、开花期(灌水后28 d)、灌浆期、成熟期,深蓄储水灌溉分别为0、80、120、140、160、180 cm 土层深度下土壤剖面0—200 cm速效磷含量分布图。柱上不同小写字母表示同一处理同一土层不同时期间差异达0.05显著水平。图内表格中的大写字母表示同一土层同一时期不同处理间差异达0.05显著水平,图内表格中同列不同小写字母同一处理同一时期不同土层间速效磷含量差异达0.05显著水平。Figure 2. Soil available phosphorus concentrations as affected by storage water depths at different growth stagesNote: The above figure shows the distribution of available phosphorus content in soil profiles at depths of 0−200 cm during the jointing stage (JS, before irrigation), late jointing stage (LJS, 10 days after irrigation), heading stage (HS, 20 days after irrigation), flowering stage (FS, 28 days after irrigation), grouting stage (GS), and mature stage(MS) of deep storage water irrigation. The lowercase letters above the bars indicate that the difference among growth stages in the same soil layer under the same treatment reached a significant level of 0.05. The uppercase letters in the table indicate that the difference among different treatments in the same soil layer at the same period reached a significant level of 0.05, while the lowercase letters in a column in the table indicate that the difference among soil layers of the same treatment at the same period reached a significant level of 0.05.从拔节期(灌水前)开始到作物成熟末期,CK处理0—100 cm各土层成熟期土壤速效磷含量较拔节期显著降低(图2,P<0.05),100—200 cm各土层速效磷含量波动不太明显。储水灌溉引起了土壤磷的下移,与灌水前相比,储水灌溉后10天,各灌水处理0—200 cm土层速效磷平均含量均有所提高,增加量由高到低为D160 (11.60 mg/kg)>D140 (8.52 mg/kg)>D120 (6.60 mg/kg)>D180 (4.74 mg/kg)>D80 (3.67 mg/kg);灌水后20天(抽穗期),CK处理0—200 cm土层平均速效磷含量下降,而各灌水处理分别增加了3.94 mg/kg (D80)、7.41 mg/kg (D120)、8.31 mg/kg (D140)、5.78 mg/kg (D160)和6.09 mg/kg (D180),且100—200 cm土层土壤速效磷含量受灌水量影响较为明显。
随着储水深度的增加,土壤中速效磷时空变化范围也在不断扩大。在D80处理,拔节后期(灌水后10天) 100—140 cm各土层速效磷含量峰值较灌水前显著增加(P<0.05),增加值分别为10.79 mg/kg (100—120 cm)、13.01 mg/kg (120—140 cm)。在D160处理,灌水后10天100—200 cm各土层的速效磷含量比灌水前分别增加了42.44 mg/kg (100—120 cm)、31.86 mg/kg (120—140 cm)、20.46 mg/kg (140—160 cm)、−0.63 mg/kg (160—180 cm)和4.82 mg/kg (180—200 cm),而在灌水后20天速效磷含量比灌水前分别增加了13.49 mg/kg (100—120 cm)、11.88 mg/kg (120—140 cm)、4.33 mg/kg (140—160 cm)、15.90 mg/kg (160—180 cm)和10.37 mg/kg (180—200 cm)。比较D160处理拔节后期—抽穗期和抽穗期—开花期这两个时期的土壤速效磷增量可以发现,灌水后10天100—160 cm土层土壤速效磷含量较灌水前显著增加(P<0.05)。灌水后20天,100—160 cm土层速效磷增量较10天前显著降低(图2,P<0.05),而160—180 cm土层速效磷含量略有增加,180—200 cm土层速效磷含量显著增加(P<0.05),增加值为5.55 mg/kg;灌浆期也发现相较于灌水前160—200 cm土层速效磷含量增加,该时段土层中速效磷含量已经超出了80 mg/kg;在成熟期,深层土壤速效磷含量降低,120—200 cm土层的速效磷含量显著低于拔节期(灌水前)。
2.4 不同深蓄储水灌溉对作物产量、磷素吸收和盈余的影响
灌水对冬小麦产量、磷素吸收利用效率和土壤磷盈余有显著影响(表4,P<0.05)。随着储水灌溉深度的增加,冬小麦产量和磷素吸收效率呈现先增加后减小的趋势。与CK处理相比,D80、D120、D140、D160、D180处理冬小麦产量分别提高了8.85%、24.71%、30.99%、17.91%、9.90%,小麦植株磷素吸收效率分别增加10.10、12.47、10.25、7.59、5.95个百分点。磷肥利用效率CK处理达到最高值246.3 kg/kg,D80处理为最低值194.6 kg/kg。储水灌溉处理之间小麦磷素收获指数无显著差异,CK处理的磷素收获指数最大,达到90.72%,较D120、D160处理显著增加(P<0.05),和D80、D140、D180处理差异不显著。说明干旱、淹水等逆境胁迫下促使磷素向籽粒中分配。将农田看作一个整体,考虑所有输入和输出,计算土壤磷素表观损失和盈余。CK处理磷素表观盈余量和盈余率分别达到最高值95.03 kg/hm2、273.5%。D80、D120、D140、D160和D180处理累积磷素表观盈余量较CK处理显著降低了13.82%、17.05%、14.02%、10.39%、8.13% (P<0.05)。
表 4 不同储水深度对冬小麦产量、磷素吸收利用效率和磷素盈余的影响Table 4. Effects of water storage depth on winter wheat yield, phosphorus utilization efficiency, and phosphorus surplus处理
Treatment产量
Yield
(kg/hm2)磷素累积量
P absorption
(kg/hm2)磷素吸收效率
P uptake efficiency
(%)磷素利用效率
P use efficiency
(kg/kg)磷素收获指数
P harvest index
(%)磷素表观盈余量
P apparent surplus
(kg/hm2)磷素盈余率
P surplus ratio
(%)CK 8582 d 34.97 c 26.90 c 246.3 a 90.72 a 95.03 a 273.5 a D80 9342 cd 48.10 ab 37.00 ab 194.6 c 82.89 ab 81.90 bc 170.8 bc D120 10703 ab 51.17 a 39.36 a 209.6 bc 80.90 b 78.83 c 154.6 c D140 11242 a 48.29 ab 37.14 ab 233.9 ab 81.17 ab 81.71 bc 169.9 bc D160 10119 bc 44.84 b 34.49 b 225.9 abc 80.62 b 85.16 b 191.3 bc D180 9432 cd 42.70 b 32.85 b 221.7 abc 84.95 ab 87.30 b 205.5 b 注:同列数值后不同小写字母表示不同处理在0.05水平差异显著。
Note: Different lowercase letters following the values within the same column indicate significant difference among treatments at 0.05 level.3. 讨论
3.1 磷素的吸收和分配
灌溉是促进作物生长的关键管理措施[34−36]。灌溉增强了土壤水分,为根系吸收水分和养分提供了有利环境[37],从而提高了作物产量。Cao等[38]通过2009—2013年期间52个实验点的田间试验研究,发现冬小麦地上部磷素累积量与产量呈正线性关系。同样,这也符合本研究结果:充足的水分供应有利于提高作物产量(表4),增强作物对于磷素的吸收[39]。然而在本试验中,储水灌溉显著增加开花期和成熟期植株磷素累积量。当储水深度达到160 cm时,严重影响了小麦的生长,植物磷吸收能力受到抑制,磷累积量降低。这与前人[39−40]研究结果一致。任佰朝等[41]发现涝水会抑制作物地上部生物量和氮磷钾养分累积量,显著减少功能器官中养分向籽粒的转移量。也有研究发现,当土壤水分降低时,植株生长量、氮磷钾累积量呈下降趋势,但较低的土壤水分有利于氮磷钾向果实的分配[42]。前人及本研究关于不同深蓄储水对植物养分分配影响的试验结果表明,小麦成熟期磷素累积量及在器官中的分配比例不同,以籽粒最高,茎秆和叶鞘次之,叶、穗轴和颖壳较低[43]。适度土壤干旱有利于营养器官磷素向籽粒中的分配,所以会导致成熟期籽粒磷素分配比例高达90.72%。水分促进植物对于养分的吸收,提高茎叶等营养器官中磷素分配比例,导致营养器官累积的磷素增加[44−46]。
3.2 小麦花前花后磷素转运
分析作物花前磷素转运量和转运比例以后花后磷素累积量和累积比例的研究结果可以发现,在外界环境刺激下,作物自我调节功能开始运转。具体表现为:在CK处理中,作物的花前磷素转运比例处于较高水平,但在作物生长后期,干旱严重损害了作物生长,养分吸收受到抑制,花后磷素累积量减小,花后磷素累积比例降低。这与曾广伟等[47]的研究结果相似。本研究还发现,深蓄储水灌溉处理通过增加花前磷素转运和花后磷素累积来提高籽粒磷素累积比例,但是花后磷素累积量的提高比花前磷素转运更加明显。这与王文翔等[48]探求不同降雨年型对旱地小麦磷肥利用的影响的研究结果一致。在适宜水分范围内,会激发花后作物养分补偿,即花前养分累积量较少时会增加作物花后籽粒补偿量,出现植株花前磷素转运量与花后磷素累积量相反的趋势,如D80处理中花前磷素转运比例最低,花后磷素累积比例最高。本研究还发现,拔节期深蓄储水超过140 cm时,会抑制花前磷素向籽粒中的转运,促进花后磷素同化。可能的原因是高灌水形成淹水胁迫导致小麦吸收、分配、转运磷素能力减弱,但是随着土壤水分扩散和消耗,高储水深度处理下在灌浆期土壤含水量适宜作物花后养分的同化,激活了小麦作物“磷素花后补偿”效应。
3.3 土壤中速效磷的迁移
速效磷含量是土壤供磷能力的重要指标,通常是指土壤中短时期内能为植物吸收利用的磷,所以其含量与作物生长的相关性好。当磷肥被施入表层土壤中,不会像尿素一样迅速转化为速效养分,其随水移动的过程较为缓慢,但是作物吸收养分主要是20—100 cm土层,因此造成了20—100 cm土壤速效磷含量普遍低于10 mg/kg。土壤有效磷的含量与径流或淋溶水中磷素具有很好的线性相关性[49−52]。土壤水分含量不仅能够影响土壤中磷素的含量而且也能影响磷素的迁移速率。在大水漫灌条件下,短期内造成土壤厌氧或者兼性厌氧环境,降低土壤黏粒和有机质对磷的固定,磷素流失风险增加[53−54]。本研究发现,深蓄储水灌溉各处理土壤0—200 cm土层速效磷含量变化总体呈“升—降”趋势。灌水初期,水分促进土壤中磷的释放,土壤速效磷含量增加。灌水处理后期由于土壤水分的消耗,导致土壤水分含量降低,土壤对磷的固定能力增强,土壤中速效磷含量下降,并且储水深度越大,含磷量下降速度越缓慢。这与张星等[23]和唐宏亮等[55]报道的结果相一致。王云慧等[56]在内蒙古地区研究发现,夏灌后土壤有效磷含量和土壤含水率密切相关,当有灌水或者降雨发生,土壤有效磷含量会明显增加,同时也增加了可溶性磷随水分迁移的风险。在本研究中,深蓄储水灌溉各处理拔节后期(灌水后10 天)、抽穗期(灌水后20天),0—200 cm土层土壤速效磷平均浓度较灌水前的浓度增加值呈现出随储水深度增加先升高后降低的趋势,这说明灌水量过高会抑制土壤中速效磷的释放。具体表现为:当深蓄储水深度为160 cm时,土壤的速效磷得到快速释放,在水分的驱动下,向下迁移发生累积,导致在小麦开花和灌浆等生育后期160—200 cm土层速效磷增量大幅度增加,甚至深层土层中部分土层速效磷含量大于80 mg/kg,显著高于其他处理。当土壤储水灌溉深度为180 cm时,抑制了土壤中速效磷释放,导致其速效磷增加量小于深蓄储水灌溉深度为80—160 cm处理下的增加量,这与于飞等[57]在淹水下对水稻土中磷肥转化的研究结果相一致。
3.4 深蓄储水灌溉下磷素利用评价
灌溉可以减少干旱胁迫的抑制作用,促进作物生长,促进土壤中磷的转化,使得灌溉后土壤有效磷浓度增加,进而实现植株磷素最大化吸收。前人研究发现,灌溉可以增加作物对磷的累积量,但是其茎叶累积比例普遍高于水分供应不足时,籽粒磷素分配率相对较低,从而导致植株的养分利用效率降低[58−59]。然而当土壤水分过于饱和,会抑制作物生长发育和对养分的吸收累积,进而影响作物的品质和肥料吸收利用率[60−61],这与本研究结果一致。王瑜[62]通过为期两年的水磷耦合田间试验,也证实了在适宜的灌溉下,冬小麦能获得更高的产量和肥料利用效率,更高的灌溉量处理产量和肥料利用效率较低。养分收获指数是指谷物和植物器官中养分的分布[63]。在中国黄土高原山西和陕西旱地的高、中、低产田中,磷素收获指数(PHI)处于82%~86%[64],而本研究PHI的范围为80.62%~90.72%,其范围略大于前人研究。可能的原因是当作物处于干旱等逆境胁迫下时,存在保护机制以维持自身功能,优先供应作物籽粒磷素累积,导致籽粒磷素分配比例和磷素收获指数增加。另一方面,当水分供应充足且适应时,茎、叶、穗中磷累积比例均高于籽粒,导致磷素收获指数降低。对小麦农田中磷素的输入和输出等各个环节进行研究,明确磷素循环与平衡状况,对于维持和提高农田生态系统生产力水平,提高磷肥资源利用效率具有重要意义。本研究中磷投入为130 kg/hm2,植株磷累积量为34.97~51.17 kg/hm2,盈余量为78.83~95.03 kg/hm2,与小麦–玉米长期轮作磷肥循环的估算结果基本一致[65]。本研究农田磷素盈余率已经远远超过农田安全磷素标准值80%,其磷素淋失风险指数达到严重环境风险等级。但是结合图2速效磷的淋溶情况,只有深蓄储水深度为160 cm时才出现土壤磷淋溶,主要原因可能是土壤中20—100 cm土层速效磷远低于该地磷素淋溶阈值(39.9 mg/kg)[28],所以高盈余在适宜灌水下也不会导致磷淋溶,但是当长期磷素施肥处于这一水平时,可能会引起土壤深层速效磷含量的增加,从而发生磷素淋失。
4. 结论
深蓄储水灌溉能促进冬小麦植株生长,提高土壤中速效磷含量,提升作物产量和磷素累积量,降低土壤磷素的累积。因此,在西北地区应用深蓄储水模式时,综合考虑不同深蓄储水深度对作物磷素利用、土壤磷素迁移和磷素循环的影响,适宜的储水灌溉土层深度范围为80—140 cm,这样既可以显著提高冬小麦产量和磷素累积量,又可以控制土壤中速效磷处于适宜范围,降低土壤磷素盈余,获得较低的土壤磷素淋洗风险。
-
图 2 不同时期土壤速效磷含量
注:上图为在冬小麦拔节期(灌溉前)、拔节后期(灌水后10 d)、抽穗期(灌水后20 d)、开花期(灌水后28 d)、灌浆期、成熟期,深蓄储水灌溉分别为0、80、120、140、160、180 cm 土层深度下土壤剖面0—200 cm速效磷含量分布图。柱上不同小写字母表示同一处理同一土层不同时期间差异达0.05显著水平。图内表格中的大写字母表示同一土层同一时期不同处理间差异达0.05显著水平,图内表格中同列不同小写字母同一处理同一时期不同土层间速效磷含量差异达0.05显著水平。
Figure 2. Soil available phosphorus concentrations as affected by storage water depths at different growth stages
Note: The above figure shows the distribution of available phosphorus content in soil profiles at depths of 0−200 cm during the jointing stage (JS, before irrigation), late jointing stage (LJS, 10 days after irrigation), heading stage (HS, 20 days after irrigation), flowering stage (FS, 28 days after irrigation), grouting stage (GS), and mature stage(MS) of deep storage water irrigation. The lowercase letters above the bars indicate that the difference among growth stages in the same soil layer under the same treatment reached a significant level of 0.05. The uppercase letters in the table indicate that the difference among different treatments in the same soil layer at the same period reached a significant level of 0.05, while the lowercase letters in a column in the table indicate that the difference among soil layers of the same treatment at the same period reached a significant level of 0.05.
表 1 不同储水深度需要的灌水量
Table 1 Irrigation quota required for different water storage depths
处理
Treatment深蓄储水灌溉深度
Water storage
irrigation depth
(cm)深蓄储水灌溉量
Deep storage irrigation
requirement
(mm)D80 80 121.686 D120 120 169.393 D140 140 197.529 D160 160 225.124 D180 180 265.313 CK 0 0 表 2 不同储水灌溉深度下冬小麦成熟期各器官磷素累积量及在全株磷中的占比
Table 2 Accumulation and proportion of phosphorus in different organs of winter wheat at maturity stage under different storage water irrigation depths
处理
Treatment茎鞘 Stem and sheath 叶片 Leaf 穗轴+颖壳 Spike axis + glume 籽粒 Grain 累积量
Accumulation
(kg/hm2)比例
Proportion
(%)累积量
Accumulation
(kg/hm2)比例
Proportion
(%)累积量
Accumulation
(kg/hm2)比例
Proportion
(%)累积量
Accumulation
(kg/hm2)比例
Proportion
(%)CK 1.147 a 3.29 a 0.518 b 1.48 b 1.564 b 4.52 b 31.740 b 90.72 a D80 2.059 a 4.21 a 0.817 ab 1.69 ab 5.412 a 11.21 a 39.810 a 82.89 ab D120 3.265 a 6.47 a 1.206 ab 2.35 ab 5.199 a 10.28 a 41.504 a 80.90 b D140 3.263 a 6.78 a 1.477 a 3.04 a 4.370 a 9.01 ab 39.178 a 81.17 ab D160 2.924 a 6.48 a 1.083 ab 2.36 ab 4.642 a 10.54 a 36.190 ab 80.62 b D180 2.203 a 5.00 a 0.832 ab 1.92 ab 3.446 ab 8.07 ab 36.219 ab 84.95 ab 注:同列数值后不同小写字母表示不同处理在0.05水平上差异显著。
Note: Different lowercase letters following the values within the same column indicate significant difference among treatments at 0.05 level.表 3 冬小麦花前磷素转运和花后磷素累积量及其所占的比例
Table 3 Amount and proportion of pre-anthesis phosphorous transport and post-anthesis phosphorus accumulation in winter wheat
处理
Treatment营养器官磷素累积量 (kg/hm2)
P accumulation in vegetative organs花前磷素转运
P export before anthesis花后磷素累积
P accumulation after anthesis开花期
Anthesis stage成熟期
Maturity stage量 (kg/hm2)
Amount比例 (%)
Proportion量 (kg/hm2)
Amount比例 (%)
ProportionCK 28.04 d 3.32 b 24.81 ab 78.22 a 6.93 d 21.78 c D80 29.88 cd 8.29 a 21.59 b 54.21 c 18.22 a 45.79 a D120 36.55 ab 9.67 a 26.88 ab 65.00 b 14.63 b 35.00 b D140 39.13 a 9.11 a 30.02 a 76.31a 9.16 cd 23.69 c D160 33.10 bc 8.65 a 24.45 ab 67.36 b 11.74 bc 32.64 b D180 30.74 cd 6.48 ab 24.26 ab 67.10 b 11.96 bc 32.90 b 注:同列数值后不同小写字母表示不同处理在0.05水平上差异显著。
Note: Different lowercase letters following the values within the same column indicate significant difference among treatments at 0.05 level.表 4 不同储水深度对冬小麦产量、磷素吸收利用效率和磷素盈余的影响
Table 4 Effects of water storage depth on winter wheat yield, phosphorus utilization efficiency, and phosphorus surplus
处理
Treatment产量
Yield
(kg/hm2)磷素累积量
P absorption
(kg/hm2)磷素吸收效率
P uptake efficiency
(%)磷素利用效率
P use efficiency
(kg/kg)磷素收获指数
P harvest index
(%)磷素表观盈余量
P apparent surplus
(kg/hm2)磷素盈余率
P surplus ratio
(%)CK 8582 d 34.97 c 26.90 c 246.3 a 90.72 a 95.03 a 273.5 a D80 9342 cd 48.10 ab 37.00 ab 194.6 c 82.89 ab 81.90 bc 170.8 bc D120 10703 ab 51.17 a 39.36 a 209.6 bc 80.90 b 78.83 c 154.6 c D140 11242 a 48.29 ab 37.14 ab 233.9 ab 81.17 ab 81.71 bc 169.9 bc D160 10119 bc 44.84 b 34.49 b 225.9 abc 80.62 b 85.16 b 191.3 bc D180 9432 cd 42.70 b 32.85 b 221.7 abc 84.95 ab 87.30 b 205.5 b 注:同列数值后不同小写字母表示不同处理在0.05水平差异显著。
Note: Different lowercase letters following the values within the same column indicate significant difference among treatments at 0.05 level. -
[1] 荆继红, 孙继朝, 韩双平, 汪珊. 西北地区地下水资源分布及开发利用状况[J]. 南水北调与水利科技, 2007, 5(5): 54−56, 63. Jing J H, Sun J C, Han S P, Wang S. Distribution of groundwater resources and the state of development and utilization in the northwestern area[J]. South-to-North Water Transfer and Water Science and Technology, 2007, 5(5): 54−56, 63.
[2] 陕西省水利厅. 2021陕西省水资源公报[EB/OL]. [2022-08-12]. http://slt.shaanxi.gov.cn/. Shaanxi Provincial Department of Water Resources. 2021 Shaanxi Provincial water resources bulletin[EB/OL]. [2022-08-12]. http://slt.shaanxi.gov.cn/.
[3] 吴喜军, 李怀恩. 陕北地区水资源及其可利用量计算分析[J]. 水土保持通报, 2013, 33(2): 296−300. Wu X J, Li H E. Water resources and its availability in northern Shaanxi Province[J]. Bulletin of Soil and Water Conservation, 2013, 33(2): 296−300.
[4] 张宁. 近50年来陕西省气温和降水极端事件分析[D]. 陕西西安: 西北师范大学硕士学位论文, 2012. Zhang N. Analysis of extreme events temperature and precipitation in Shaanxi Province during the recent 50 years[D]. Xi’an, Shaanxi: MS Thesis of Northwest Normal University, 2012.
[5] 程肖侠, 蔡新玲, 李艳莉, 郑小华. 陕西省2021年气候影响评价[J]. 陕西气象, 2022, (5): 72−76. Cheng X X, Cai X L, Li Y L, Zheng X H. Climate impact assessment of Shaanxi Province in 2021[J]. Journal of Shaanxi Meteorology, 2022, (5): 72−76.
[6] 陕西省水利厅. 2020年陕西水利发展统计年报[J]. 西安: 陕西科学技术出版社, 2021. Shaanxi Provincial Department of Water Resources. 2020 Shaanxi water conservancy development statistical annual report[J]. Xi’an: Shaanxi Science and Technology Publishing House, 2021.
[7] 张瑞, 李鹏展, 王力. 黄土旱塬区土壤水分状况与作物生长、降水的关系[J]. 应用生态学报, 2019, 30(2): 359−369. Zhang R, Li P Z, Wang L. Relationship between soil moisture dynamics, crop growth and precipitation in rain-fed area of the Loess Tableland, China[J]. Chinese Journal of Applied Ecology, 2019, 30(2): 359−369.
[8] 张艳. 特殊水文地质条件下大定额灌溉水分有效性分析[D]. 山西太原: 太原理工大学硕士学位论文, 2015. Zhang Y. The effectiveness analysis of high irrigation quotas under the special hydrogeological conditions[D]. Taiyuan, Shanxi: MS Thesis of Taiyuan University of Technology, 2015.
[9] 王芳, 查晴, 赵洁, 等. 深蓄灌溉对夏玉米农田水分动态的影响[J]. 水土保持学报, 2023, 37(2): 246−252, 259. Wang F, Zha Q, Zhao J, et al. Effect of deep storage irrigation on soil moisture dynamics of summer maize farmland[J] Journal of Soil and Water Conservation, 2023, 37(2): 246−252, 259.
[10] 查晴, 王芳, 陈滇豫, 等. 深蓄储水灌溉对冬小麦籽粒灌浆及生长产量的影响[J]. 水资源与水工程学报, 2023, 34(3): 208−214. Zha Q, Wang F, Chen D Y, et al. Effects of deep storage irrigation on grain filling and growth yield of winter wheat[J]. Journal of Water Resources and Water Engineering, 2023, 34(3): 208−214.
[11] 王旭敏. 减氮节水对关中平原夏玉米产量和水氮利用效率的影响[D]. 陕西杨凌: 西北农林科技大学硕士学位论文, 2021. Wang X M. Effects of water saving and nitrogen reduction on summer maize yield and water and nitrogen use efficiency in Guanzhong Plain[D]. Yangling, Shaanxi: MS Thesis of Northwest A&F University, 2021.
[12] Lou H Z, Yang S T, Zhao C S, et al. Phosphorus risk in an intensive agricultural area in a mid-high latitude region of China[J]. Catena, 2015, 127: 46−55. DOI: 10.1016/j.catena.2014.12.013
[13] 王洪, 曹婧, 毋俊华, 陈怡平. 近40年来陕西省耕层土壤pH的时空变化特征[J]. 中国生态农业学报(中英文), 2021, 29(6): 1117−1126. Wang H, Cao J, Wu J H, Chen Y P. Spatial and temporal variability in soil pH of Shaanxi Province over the last 40 years[J]. Chinese Journal of Eco-Agriculture, 2021, 29(6): 1117−1126.
[14] 杨世琦. 基于国家粮食安全下的农业面源污染综合防治体系思考[J]. 中国农业科学, 2022, 55(17): 3380−3394. Yang S Q. Thought of pollution comprehensive prevention and control system of non-point sources based on national food security[J]. Scientia Agricultura Sinica, 2022, 55(17): 3380−3394.
[15] 李吉平, 徐勇峰, 陈子鹏, 等. 洪泽湖地区麦稻两熟农田及杨树林地降雨径流对地下水水质的影响[J]. 中国生态农业学报(中英文), 2019, 27(7): 1097−1104. Li J P, Xu Y F, Chen Z P, et al. Effects of rainfall and runoff on the groundwater quality in farmland and poplar forestland in the area of Hung-tse Lake[J]. Chinese Journal of Eco-Agriculture, 2019, 27(7): 1097−1104.
[16] 洪曦, 宫殿林, 罗尊长, 等. 不同施肥配比对红壤双季稻田氮磷平衡及生态与经济效益的影响[J]. 现代农业科技, 2022, (21): 1−6. Hong X, Gong D L, Luo Z C, et al. Effects of different fertilization ratios on nitrogen and phosphorus balance and ecological and economic benefits of double cropping rice field in red soil area[J]. Modern Agricultural Science and Technology, 2022, (21): 1−6.
[17] 王森, 朱昌雄, 耿兵. 土壤氮磷流失途径的研究进展[J]. 中国农学通报, 2013, 29(33): 22−25. DOI: 10.3969/j.issn.1000-6850.2013.33.005 Wang S, Zhu C X, Geng B. Research advancement in loss pathways of nitrogen and phosphorus in soils[J]. Chinese Agricultural Science Bulletin, 2013, 29(33): 22−25. DOI: 10.3969/j.issn.1000-6850.2013.33.005
[18] 展晓莹, 任意, 张淑香, 康日峰. 中国主要土壤有效磷演变及其与磷平衡的响应关系[J]. 中国农业科学, 2015, 48(23): 4728−4737. Zhan X Y, Ren Y, Zhang S X, Kang R F. Changes in Olsen phosphorus concentration and its response to phosphorus balance in the main types of soil in China[J]. Scientia Agricultura Sinica, 2015, 48(23): 4728−4737.
[19] 牛君仿, 冯俊霞, 张喜英. 不同磷源对设施菜田土壤速效磷及其淋溶阈值的影响[J]. 中国生态农业学报(中英文), 2019, 27(5): 686−693. Niu J F, Feng J X, Zhang X Y. Available phosphorus status and critical threshold for leaching in greenhouse soils influenced by different fertilizer sources[J]. Chinese Journal of Eco-Agriculture, 2019, 27(5): 686−693.
[20] 王洪媛, 李俊改, 樊秉乾, 等. 中国北方主要农区农田氮磷淋溶特征与时空规律[J]. 中国生态农业学报(中英文), 2021, 29(1): 11−18. Wang H Y, Li J G, Fan B Q, et al. Nitrogen and phosphorus leaching characteristics and temporal and spatial distribution patterns in northern China farmlands[J]. Chinese Journal of Eco-Agriculture, 2021, 29(1): 11−18.
[21] 骆晓声, 寇长林, 王小非, 等. 施氮量对潮土区冬小麦−夏玉米轮作农田氮磷淋溶的影响[J]. 中国生态农业学报(中英文), 2021, 29(1): 29−37. Luo X S, Kou C L, Wang X F, et al. Effects of nitrogen application on nitrogen and phosphorus leaching in fluvo-aquic soil on a winter wheat-summer maize rotation farmland[J]. Chinese Journal of Eco-Agriculture, 2021, 29(1): 29−37.
[22] 杨万忠. 不同水分条件下平衡施肥对土壤水肥状况及冬小麦产量的影响[D]. 陕西杨凌: 西北农林科技大学硕士学位论文, 2014. Yang W Z. Effects of banlanced fertilization on water and nutrient of soil and winter wheat yield under different water conditiongs[D]. Yangling, Shaanxi: MS Thesis of Northwest A&F University, 2014.
[23] 张星, 赵向阳, 管艳霞, 等. 淹水胁迫对不同土壤类型养分及玉米苗期养分吸收分配的影响[J]. 玉米科学, 2018, 26(1): 74−82. Zhang X, Zhao X Y, Guan Y X, et al. Effects of waterlogging stress on available nutrients and maize nutrient absorption and distribution in different soil types at seedling stage[J]. Journal of Maize Sciences, 2018, 26(1): 74−82.
[24] 曹宁, 陈新平, 张福锁, 曲东. 从土壤肥力变化预测中国未来磷肥需求[J]. 土壤学报, 2007, 44(3): 536−543. Cao N, Chen X P, Zhang F S, Qu D. Prediction of phosphate fertilizer demand in China based on change in soil phosphate fertility[J]. Acta Pedologica Sinica, 2007, 44(3): 536−543.
[25] Aulakh M S, Garg A K, Kabba B S. Phosphorus accumulation, leaching and residual effects on crop yields from long-term applications in the subtropics[J]. Soil Use & Management, 2007, 23(4): 417−427.
[26] Tang X, Li J M, Ma Y B, et al. Phosphorus efficiency in long-term (15 years) wheat-maize cropping systems with various soil and climate conditions[J]. Field Crops Research, 2008, 108(3): 231−237. DOI: 10.1016/j.fcr.2008.05.007
[27] 陈新颖. 水分和磷对不同类型作物根系形态和养分吸收的影响[D]. 河北保定: 河北大学硕士学位论文, 2020. Chen X X. Effects of water and phosphorus on root morphology and nutrient uptake of different types of crops[D]. Baoding, Hebei: MS Thesis of Hebei University, 2020.
[28] Bai Z H, Li H G, Yang X Y, et al. The critical soil P levels for crop yield, soil fertility and environmental safety in different soil types[J]. Plant and Soil, 2013, 372(1/2): 27−37.
[29] 王东, 牛劭斌, 许华森, 等. 华北平原山药主产区土壤肥力和养分平衡现状及环境风险评价[J]. 应用生态学报, 2021, 32(8): 2818−2828. Wang D, Niu S B, Xu H S, et al. Status of soil fertility, nutrient balance, and environmental risk assessment in yam production of North China Plain[J]. Chinese Journal of Applied Ecology, 2021, 32(8): 2818−2828.
[30] 张微微. 长期不同施肥下潮土有效磷对磷盈亏的响应关系及差异机制[D]. 北京: 中国农业科学院博士学位论文, 2020. Zhang W W. Response relationship and differential mechanism of available phosphorus to phosphorus gain and loss in tidal soil under long-term different fertilization[D]. Beijing: PhD Dissertation of Chinese Academy of Agricultural Sciences, 2020.
[31] 鲍士旦. 土壤农化分析 (第三版)[M]. 北京: 中国农业出版社, 2000. Bao S D. Soil and agrochemical analysis (3rd edition)[M]. Beijing: China Agriculture Press, 2000.
[32] 侯云鹏, 王立春, 李前, 等. 覆膜滴灌条件下基于玉米产量和土壤磷素平衡的磷肥适用量研究[J]. 中国农业科学, 2019, 52(20): 3573−3584. Hou Y P, Wang L C, Li Q, et al. Research on optimum phosphorus fertilizer rate based on maize yield and phosphorus balance in soil under film mulched drip irrigation conditions[J] Scientia Agricultura Sinica, 2019, 52(20): 3573−3584.
[33] 刘彦伶, 李渝, 白怡婧, 等. 长期不同施肥对水稻干物质和磷素积累与转运的影响[J]. 植物营养与肥料学报, 2019, 25(7): 1146−1156. Liu Y L, Li Y, Bai Y J, et al. Effect of long-term fertilization patterns on dry matter and phosphorus accumulation and translocation in rice[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(7): 1146−1156.
[34] 马彦霞, 张玉鑫, 王晓巍. 河西绿洲区大棚甘蓝产量、品质和养分吸收对不同水肥组合的响应[J]. 水土保持学报, 2018, 32(5): 270−276. Ma Y X, Zhang Y X, Wang X W. Response of yield, quality and nutrients absorption of greenhouses cabbage to different combinations of water and fertilizer in Hexi Oasis[J]. Journal of Soil and Water Conservation, 2018, 32(5): 270−276.
[35] 汤宏, 曾掌权, 李向阳, 等. 水磷耦合烤烟养分吸收分配规律研究[J]. 水土保持学报, 2019, 33(2): 294−302, 316. Tang H, Zeng Z Q, Li X Y, et al. Studies on nutrients uptake and distribution of flue- cured tobacco with water- phosphorus coupling[J]. Journal of Soil and Water Conservation, 2019, 33(2): 294−302, 316.
[36] 党建友, 裴雪霞, 王姣爱, 等. 灌水时间对冬小麦生长发育及水肥利用效率的影响[J]. 应用生态学报, 2012, 23(10): 2745−2750. Dang J Y, Pei X X, Wang J A, et al. Effects of irrigation time on the growth and water- and fertilizer use efficiencies of winter wheat[J]. Chinese Journal of Applied Ecology, 2012, 23(10): 2745−2750.
[37] 夏丽丹, 曹升, 张虹, 等. 不同水分条件下生物炭对红壤磷素形态及磷酸酶活性的影响[J]. 农业环境科学学报, 2019, 38(5): 1101−1111. Xia L D, Cao S, Zhang H, et al. Effect of biochar on phosphorus forms and phosphatase activity in red soil under different water conditions[J] Journal of Agro-Environmental Science, 2019, 38 (5): 1101−1111.
[38] Cao H B, Wang Z H, He G, et al. Tailoring NPK fertilizer application to precipitation for dryland winter wheat in the Loess Plateau[J]. Field Crops Research, 2017, 209: 88−95. DOI: 10.1016/j.fcr.2017.04.014
[39] 赵晶, 刘萌, 付威, 等. 传统耕作结合秸秆地膜双元覆盖是提高渭北旱塬春玉米产量和养分吸收的有效措施[J]. 植物营养与肥料学报, 2021, 27(7): 1151−1163. Zhao J, Liu M, Fu W, et al. Coventional tillage and dual mulching of straw and plastic film has stable effects on spring maize yield and nutrient absorption in Weibei dryland[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(7): 1151−1163.
[40] 潘晨, 吴倩, 杨宇, 等. 拔节期淹水条件下施氮量对玉米干物质积累和氮素吸收利用的影响[J]. 灌溉排水学报, 2022, 41(2): 68−74. Pan C, Wu Q, Yang Y, et al. Effects of nitrogen application on dry matter accumulation in maize waterlogged at jointing stage[J]. Journal of Irrigation and Drainage, 2022, 41(2): 68−74.
[41] 任佰朝, 张吉旺, 李霞, 等. 大田淹水对夏玉米养分吸收与转运的影响[J]. 植物营养与肥料学报, 2014, 20(2): 298−308. Ren B C, Zhang J W, Li X, et al. Effect of waterlogging on nutrient uptake and transport of summer maize[J]. Journal of Plant Nutrition and Fertilizers, 2014, 20(2): 298−308.
[42] 高方胜, 徐坤. 土壤水分对不同季节番茄产量及氮磷钾吸收分配特性的影响[J]. 核农学报, 2014, 28(9): 1722−1727. Gao F S, Xu K. Effect of soil water content on yield, absorption and distribution of N, P and K in tomato with different cultivation seasons[J]. Journal of Nuclear Agricultural Sciences, 2014, 28(9): 1722−1727.
[43] 高聚林, 刘克礼, 张永平, 等. 春小麦磷素吸收、积累与分配规律的研究[J]. 麦类作物学报, 2003, 23(3): 107−112. Gao J L, Liu K L, Zhang Y P, et al. Study on principle of P assimilation, accumulation and distribution of spring wheat[J]. Journal of Triticeae Crops, 2003, 23(3): 107−112.
[44] 杨玥. 不同水肥条件对小麦玉米产量及土壤养分的影响[D]. 陕西杨凌: 西北农林科技大学硕士学位论文, 2016. Yang Y. Effects of different combinations of water and fertilizers on the growth and nutrients uptake of winter wheat and maize[D]. Yangling, Shaanxi: MS Thesis of Northwest A&F University, 2016.
[45] 庞桂斌, 彭世彰, 张杰, 等. 水肥调控对水稻植株不同部位磷素含量及分配的影响[J]. 节水灌溉, 2009, (12): 1−4. DOI: 10.3969/j.issn.1007-4929.2009.12.001 Pang G B, Peng S Z, Zhang J, et al. Effects of water and fertilizer managements on content and distribution of phosphorus in different parts of rice plants[J]. Water Saving Irrigation, 2009, (12): 1−4. DOI: 10.3969/j.issn.1007-4929.2009.12.001
[46] Qi D L, Pan C. Responses of shoot biomass accumulation, distribution, and nitrogen use efficiency of maize to nitrogen application rates under waterlogging[J]. Agricultural Water Management, 2021, 261: 107352.
[47] 曾广伟, 林琪, 姜雯, 等. 不同土壤水分条件下施磷量对小麦干物质积累及耗水规律的影响[J]. 麦类作物学报, 2009, 29(5): 849−854. Zeng G W, Lin Q, Jiang W, et al. Effect of different soil water conditions and phosphorus application on dry matter accumulation and water consumption of wheat[J]. Journal of Triticeae Crops, 2009, 29(5): 849−854.
[48] 王文翔, 孙敏, 林文, 等. 不同降雨年型磷肥对旱地小麦根系特征、磷素吸收利用和产量的影响[J]. 应用生态学报, 2021, 32(3): 895−905. Wang W X, Sun M, Lin W, et al. Effects of phosphorus fertilizer on root characteristics, uptake and utilization of phosphorus and yield of dryland wheat with contrasting yearly rainfall pattern[J]. Chinese Journal of Applied Ecology, 2021, 32(3): 895−905.
[49] 冯小明. 引洪补源条件下土壤中养分淋溶积累规律的试验研究[D]. 山西太原: 太原理工大学硕士学位论文, 2006. Feng X M. Experimental study on the law of nutrient leaching accumulation in soil under supplying groundwater resources through floodwater irrigation[D]. Taiyuan, Shanxi: MS Thesis of Taiyuan University of Technology, 2006.
[50] Pizzeghello D, Berti A, Nardi S, Morari F. Relationship between soil test phosphorus and phosphorus release to solution in three soils after long-term mineral and manure application[J]. Agriculture, Ecosystems & Environment, 2016, 233: 214−223.
[51] Sharpley A, Daniel T C, Sims J T, Pote D H. Determining environmentally sound soil phosphorus levels[J]. Soil and Water Conservation, 1996, 51(2): 160−166.
[52] 马骞, 于兴修, 刘前进. 横坡耕作径流溶解态氮磷流失特征及其富营养化风险: 以鲁中南山地丘陵区为例[J]. 农业环境科学学报, 2011, 30(3): 492−499. Ma Q, Yu X X, Liu Q J. Characteristics of dissolved N, P loss and eutrophication risk in runoff water in contour tillage: A case study of hilly and mountainous area in south-central of Shandong Province, China[J]. Journal of Agro-Environment Science, 2011, 30(3): 492−499.
[53] 杨秀才, 领陈, 张青伟, 等. 碳磷比对土壤磷素有效性的影响研究进展[J]. 土壤科学, 2019, 7(1): 10-15. Yang X C, Ling C, Zhang Q W, et al. Research progress in the effect of C/P ratio on soil phosphorus availability[J] Hans Journal of Soil Science, 2019, 7 (1): 10-15.
[54] 田仓, 虞轶俊, 吴龙龙, 等. 不同灌溉和施肥模式对稻田磷形态转化和有效性的影响[J]. 农业工程学报, 2021, 37(24): 112−122. Tian C, Yu Y J, Wu L L, et al. Effect of various irrigation and fertilization schedules on the transformation and availability of phosphorus forms in paddy fields[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(24): 112−122.
[55] 唐宏亮, 马领然, 张春潮, 段霄霄. 水分和磷对苗期玉米根系形态和磷吸收的耦合效应[J]. 中国生态农业学报, 2016, 24(5): 582−589. Tang H L, Ma L R, Zhang C C, Duan X X. Coupled effect of water and phosphorus on root growth and phosphorus uptake of maize at seedling stage[J]. Chinese Journal of Eco-Agriculture, 2016, 24(5): 582−589.
[56] 王云慧, 张璇, 欧阳威, 等. 夏灌对内蒙古河套灌区土壤中磷元素迁移的影响[J]. 农业工程学报, 2010, 26(4): 93−99. DOI: 10.3969/j.issn.1002-6819.2010.04.015 Wang Y H, Zhang X, Ouyang W, et al. Impact of summer irrigation on phosphorus transportation in Hetao Agricultural Irrigation Area, Inner Mongolia[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(4): 93−99. DOI: 10.3969/j.issn.1002-6819.2010.04.015
[57] 于飞, 周健民, 王火焰, 等. 淹水条件下不同氮肥对水稻土中磷肥转化的动态影响[J]. 中国土壤与肥料, 2006, (6): 29−32. Yu F, Zhou J M, Wang H Y, et al. Effect of different nitrogen fertilizers on dynamic transformation of phosphorus fertilizer in paddy soil under flooding condition[J]. Soil and Fertilizer Sciences in China, 2006, (6): 29−32.
[58] Yan S C, Wu Y, Fan J L, et al. Quantifying grain yield, protein, nutrient uptake and utilization of winter wheat under various drip fertigation regimes[J]. Agricultural Water Management, 2022, 261: 107380. DOI: 10.1016/j.agwat.2021.107380
[59] Wang Y, Chi S Y, Ning T Y, et al. Coupling effects of irrigation and phosphorus fertilizer applications on phosphorus uptake and use efficiency of winter wheat[J]. Journal of Integrative Agriculture, 2013, 12(2): 263−272. DOI: 10.1016/S2095-3119(13)60225-7
[60] 李霞, 李赟, 李慕嵘, 等. 开花期渍水对土壤不同形态氮素含量及小麦氮素积累运转和产量的影响[J]. 南方农业学报, 2022, 53(7): 1883−1892. Li X, Li Y, Li M R, et al. Effects of waterlogging at anthesis stage on nitrogen content of different forms in soil and nitrogen accumulation and translocation of wheat and yield[J]. Journal of Southern Agriculture, 2022, 53(7): 1883−1892.
[61] 王寒. 淹水胁迫对玉米幼苗生长的影响及生理响应机制[D]. 安徽合肥: 安徽农业大学硕士学位论文, 2018. Wang H. Effect of waterlogging stress on growth of maize seedling and physiological response mechanisms[D]. Hefei, Anhui: MS Thesis of Anhui Agricultural Universiteit, 2018.
[62] 王瑜. 水磷耦合对冬小麦水、磷利用与产量的影响及其生理基础[D]. 山东泰安: 山东农业大学博士学位论文, 2012. Wang Y. Effects of irrigation phosphorus fertilizer on water, phosphorus utilization and grain yield and their physiological basis in winter wheat[D]. Tai’an, Shandong: PhD Dissertation of Shandong Agricultural Universiteit, 2012.
[63] Ruiz A, Trifunovic S, Eudy D M, et al. Harvest index has increased over the last 50 years of maize breeding[J]. Field Crops Research, 2023, 300: 108991. DOI: 10.1016/j.fcr.2023.108991
[64] 马小龙, 王朝辉, 曹寒冰, 等. 黄土高原旱地小麦产量差异与产量构成及氮磷钾吸收利用的关系[J]. 植物营养与肥料学报, 2017, 23(5): 1135−1145. Ma X L, Wang Z H, Cao H B, et al. Yield variation of winter wheat and its relation to yield components, NPK uptake and utilization in drylands of the Loess Plateau[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(5): 1135−1145.
[65] 张爱君, 张明普. 淮北黄潮土长期轮作的磷肥合理施用[J]. 安徽农业大学学报, 2000, 27(4): 336−339. Zhang A J, Zhang M P. Rational application of P fertilizer in long-term rotation cropping in Yellow Chao Soil in Huaibei[J]. Journal of Anhui Agricultural University, 2000, 27(4): 336−339.
-
期刊类型引用(1)
1. 李静凯,邹显花,秦易,郭志娟,涂龙平,黄智军,朱丽琴,黄荣珍. 松材线虫灾毁迹地不同地表处理对土壤化学和生物性状的影响. 中国土壤与肥料. 2025(04): 31-40 . 百度学术
其他类型引用(0)