• ISSN 1008-505X
  • CN 11-3996/S

植物适应土壤逆境的分子机制研究进展

施卫明, 郑绍建, 金崇伟, 王萌, 丁忠杰, 李光杰

施卫明, 郑绍建, 金崇伟, 王萌, 丁忠杰, 李光杰. 植物适应土壤逆境的分子机制研究进展[J]. 植物营养与肥料学报, 2024, 30(7): 1329-1338. DOI: 10.11674/zwyf.2024244
引用本文: 施卫明, 郑绍建, 金崇伟, 王萌, 丁忠杰, 李光杰. 植物适应土壤逆境的分子机制研究进展[J]. 植物营养与肥料学报, 2024, 30(7): 1329-1338. DOI: 10.11674/zwyf.2024244
SHI Wei-ming, ZHENG Shao-jian, JIN Chong-wei, WANG Meng, DING Zhong-jie, LI Guang-jie. Advances in molecular mechanisms of plant adaptation to soil stress[J]. Journal of Plant Nutrition and Fertilizers, 2024, 30(7): 1329-1338. DOI: 10.11674/zwyf.2024244
Citation: SHI Wei-ming, ZHENG Shao-jian, JIN Chong-wei, WANG Meng, DING Zhong-jie, LI Guang-jie. Advances in molecular mechanisms of plant adaptation to soil stress[J]. Journal of Plant Nutrition and Fertilizers, 2024, 30(7): 1329-1338. DOI: 10.11674/zwyf.2024244

植物适应土壤逆境的分子机制研究进展

基金项目: 泰山学者工程项目(tsqn202312287);国家自然科学基金研究项目(32030099, 31970272)。
详细信息
    通讯作者:

    施卫明 E-mail: wmshi@issas.ac.cn

    郑绍建 E-mail: sjzheng@zju.edu.cn

Advances in molecular mechanisms of plant adaptation to soil stress

  • 摘要:

    土壤逆境泛指对植物生长和生存不利的各种土壤环境因素,如盐碱、酸性、淹水涝害等。植物在长期的进化过程中,对不同土壤逆境会产生一定的适应能力,了解植物对土壤逆境的生理反应和耐性分子机理,对发掘植物生长潜力,提高农业生产效率十分重要。我国植物营养生物学科研人员经过30多年的努力,在植物适应土壤逆境的分子机制研究领域,取得了一批国际领先的研究成果,本文就近年来取得的部分土壤逆境的适应机制的进展(铝毒害、铁毒害和盐碱胁迫)进行简要评述。如以STOP1为核心的植物抗铝调控机制;ALR1作为一个铝离子受体调控植物的抗铝性;根际铁在调控铵态氮耐性和氮素利用效率的分子机制;提升小麦耐盐性且不会影响穗发育的TaSPL6-D基因等。

    Abstract:

    Soil stress refers to the unfavorable environment to plant growth and survival, such as saline-alkali, acidic, waterlogging and so on. Plants have evolved a certain amount of mechanisms to adapt to soil stresses. Understanding the physiological response in molecular levels is important base for breeding and nutrient management in agricultural production. Through more than 30 years of efforts, a number of international leading research results have been carried out and some key breakthroughs were achieved by Chinese scholars, especially in such fields of plant nutrition biology like aluminum toxicity, iron toxicity and saline-alkali stress. The paper summarized the recent progress in the mentioned soil stress adaptation mechanisms in briefly. One of the mechanisms of plant resistance to aluminum is that the STOP1 as the core is formed. ALR1 has been identified as an aluminum receptor to regulate the aluminum resistance. The molecular mechanism of rhizosphere iron regulating ammonium-tolerance and nitrogen use efficiency was found. The TaSPL6-D gene, which can improve wheat salt tolerance and does not affect spike development, has been obtained.

  • 土壤逆境是对植物生长和生存不利的各种土壤环境因素,例如盐碱土壤、酸性土壤、淹水涝害等。不同逆境土壤都有其特殊的逆境因子,如铝毒是酸性土壤上公认的限制农作物生产的主要因素之一,而铁毒、锰毒是淹水土壤中重要逆境因子。逆境土壤分布面积广且改良难度大,已成为我国农业生产和发展的重要限制因素。植物在长期的进化过程中,对不同土壤逆境会产生一定的适应能力,了解植物对土壤逆境的生理反应和耐性分子机理,对农业生产和发展是十分重要的。

    植物营养生物学是重点研究植物活化、吸收、转运与利用养分的生理、分子及遗传机制的科学。植物营养生物学的研究成果主要是支撑基于营养生理和分子遗传的作物高产高效养分管理技术创新、养分高效利用,或抗有害元素作物新品种的遗传改良、新型肥料产品的创制等[1]。通过30多年的努力,尤其是近年来,我国植物营养生物学领域的科研人员在植物适应土壤逆境的分子机制研究方面,取得了一批国际领先的研究成果。因篇幅所限,很多国内外优秀的植物适应土壤逆境机制的研究成果未能一一列举,本文仅就近年来取得的部分植物适应土壤逆境机制的研究进展(铝毒害、铁毒害和盐碱胁迫)进行综述,并就未来的发展方向进行探讨。

    铝是土壤中含量最丰富的金属元素,通常以不溶性的铝硅酸盐矿物态形式存在。在酸性土壤(pH<5.5)中,部分矿物态铝可以离子态的形式被释放出来,微摩尔级浓度水平的铝离子即可抑制植物根系的生长,严重破坏根尖结构和功能,进而影响根系对水分和养分的吸收,导致减产、减收。因此,铝毒是酸性土壤上公认的限制农作物生产的主要因素之一。自20世纪80年代,我国学者就开始进行植物铝毒害的研究,至今大致可分为3个研究阶段:第一阶段主要是铝毒表型分析和农作物不同基因型或品种的耐铝性筛选[26];第二阶段是植物耐铝机制的深入解析及其关键基因克隆,包括根系有机酸分泌[7]、细胞壁耐铝机制[810]和激素介导的根尖避铝生长机制[1112]等;第三阶段是植物耐铝信号转导机制的研究[1317]。总的而言,我国学者在铝毒研究领域取得了一系列重要的研究成果,为全世界植物铝毒研究作出了卓越的贡献。本文将在此基础上,重点介绍近十几年来在植物耐铝信号转导机制上的主要研究进展。

    STOP1 (sensitive to proton rhizotoxicity 1)是植物耐铝途径的核心转录因子,最早由日本学者利用化学诱变筛选拟南芥突变体克隆获得[18]。研究发现,STOP1在转录水平不响应铝胁迫,其通过调控有机酸转运蛋白基因ALMT1 (Al-activated malate transporter 1)和MATE (multi-drug and toxic compound extrusion)的表达以及ALS3 (Al sensitive 3)、GDH1/2 (glutamate dehydrogenase 1/2)等多个耐铝基因的表达来调节拟南芥的耐铝性[1821]。随后,STOP1同源基因也陆续在水稻、烟草、小麦、饭豆、大豆、高粱、棉花、梨树等不同物种中得到克隆,说明STOP1功能具有保守性。例如,STOP1在水稻中的同源基因OsART1 (Al resistance transcription factor 1),其表达水平同样不受铝诱导。转录组分析揭示OsART1调控了至少30多个下游耐铝基因的表达,包括OsSTAR1/OsSTAR2 (sensitive to Al rhizotoxicity 1/2)、OsMGT1 (magnesium transporter 1)、OsFRDL4 (ferric reductase defective 3-like 4)等,且这些基因启动子中大多都含有一个或多个OsART1顺式调控作用元件[2225]。最近的研究表明,OsART1一方面通过直接调控OsMYB30 (MYB domain protein 30)的表达来调节铝在水稻细胞壁中的积累,另一方面通过改变Put的转化以调节根中H2O2的水平,进而间接影响OsMYB30的表达,提高水稻耐铝性[26]。除STOP1以外,还有其他一些转录因子参与植物抗铝调控。例如拟南芥ALMT1受到转录因子AtWRKY46 (WRKY DNA-binding protein 46)和CAMTA2 (calmodulin binding transcription activator 2)的直接调控以响应铝毒信号[13, 27]。水稻OsWRKY22 (WRKY DNA-binding protein 22)可以与OsART1发挥协同作用,正调控OsFRDL4的表达和根系柠檬酸的分泌,从而提高水稻耐铝性[28]。总体而言,以STOP1/ART1为中心介导的耐铝调控途径仍是目前公认的核心植物耐铝信号通路。

    尽管STOP1转录水平不响应铝胁迫,但铝处理可以使STOP1蛋白短时间内在细胞核内大量积累,表明STOP1对铝胁迫的响应可能发生在转录后或翻译后[14]。近几年国内学者的系列研究发现,STOP1转录后水平及蛋白水平受多种因素的调控。例如,STOP1 mRNA的输出受到THO/TREX复合物的两个核心成分RAE3/HPR1 (regulation of AtALMT1 expression 3)、RAE2/TEX1 (regulation of AtALMT1 expression 3)的调控,从而影响下游抗铝基因的表达[2930];STOP1蛋白的稳定性受到F-box蛋白RAE1 (regulation of AtALMT1 expression 1)和RAH1 (regulation of AtALMT1 expression 1 Homolog 1)介导的泛素化调控,其泛素化蛋白主要通过26S蛋白酶体途径降解[15, 17];STOP1蛋白在翻译后水平还受到SUMO E3连接酶SIZ1 (SAP and MIZ1 domain-containing ligase 1)和SUMO蛋白酶ESD4 (early in short days 4)的SUMO化和去SUMO化的调控,STOP1上K40、K212和K395的SUMO化水平影响了STOP1对下游基因ALMT1启动子的结合能力[1617, 31];此外,STOP1蛋白水平还受到MEKK1 (MAPK/ERK kinase kinase 1)-MKK1/2 (MAP kinase kinase 1/2)-MPK4 (MAP kinase 4)级联的磷酸化调控,正调控其蛋白累积和植物抗铝性[32]。这些研究表明,STOP1在转录后和翻译后水平受到了复杂的调控,也进一步说明STOP1在植物耐铝性中的重要地位。

    长期以来,在植物铝毒/耐铝研究领域的一个最基本、最关键的科学问题一直没有得到解决,即:植物如何感知铝离子以及如何将该信号传递给STOP1核心转录因子?直到最近,浙江大学郑绍建教授课题组在该前沿科学问题上取得突破。研究人员首先通过大量类受体激酶T-DNA插入突变体的铝敏感性筛选,获得了一个特异性响应铝的超敏感突变体alr1-1 (aluminum resistance 1)。ALR1编码一个已知的植物磺肽素(phytosulfokin, PSK)受体PSKR1 (phytosulfokin receptor 1),其胞外结构域接收PSK信号,在植物生长发育和抗生物逆境中发挥重要功能[3334]。研究发现,ALR1的功能缺失显著抑制铝胁迫下STOP1的蛋白累积,进而降低了ALMT1MATE等下游关键耐铝基因的表达,导致根系有机酸分泌明显降低。深入研究发现,ALR1的胞内结构域可以特异性结合铝离子,铝的结合促使其招募共受体BAK1 (BRI1-associated receptor kinase 1)进行相互磷酸化和激活。随后ALR1进一步通过磷酸化NADPH氧化酶RbohD (respiratory burst oxidase homologue D)来促进活性氧ROS (reactive oxygen species)的产生,并且磷酸化水平响应铝离子浓度变化,进而促进STOP1的蛋白累积[14]。而在此前,ROS一直被认为是铝毒下产生的毒害物质。研究人员通过一系列生化遗传分析证明,铝胁迫下植物根尖产生的早期ROS信号是诱导STOP1蛋白累积的关键第二信使,其通过氧化修饰RAE1,抑制RAE1对STOP1的泛素化降解,从而启动下游耐铝机制[14]。这些研究揭示了ALR1作为一个铝离子受体调控植物耐铝性,而ROS作为一种关键信号分子将细胞质中铝信号的感知与细胞核内铝信号的转导紧密联系在一起。鉴于该蛋白胞外域和胞内域分别接收PSK信号和铝信号,并开启调控生长和耐铝信号的转导,为了更好地表示其功能的多样性,建议今后以PSKR1/ALR1来命名该基因。

    此外,郑绍建教授课题组还联合结构生物学团队解析了苹果酸转运蛋白ALMT1的高分辨率结构,并阐明了胞外铝离子直接激活ALMT1进而分泌苹果酸解铝毒的分子机制[35]。这些发现系统揭示了植物从细胞外和胞内感知与应答铝离子的分子机制:到达根细胞表面的铝离子首先激活ALMT1等有机酸转运蛋白触发有机酸释放,进而螯合铝离子使其失活;而冲破有机酸防护层进入到胞内的铝离子则被ALR1感知,进而启动STOP1介导的信号转导过程,促进更多的ALMT1等抗铝蛋白被合成,进一步加强植物抗铝性。

    上述研究成果为通过现代生物技术培育抗铝农作物新种质,从而高效利用酸性土壤资源奠定了理论基础,对维持我国农业生产和粮食安全具有重要意义。

    土壤铁的活性受到氧化还原电位(Eh)的显著影响,在长期淹水的土壤中,由于溶解氧匮乏导致Eh较低,使得大量的铁(Fe)以溶解性较高的二价铁存在。植物铁毒害一般在土壤溶液亚铁浓度为10~2000 mg/L 或植物体内铁含量为20~2500 mg/kg时发生,不同植物对铁毒的耐受性存在较大差异。全球范围内铁毒害分布广泛,铁毒害不仅会导致作物减产、品质下降,甚至会导致物种灭绝[36]。全世界大约有7.5×106 hm2含有过量活性铁的强还原性的潜育性土壤,广泛分布于中国、南亚、东南亚、非洲和南美[3738]。例如,铁毒是撒哈拉以南非洲地区水稻生产的一个主要制约因素。据估计,在撒哈拉以南非洲约有20%~60%的水稻种植面积受到铁毒的影响,产量损失估计约为 10%~90%[3940]。令人意外的是,全球大多数水稻铁毒易发区域与人类饮食严重缺铁的地区重叠[41],这可能与稻米铁含量普遍较低密切相关。因此,在这些地区,创制并应用稻米富铁的耐铁毒水稻新品种具有重要的现实意义,而这需要对植物耐铁毒机制的充分了解。随着分子生物学、遗传学、组学等技术方法的应用,对植物铁毒的分子机制研究有了更深入的认知,下面对近年来在植物铁毒害分子机制的研究简要概述。

    木质部中铁的长距离运输对于维持植物体内铁的稳态至关重要。根系吸收铁后,主要以Fe(II)的形态卸载到木质部,而在木质部中的铁主要以 Fe(III)-柠檬酸盐的方式长距离运输。因此,Fe(II)氧化成Fe(III)是铁在木质部中有效运输的重要保障之一。细胞壁定位的亚铁氧化酶 LPR1 (low phosphate root 1) 和 LPR2 (low phosphate root 2) 基因均在拟南芥维管组织中特异性表达,它们在氧化 Fe(II) 并维持 Fe(III)-柠檬酸盐的稳定性和迁移性中起关键作用[4243]。同时,CYBDOM蛋白家族的成员 CRR (cybdom root reduction)以抗坏血酸依赖性方式促进铁还原并控制质外体铁沉积,crr突变体在种子萌发和幼苗生长时表现出对铁毒的耐受性增强。相反,CRR过表达造成地上部的铁积累增加,导致拟南芥对铁过量高度敏感[44]

    液泡分配存储作用是植物适应铁毒环境的重要策略。液泡铁转运蛋白VIT (vacuolar iron transporter) 参与了这一过程,并在铁的储存和运输中发挥了重要作用。Zhu 等[45]发现油菜VIT基因BnMEB2与拟南芥 MEB2 (membrane protein of endoplasmic reticulum body 2) 是同源基因。在拟南芥野生型和meb2突变体中过表达BnMEB2均能显著提高铁的耐受性。由此可见,BnMEB2可能在油菜液泡解铁毒功能中发挥重要作用。位于水稻液泡膜上的OsVIT1OsVIT2基因参与转运铁进入液泡中,表现为对铁的分隔作用[4648]OsNRAMP6 (natural resistance-associated mancrophage protein 6) 与OsVIT1会协同上调,从而增强水稻对铁毒的耐性。

    在生产中,增施钾肥可缓解植物铁毒症状,但是其中的分子机制并不清楚。Zhang 等[49]发现根尖区钾离子 (K+) 稳态平衡是根系铁毒耐性的重要机制。铁毒处理诱导一氧化氮(NO)含量升高,引发拟南芥根尖区K+通过非选择性离子通道 (nonselective cation channels,NSCCs) 流失,从而引发细胞死亡或者坏死。同时,基因编码重要的一氧化氮清除酶GSNOR (S-nitrosoglutathione reductase)会通过减轻铁依赖的一氧化氮缓解其对分生组织的亚硝基化胁迫毒害[5051]。Wu 等[52]的研究也发现,水稻根部的钾离子通道基因OsAKT1 (Arabidopsis K+ transporter 1) 参与了水稻耐受铁毒的过程。进一步研究发现,水稻钾离子通道OsAKT1通过影响根系木质部内外侧K+浓度梯度,来影响水稻植株的铁转运过程[52]。乙烯可以拮抗铁毒介导的拟南芥根部细胞钾离子外排,显著提高根部K+的含量,这是由于乙烯负调控根尖一氧化氮的含量和显著上调根部K+转运蛋白HAK5 (high-affinity K+ transporter 5) 的表达[36, 49, 5354]。此外,外源添加钙、镁、硅等元素,也会部分缓解铁毒害症状。RNA-seq和顺式元件分析结果表明,NAC (NAM, ATAF, CUC) 转录因子结合位点在叶部铁毒诱导的基因中富集,添加镁导致相同结合位点的非显著性富集,这表明 NAC 家族蛋白可能介导镁的作用[55]

    铁毒的发生除了与土壤Eh关系密切,越来越多的证据显示,铁毒发生与根际环境中的养分间互作也有紧密关联。最近的研究发现,低磷、高铵引发的根系抑制与铁毒有关。磷是植物生长发育所必需的一种大量营养元素,但世界上大部分的土壤中都严重缺磷(Pi)。缺磷抑制初生根(PR)生长刺激侧根增殖,根构型变浅可促使表层富磷土壤中根系增生,从而增强磷吸收能力[5657]。越来越多的证据表明,铁在缺磷重塑根系构型中发挥重要作用。缺磷主要通过细胞壁铁氧化酶LPR1诱导铁在干细胞巢(SCN)和/或伸长区(EZ)皮质细胞质外体中积累,并受到ALMT1 介导的苹果酸外排促进。HY5 (elongated hypocoty l5) 和STOP1可分别激活LPR1和ALMT1的转录[5860]。质外体铁过度积累诱导活性氧爆发,通过增加过氧化物酶依赖的细胞壁硬化和/或由于胼胝质沉积导致的胞间连丝关闭,而限制SHR (short root)的细胞间运动,抑制根的生长。在缺磷条件下,一些抑制因子也负向调节载质外体铁的积累。BZR1 (brassinazole-resistant 1) 和BRM (brahma) 介导的HDA6 [histone deacetylase complex 1 (HDC1)- histone deacetylase 6] 复合物,募集到LPR1位点抑制其转录[6163]。PDR2 (phosphate deficiency response 2) 和STAR1 [aluminum sensitive (ALS3)-sensitive to Al rhizotoxicity1]模块也会限制LPR1和STOP1的作用[6465],通过未知的机制负调控质外体铁在缺磷条件下的积累。

    以铵态氮为唯一氮源或主要氮源时,铵态氮对植物细胞具有毒害作用,是区别于硝态氮的重要特征。Liu 等[66] 研究发现,LPR2基因在铵介导的根部韧皮部铁积累发挥重要作用,铁积累会导致活性氧的大量产生,从而引发胼胝质沉积。这会阻碍蔗糖向根尖生长区域的运输,从而抑制根系生长。同时PDX1.1 (pyridoxine biosynthesis 1.1)介导的维生素B6合成有助于活性氧的清除,从而保护铵态氮条件下的根系生长[6768]。进一步研究发现,铁充足条件下,铵会通过降低根际pH和诱导LPR2表达增强,导致拟南芥铁积累,从而引发强烈的铵离子外排,导致生长抑制和氮素利用效率(NUE) 降低;同时会启动VTC1 (GDP-mannose pyrophosphorylase) 介导的蛋白糖基化保护过程,以降低伤害[69]。而在低铁或白云石处理下,白云石会通过增加根际pH并抑制铵诱导的LPR2表达,从而降低拟南芥铁积累;植株低铁水平会通过强化VTC1非依赖的糖基化过程降低铵外排,从而实现更好的生长和铵态氮效率[69]。白云石成本低廉,上述发现为作物生产中的铵毒防治和氮素养分高效提供了可行的农艺管理措施。

    据第二次全国土壤普查资料统计,我国盐渍土面积为3.33×107 hm2 (5亿余亩,不包括滨海滩涂),是我国重要的后备耕地资源,现有耕地中约有9.2×106 hm2 (1.38亿亩)存在较严重的盐碱化现象,是我国最主要的中低产田类型之一。因此,鉴定植物耐盐碱基因和耐盐碱分子机制,尤其是挖掘作物中耐盐碱优异基因单倍型,继而利用现代分子育种手段精准、快速、高效地改良作物耐盐性,培育适应盐碱地种植的作物,对于保障国家的粮食安全和通过“以种适地”策略充分开发利用盐碱地后备耕地资源,具有重要的意义[70]

    植物与盐碱地互作的第一步,是植物对盐、碱胁迫因子的感知,从而在短时间内将遭遇外界胁迫的信息转换为细胞内的应激信号,来重构转录网络调节生长和发育。所以,有必要寻找植物的盐、碱感受器基因。前期大量的电生理和药理学研究表明,外界盐胁迫会在几秒内促使“第二信使”钙离子通过细胞质膜内流,导致细胞内钙增加[71]。基于此,研究人员通过筛选盐处理钙振荡缺失突变体鉴定到MOCA1 [monocation-induced (Ca2+)i increases 1],其编码蛋白将 GlcA (glucuronic acid)转移到 IPC (inositol phosphorylceramide),形成定位于细胞质膜外侧的鞘脂 GIPC (glycosyl inositol phosphorylceramide)[72]。在盐胁迫下,GIPC可以与细胞外盐离子结合,从而扮演“质膜盐感受器”的角色,激活质膜上的钙离子通道(具体编码基因尚不清楚),增加胞内钙离子浓度。钠离子进入细胞内,可直接引起细胞器的损伤,但目前细胞内的盐感受器尚未被鉴定到[73]。另外,碱胁迫的感受器,国内外的研究团队也正在努力寻找中。

    当盐渍土中的高浓度Na+等可溶性盐离子通过根部进入到植物体内,会引起离子失衡和毒害[74]。前期对模式植物拟南芥的研究表明,在细胞水平,植物通过细胞膜上的通道蛋白SOS1 (salt overly sensitive 1)将Na+排到细胞外,通过液泡膜上的通道蛋白NHX1 (Na+/H+ exchange or antiporter,NHX)将Na+区隔化到液泡内,实现胞内离子含量稳态调节[73, 75]。其中SOS途径(Ca2+依赖的Na+外排途径)是目前植物中信号通路最清楚和调控网络最完整的耐盐机制[76]。在作物中,已在小麦、水稻、玉米等多个物种中鉴定到一套保守的钠离子稳态调控机制,即HKT1;5等钠离子转运蛋白(high-affinity K+ transporter,HKT)介导的Na+长距离运输调控机制。

    早期基于四、六倍体小麦耐盐性存在显著差异的发现,借助六倍体小麦缺体系、染色体臂缺失系等特殊遗传材料,研究人员成功锁定到一个控制六倍体小麦地上部钠离子含量的主效遗传位点Kna1[77]。后续的精细定位和功能验证表明,TaHKT1;5-DKna1的候选基因[78]。与此同时,我国林鸿宣院士团队利用不同耐盐性的水稻材料,定位了一个耐盐QTL位点(shoot K+ content) SKC1[79],它编码水稻中的OsHKT1;5[80]。中国农业大学蒋才富团队通过正向遗传学证实,ZmHKT1;5在玉米耐盐中也发挥着重要功能[81]HKT1;5主要在根部中柱细胞表达,编码一个高亲和力钠离子转运蛋白,通过将木质部中Na+吸收到周围薄壁细胞中,阻止Na+由根向地上部转运,从而缓解盐胁迫下地上部Na+的积累和毒害,实现作物的耐盐性[8283]。最近有多项研究表明,玉米中钠离子转运蛋白编码基因ZmHAK4 (high-affinity K+ transporter,HAK)及其在小麦、水稻、番茄等作物中的同源基因[8485],也通过与HKT1;5类似的机制参与Na+长距离运输调控。

    然而,HKT1;5这类与功能密切相关的组织/细胞特异性表达模式,导致传统地组成型过表达该基因无法实现作物耐盐性的提高[86],限制了其在育种中的应用。针对此问题,近期研究人员以TaHKT1;5-D在小麦根部中柱细胞中的表达量为表型,借助表达量全基因组关联分析(eGWAS),鉴定到显著提高小麦TaHKT1;5-D表达量和耐盐性的等位基因TaSPL6-DIn。该等位基因由于第一个外显子中插入了47-bp的重复序列而无法编码成熟的(SQUAMOSA promoter-binding protein-like,SPL) SPL类转录因子,丧失了对TaHKT1;5-D的转录抑制能力。更重要的是,该优异等位基因主要存在于小麦农家种中,属于现代品种中的稀有变异,利用分子辅助育种手段将TaSPL6-DIn快速导入到不含该等位基因的现代主栽品种中,不仅可以提高小麦苗期的耐盐性,还可以实现小麦在盐碱地上5%左右的产量提升。进一步研究发现,SPL6负调控HKT1;5的分子模块在水稻、大麦、短柄草等二倍体禾本科植物中保守存在,但SPL6是一个“一因多效”基因,其水稻敲除系会导致穗顶端不育等发育障碍[87],而在六倍体小麦中,虽然只有TaSPL6-D在小麦根部中柱细胞 (TaHKT1;5-D的表达部位)高表达,但TaSPL6-ATaSPL6-BTaSPL6-D都在穗部高表达,正是由于这种3个拷贝之间的功能冗余和分化,TaSPL6-DIn的导入或TaSPL6-D的敲除实现了耐盐性的显著提升,且不会影响穗的发育[88]。国内研究团队近期在水稻中也鉴定到OsHKT1;5的上游调控因子OsWRKY53 (WRKY transcription factors)、OsMYB106 (MYB transcription factors)等。上述研究为HKT1;5的育种应用和作物耐盐改良提供了新的见解和切入点。

    另外,K+、Cl等可溶性离子的平衡也对植物的耐盐性至关重要[4],近年来,国内外团队鉴定到ZmHKT2[89]ZmRR1 (type-A response regulator 1)[90]等参与上述过程的重要因子。

    高浓度Na+等可溶性盐离子在植物体内积累,除了直接产生离子毒害胁迫,还可以诱发ROS (reactive oxygen species)的过度积累,引起氧化胁迫;另一方面,ROS作为信号分子,参与植物的胁迫响应过程。因此,维持盐碱胁迫下植物体内的ROS稳态,是植物耐盐碱的重要机制[70, 75]。山东大学夏光敏教授团队前期利用普通小麦JN177与小麦近缘耐盐物种长穗偃麦草的非对称体细胞杂交,创制了耐盐渐渗系小麦新品种山融3号(SR3)[91],发现SR3相较JN177的耐盐性主要与其较强的ROS稳态维持能力有关。进一步借助正向遗传学和多组学分析,解析了TaSRO1 (similar to RCD-one,SRO1)、TaCYP81D (cytochrome P450 monooxygenase,CYP)等控制小麦盐胁迫下ROS稳态相关的关键基因[9293],发现TaSRO1可与线粒体逆行信号的“开关”TaNAC017 (NAC transcription factors)互作,抑制TaNAC017的入核和转录激活能力,从而精细调控线粒体中ROS的产生和逆行信号的启动,实现小麦耐盐性和生长发育的平衡[94]

    在植物耐碱方面,谢旗领衔的合作团队[95]利用全基因组关联分析,鉴定到一个与高粱耐碱性显著相关的主效位点AT1 (alkaline tolerance 1),其编码一个异源三聚体G蛋白γ亚基(Gγ),可以影响具有过氧化氢外排能力的水通道蛋白PIP2;1 (plasma membrane intrinsic protein,PIP2)的磷酸化水平,继而调控碱胁迫下植物细胞的ROS稳态。更重要的是,AT1的调控机制在水稻、小麦、玉米等主要粮食作物中是保守的。AT1基因的利用能够显著提升高粱、水稻、玉米、小麦和谷子等作物在盐碱地中的产量,为作物耐碱改良提供了一个重要的分子靶标。

    近年来,随着作物基因组信息的不断释放,以及高通量表型组等新技术的不断发展,植物耐盐碱研究蓬勃发展,依据传统的耐性机制开展了更加系统深入的研究和更具育种应用价值的基因单倍型挖掘工作[73],同时在植物根系避盐性[9697]、凯氏带发育与耐盐碱的关系[9899]等新兴领域,也取得了令人欣喜的进展。这其中,我国科学家和研究团队也做出了突出贡献,产生了一批具有自主知识产权的成果,为“以种适地”、“种和地相向而行”的国家盐碱地综合利用新战略提供了理论支撑。

    由于篇幅有限,本文未能纳入铝毒、铁毒和盐碱胁迫方面的所有卓越成果。上述研究成果为通过现代生物技术培育抗逆农作物新种质,高效利用酸性土壤、盐碱土壤、渍水土壤等资源奠定了理论基础,对维持我国农业生产和粮食安全具有重要意义。尽管目前研究极大地推动了对植物适应铝毒、铁毒、盐碱胁迫分子机制的理解,未来仍有许多科学问题和发展方向有待进一步解答和探讨。

    1)铝受体ALR1-ROS-STOP1工作模型是否在不同物种中功能保守;STOP1蛋白还受到磷酸化、SUMO化等不同类型的翻译后修饰,这些过程是否受到ALR1或其它未知铝受体的调控;ALR1主要调控铝诱导的根系有机酸分泌,然而植物存在多种耐铝机制,是否存在多个铝受体赋予植物不同的耐铝机制。

    2) 目前针对铁毒害等机制研究更多集中在一年生植物,而对于多年生物种研究较少;目前针对土壤逆境适应机制研究更多是针对单一毒害因子,对多种逆境因子共存环境的适应机制研究较少。

    3) 如何利用多组学大数据信息,挖掘作物耐盐碱相关基因优异单倍型,服务于分子育种;如何鉴定碱胁迫感知基因和胞Na+ 感知基因,从源头上更新对植物−盐碱地互作分子机制的认识。

  • [1] 施卫明, 李光杰, 艾超, 周卫. 中国植物营养生物学研究重要进展和展望[J]. 植物营养与肥料学报, 2022, 28(12): 2310−2323. DOI: 10.11674/zwyf.2022476

    Shi W M, Li G J, Ai C, Zhou W. Important progress and prospects of plant nutritional biology in China[J]. Journal of Plant Nutrition and Fertilizers., 2022, 28(12): 2310−2323. DOI: 10.11674/zwyf.2022476

    [2] 秦遂初, 大麦酸害―铝毒发生条件及防治研究[J]. 中国农业科学, 1988, 21(4): 68−75.

    Qin S C. Study on the condition causing barley to suffer from aluminium toxicity and its prevention[J]. Scientia Agricultura Sinica, 1998, 21(4): 68−75.

    [3] 林咸永, 章永松, 陶勤南. 不同耐铝性的小麦基因型在酸性铝毒土壤的适应性及其与体内养分状况的关系[J]. 浙江大学学报(农业与生命科学版), 2000, 26(6): 635−639.

    Lin X Y, Zhang Y S, Tao Q N. Adaptation of wheat genotypes with differential aluminum tolerance to acid, aluminum toxic soil in relation to their nutrient composition in shoots[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2000, 26(6): 635−639.

    [4]

    Zheng S J, Yang J L, He Y F, et al. Immobilization of aluminum with phosphorous in roots is associated with high Al resistance in buckwheat[J]. Plant Physiology, 2005, 138(1): 297−303. DOI: 10.1104/pp.105.059667

    [5]

    Dong X Y, Shen R F, Chen R F, et al. Secretion of malate and citrate from roots is related to high Al-resistance in Lespedeza bicolor[J]. Plant and Soil, 2008, 306: 139−147. DOI: 10.1007/s11104-008-9564-x

    [6]

    Li X F, Zuo H F, Ling G Z, et al. Secretion of citrate from roots in response to aluminum and low phosphorus stresses in Stylosanthes[J]. Plant and Soil, 2009, 325: 219−229. DOI: 10.1007/s11104-009-9971-7

    [7]

    Yang J L, Fan W, Zheng S J. Mechanisms and regulation of aluminum-induced secretion of organic acid anions from plant roots[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2019, 20(6): 513−527.

    [8] 郑绍建. 细胞壁在植物抗营养逆境中的作用及其分子生理机制[J]. 中国科学(生命科学), 2014, 44(4): 331−341.

    Zheng S J. The role of cell wall in plant resistance to nutritional stresses and the underlying physiological and molecular mechanisms[J]. Scientia Sinica (Vitae), 2014, 44(4): 334−341.

    [9]

    Zhu X F, Shi Y Z, Lei G J, et al. XTH31, encoding an in-vitro XEH/XET-active enzyme, regulates Al sensitivity by modulating in-vivo XET action, cell wall xyloglucan content and Al binding capacity in Arabidopsis[J]. The Plant Cell, 2012, 24(11): 4731-4747.

    [10]

    Zhang H, Shi W L, You J F, et al. Transgenic Arabidopsis thaliana plants expressing a β-1, 3-glucanase from sweet sorghum (Sorghum bicolor L.) show reduced callose deposition and increased tolerance to aluminum toxicity[J]. Plant Cell & Environment, 2015, 38(6): 1178−88.

    [11]

    Yang Z B, Geng X Y, He C M, et al. TAA1-regulated local auxin biosynthesis in the root-apex transition zone mediates the aluminum-induced inhibition of root growth in Arabidopsis[J]. The Plant Cell, 2014, 26(7): 2889−2904. DOI: 10.1105/tpc.114.127993

    [12]

    Liu G C, Gao S, Tian H Y, et al. Local transcriptional control of yucca regulates auxin promoted root-growth inhibition in response to aluminum stress in Arabidopsis[J]. PLoS Genetics, 2016, 12(10): e1006360. DOI: 10.1371/journal.pgen.1006360

    [13]

    Ding Z J, Yan J Y, Xu X Y, et al. WRKY46 functions as a transcriptional repressor of ALMT1 regulating Al-induced malate secretion in Arabidopsis[J]. The Plant Journal, 2013, 76(5): 825−835. DOI: 10.1111/tpj.12337

    [14]

    Ding Z J, Xu C, Yan J Y, et al. The LRR receptor-like kinase ALR1 is a plant aluminum sensor[J]. Cell Research, 2024, 34: 281−294. DOI: 10.1038/s41422-023-00915-y

    [15]

    Zhang Y, Zhang J, Guo J L, et al. F-box protein RAE1 regulates the stability of the aluminum-resistance transcription factor STOP1 in Arabidopsis[J]. Proceeding National Academy Science USA, 2019, 116(1): 319−327. DOI: 10.1073/pnas.1814426116

    [16]

    Fang Q, Zhang J, Zhang Y, et al. Regulation of aluminum resistance in arabidopsis involves the sumoylation of the zinc finger transcription factor STOP1[J]. The Plant Cell, 2020, 32(12): 3921−3938. DOI: 10.1105/tpc.20.00687

    [17]

    Fang Q, Zhou F L, Zhang Y, et al. Degradation of STOP1 mediated by the F-box proteins RAH1 and RAE1 balances aluminum resistance and plant growth in Arabidopsis thaliana[J]. The Plant Journal, 2021, 106(2): 493−506. DOI: 10.1111/tpj.15181

    [18]

    Iuchi S, Koyama H, Iuchi A, et al. Zinc finger protein STOP1 is critical for proton tolerance in Arabidopsis and coregulates a key gene in aluminum tolerance[J]. Proceeding National Academy Science USA, 2007, 104(23): 9900−9905. DOI: 10.1073/pnas.0700117104

    [19]

    Liu J P, Magalhaes J V, Shaff J, Kochian L V. Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance[J]. The Plant Journal, 2009, 57(3): 389−399. DOI: 10.1111/j.1365-313X.2008.03696.x

    [20]

    Sawaki Y, Iuchi S, Kobayashi Y, et al. STOP1 regulates multiple genes that protect arabidopsis from proton and aluminum toxicities[J]. Plant Physiology, 2009, 150(1): 281−294. DOI: 10.1104/pp.108.134700

    [21]

    Tokizawa M, Enomoto T, Ito H, et al. High affinity promoter binding of STOP1 is essential for early expression of novel aluminum-induced resistance genes GDH1 and GDH2 in Arabidopsis[J]. Journal of Experimental Botany, 2021, 72(7): 2769−2789. DOI: 10.1093/jxb/erab031

    [22]

    Yamaji N, Huang C F, Nagao S, et al. A zinc finger transcription factor ART1 regulates multiple genes implicated in aluminum tolerance in rice[J]. The Plant Cell, 2009, 21(10): 3339−3349. DOI: 10.1105/tpc.109.070771

    [23]

    Huang C F, Yamaji N, Mitani N, et al. A bacterial-type ABC transporter is involved in aluminum tolerance in rice[J]. The Plant Cell, 2009, 21(2): 655−667. DOI: 10.1105/tpc.108.064543

    [24]

    Chen Z C, Yamaji N, Motoyama R, et al. Up-regulation of a magnesium transporter gene OsMGT1 is required for conferring aluminum tolerance in rice[J]. Plant Physiology, 2012, 159(4): 1624−1633. DOI: 10.1104/pp.112.199778

    [25]

    Yokosho K, Yamaji N, Fujii-Kashino M, Ma J F. Retrotransposon-mediated aluminum tolerance through enhanced expression of the citrate transporter OsFRDL4[J]. Plant Physiology, 2016, 172(4): 2327−2336. DOI: 10.1104/pp.16.01214

    [26]

    Gao L J, Liu X P, Gao K K, et al. ART1 and putrescine contribute to rice aluminum resistance via OsMYB30 in cell wall modification[J]. Journal of Integrative Plant Biology, 2022, 65(4): 934−949.

    [27]

    Zhu X, Wang P, Bai Z M, et al. Calmodulin-like protein CML24 interacts with CAMTA2 and WRKY46 to regulate ALMT1-dependent Al resistance in Arabidopsis thaliana[J]. New Phytologists, 2022, 233(6): 2471−2487. DOI: 10.1111/nph.17812

    [28]

    Li G Z, Wang Z Q, Yokosho K, et al. Transcription factor WRKY22 promotes aluminum tolerance via activation of OsFRDL4 expression and enhancement of citrate secretion in rice (Oryza sativa)[J]. New Phytologist, 2018, 219(1): 149−162. DOI: 10.1111/nph.15143

    [29]

    Guo J L, Zhang Y, Gao H L, et al. Mutation of HPR1 encoding a component of the THO/TREX complex reduces STOP1 accumulation and aluminium resistance in Arabidopsis thaliana[J]. New Phytologists, 2020, 228(1): 179−193. DOI: 10.1111/nph.16658

    [30]

    Zhu Y F, Guo J, Zhang Y, Huang C F. The THO/TREX complex component RAE2/TEX1 is involved in the regulation of aluminum resistance and low phosphate response in Arabidopsis[J]. Frontiers in Plant Science, 2021, 12: 698443. DOI: 10.3389/fpls.2021.698443

    [31]

    Xu J M, Zhu J Y, Liu J J, et al. SIZ1 negatively regulates aluminum resistance by mediating the STOP1-ALMT1 pathway in Arabidopsis[J]. Journal of Integrative Plant Biology, 2021, 63(6): 1147−1160. DOI: 10.1111/jipb.13091

    [32]

    Zhou F L, Singh S, Zhang J, et al. The MEKK1-MKK1/2-MPK4 cascade phosphorylates and stabilizes STOP1 to confer aluminum resistance in Arabidopsis[J]. Molecular Plant, 2022, 16(2): 337−353.

    [33]

    Mosher S, Seybold H, Rodriguez P, et al. The tyrosine-sulfated peptide receptors PSKR1 and PSY1R modify the immunity of Arabidopsis to biotrophic and necrotrophic pathogens in an antagonistic manner[J]. The Plant Journal, 2013, 73(3): 469−482. DOI: 10.1111/tpj.12050

    [34]

    Wang J Z, Li H J, Han Z F, et al. Allosteric receptor activation by the plant peptide hormone phytosulfokine[J]. Nature, 2015, 525: 265−268. DOI: 10.1038/nature14858

    [35]

    Wang J Q, Yu X, Ding Z J, et al. Structural basis of ALMT1-mediated aluminum resistance in Arabidopsis[J]. Cell Research, 2022, 32(1): 89−98. DOI: 10.1038/s41422-021-00587-6

    [36]

    Li G J, Kronzucker H J, Shi W M. The response of the root apex in plant adaptation to iron heterogeneity in soil[J]. Frontiers in Plant Science, 2016, 7: 181664.

    [37]

    Kawalec A. World distribution of acid sulfate soils[M]. Dost H. Proceedings of the international symposium on acid sulphate soils. Wageningen, The Netherlands: International Institute for Land Reclamation and Improvement, 1973.

    [38] 蔺冬梅. 过量铁胁迫对豌豆幼苗毒害作用的研究[D]. 甘肃兰州: 兰州大学硕士学位论文, 2010.

    Lin D M. Studies on the effect excess iron in the pea seedings[D]. Lanzhou, Gansu: MS Thesis of Lanzhou University, 2010.

    [39]

    Rodenburg J, Zwartb S J, Kiepe P, et al. Sustainable rice production in African inland valleys: Seizing regional potentials through local approaches[J]. Agricultural Systems, 2014, 123: 1−11. DOI: 10.1016/j.agsy.2013.09.004

    [40]

    Kirk G J D, Manwaring H R, UedaY, et al. Below-ground plant–soil interactions affecting adaptations of rice to iron toxicity[J]. Plant, Cell & Environment, 2022, 45(3): 705–718.

    [41]

    Frei M, Tetteh R N, Razafindrazaka A L, et al. Responses of rice to chronic and acute iron toxicity: Genotypic differences and biofortification aspects[J]. Plant and Soil, 2016, 408: 149−161. DOI: 10.1007/s11104-016-2918-x

    [42]

    Xu Z R, Cai M L, Yang Y, et al. The ferroxidases LPR1 and LPR2 control iron translocation in the xylem of Arabidopsis plants[J]. Molecular Plant, 2022, 15(12): 1962−1975. DOI: 10.1016/j.molp.2022.11.003

    [43]

    Zhu Q Y, Wang Y, Liu X X, et al. The ferroxidases are critical for Fe(II) oxidation in xylem to ensure a healthy Fe allocation in Arabidopsis thaliana[J]. Frontiers in Plant Science, 2022, 13: 958984. DOI: 10.3389/fpls.2022.958984

    [44]

    Clúa J, Montpetit J, Jimenez-Sandoval P, et al. A CYBDOM protein impacts iron homeostasis and primary root growth under phosphate deficiency in Arabidopsis[J]. Nature Communications, 2024, 15(1): 423. DOI: 10.1038/s41467-023-43911-x

    [45]

    Zhu W, Zuo R, Zhou R F, et al. Vacuolar iron transporter BnMEB2 is involved in enhancing iron tolerance of Brassica napus[J]. Frontiers in Plant Science, 2016, 7: 1353.

    [46]

    Thomine S, Wang R C, Ward J M, et al. Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(9): 4991−4996.

    [47]

    Quinet M, Vromman D, Clippe A, et al. Combined transcriptomic and physiological approaches reveal strong differences between short- and long-term response of rice (Oryza sativa) to iron toxicity[J]. Plant, Cell & Environment, 2012, 35(10): 1837-1859.

    [48]

    Onaga G, Dramé K N, Ismail A M. Understanding the regulation of iron nutrition: Can it contribute to improving iron toxicity tolerance in rice?[J]. Functional Plant Biology, 2016, 43(8): 709−726. DOI: 10.1071/FP15305

    [49]

    Zhang L, Li G J, Wang M, et al. Excess iron stress reduces root tip zone growth through nitric oxide-mediated repression of potassium homeostasis in Arabidopsis[J]. New Phytologist 2018, 219(1): 259−274.

    [50]

    Li B H, Sun C L, Lin X Y, Busch W. The emerging role of GSNOR in oxidative stress regulation[J]. Trends in Plant Science, 2021, 26(2): 156−168. DOI: 10.1016/j.tplants.2020.09.004

    [51]

    Li B H, Sun L, Huang J Y, et al. GSNOR provides plant tolerance to iron toxicity via preventing iron-dependent nitrosative and oxidative cytotoxicity[J]. Nature Communications, 2019, 10(1): 3896. DOI: 10.1038/s41467-019-11892-5

    [52]

    Wu L B, Holtkamp F, Wairich A, Frei M. Potassium ion channel gene OsAKT1 affects iron translocation in rice plants exposed to iron toxicity[J]. Frontiers in Plant Science, 2019, 10: 449351.

    [53]

    Li G J, Xu W F, Kronzucker H J, Shi W M. Ethylene is critical to the maintenance of primary root growth and Fe homeostasis under Fe stress in Arabidopsis[J]. Journal of Experimental Botany, 2015, 66(7): 2041−2054. DOI: 10.1093/jxb/erv005

    [54]

    Liu M, Liu X X, He X L, et al. Ethylene and nitric oxide interact to regulate the magnesium deficiency-induced root hair development in Arabidopsis[J]. New Phytologist, 2017, 213(3): 1242−1256. DOI: 10.1111/nph.14259

    [55]

    Rajonandraina T, Ueda Y, Wissuwa M, et al. Magnesium supply alleviates iron toxicity-induced leaf bronzing in rice through exclusion and tissue-tolerance mechanisms[J]. Frontiers in Plant Science, 2023, 14: 1213456. DOI: 10.3389/fpls.2023.1213456

    [56]

    Vance C P, Uhde-Stone C, Allan D L. Phosphorus acquisition and use: Critical adaptations by plants for securing a nonrenewable resource[J]. New Phytologist, 2003, 157(3): 423−447. DOI: 10.1046/j.1469-8137.2003.00695.x

    [57]

    Péret B, Desnos T, Jost R, et al. Root architecture responses: In search of phosphate[J]. Plant Physiology, 2014, 166(4): 1713−1723. DOI: 10.1104/pp.114.244541

    [58]

    Balzergue C, Dartevelle T, Godon C, et al. Low phosphate activates STOP1-ALMT1 to rapidly inhibit root cell elongation[J]. Nature Communications, 2017, 8(1): 15300. DOI: 10.1038/ncomms15300

    [59]

    Mora-Macías J, Ojeda-Rivera J O, Gutiérrez-Alanís D, et al. Malate-dependent Fe accumulation is a critical checkpoint in the root developmental response to low phosphate[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(17): E3563−E3572.

    [60]

    Gao Y Q, Bu L H, Han M L, et al. Long-distance blue light signalling regulates phosphate deficiency-induced primary root growth inhibition[J]. Molecular Plant, 2021, 14(9): 1539−1553. DOI: 10.1016/j.molp.2021.06.002

    [61]

    Singh A P, Fridman Y, Holland N, et al. Interdependent nutrient availability and steroid hormone signals facilitate root growth plasticity[J]. Development Cell, 2018, 46(1): 59−72. DOI: 10.1016/j.devcel.2018.06.002

    [62]

    Xu J M, Wang Z Q, Wang J Y, et al. Low phosphate represses histone deacetylase complex 1 to regulate root system architecture remodeling in Arabidopsis[J]. New Phytologist, 2019, 225(4): 1732−1745.

    [63]

    Li T, Zhang R Y, Satheesh V, et al. The chromatin remodeler BRAHMA recruits HISTONE DEACETYLASE6 to regulate root growth inhibition in response to phosphate starvation in Arabidopsis[J]. Journal of Integrative Plant Biology, 2022, 64(12): 2314−2326. DOI: 10.1111/jipb.13345

    [64]

    Müller J, Toev T, Heisters M, et al. Iron-dependent callose deposition adjusts root meristem maintenance to phosphate availability[J]. Development Cell, 2015, 33(2): 216–230.

    [65]

    Wang X Y, Wang Z, Zheng Z, et al. Genetic dissection of Fe-dependent signaling in root developmental responses to phosphate deficiency[J]. Plant Physiology, 2019, 179(1): 300−316. DOI: 10.1104/pp.18.00907

    [66]

    Liu X X, Zhang H H, Zhu Q Y, et al. Phloem iron remodels root development in response to ammonium as the major nitrogen source[J]. Nature Communications, 2022, 13(1): 561. DOI: 10.1038/s41467-022-28261-4

    [67]

    Liu Y, Maniero R A, Giehl R F H, et al. PDX1.1-dependent biosynthesis of vitamin B6 protects roots from ammonium-induced oxidative stress[J]. Molecular Plant, 2022, 15(5): 820−839. DOI: 10.1016/j.molp.2022.01.012

    [68]

    Liu X X, Zhu X F, Xue D W, et al. Beyond iron-storage pool: Functions of plant apoplastic iron during stress[J]. Trends in Plant Science[J], 2023, 28(8): 941−954. DOI: 10.1016/j.tplants.2023.03.007

    [69]

    Li G J, Zhang L, Wu J L, et al. Plant iron status regulates ammonium-use efficiency through protein N-glycosylation[J]. Plant Physiology, 2024, 195(2): 1712−1727. DOI: 10.1093/plphys/kiae103

    [70]

    Wang M, Xia G. The landscape of molecular mechanisms for salt tolerance in wheat[J]. The Crop Journal, 2018, 6: 42−47. DOI: 10.1016/j.cj.2017.09.002

    [71]

    Knight H, Trewavas A J, Knight M R. Calcium signaling in Arabidopsis thaliana responding to drought and salinity[J]. The Plant Journal, 1997, 12(5): 1067−1078. DOI: 10.1046/j.1365-313X.1997.12051067.x

    [72]

    Jiang Z H, Zhou X Q, Tao M, et al. Plant cell-surface GIPC sphingolipids sense salt to trigger Ca2+ influx[J]. Nature, 2019, 572: 341−346. DOI: 10.1038/s41586-019-1449-z

    [73]

    Liang X Y, Li J F, Yang Y Q, et al. Designing salt stress-resilient crops: Current progress and future challenges[J]. Journal of Integrative Plant Biology, 2024, 66(3): 303−329. DOI: 10.1111/jipb.13599

    [74]

    Munns R, Tester M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008, 59: 651−681. DOI: 10.1146/annurev.arplant.59.032607.092911

    [75]

    Yang Y Q, Guo Y. Unraveling salt stress signaling in plants[J]. Journal of Integrative Plant Biology, 2018, 60(9): 96−804.

    [76]

    Zhu J K. Abiotic stress signaling and responses in plants[J]. Cell, 2016, 167(2): 313−324. DOI: 10.1016/j.cell.2016.08.029

    [77]

    Dubcovsky J, María G S, Epstein E, et al. Mapping of the K+/Na+ discrimination locus Kna1 in wheat[J]. Theoretical and Applied Genetics, 1996, 92: 448−454. DOI: 10.1007/BF00223692

    [78]

    Byrt C S, Xu B, Krishnan M, et al. The Na+ transporter, TaHKT1;5-D, limits shoot Na+ accumulation in bread wheat[J]. The Plant Journal, 2014, 80(3): 516−526. DOI: 10.1111/tpj.12651

    [79]

    Lin H X, Zhu M Z, Yano M, et al. QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance[J]. Theoretical and Applied Genetics, 2004, 108: 253−260. DOI: 10.1007/s00122-003-1421-y

    [80]

    Ren Z H, Gao J P, Li L G, et al. A rice quantitative trait locus for salt tolerance encodes a sodium transporter[J]. Nature Genetics, 2005, 37(10): 1141−1146. DOI: 10.1038/ng1643

    [81]

    Zhang M, Cao Y B, Wang Z P, et al. A retrotransposon in an HKT1 family sodium transporter causes variation of leaf Na+ exclusion and salt tolerance in maize[J]. New Phytologist, 2018, 217(3): 1161−1176. DOI: 10.1111/nph.14882

    [82]

    Schroeder J I, Delhaize E, Frommer W B, et al. Using membrane transporters to improve crops for sustainable food production[J]. Nature, 2013, 497: 60−66. DOI: 10.1038/nature11909

    [83]

    Munns R, James R A, Xu B, et al. Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene[J]. Nature Biotechnology, 2012, 30(4): 360−364. DOI: 10.1038/nbt.2120

    [84]

    Zhang M, Liang X Y, Wang L M, et al. A HAK family Na+ transporter confers natural variation of salt tolerance in maize[J]. Nature Plants, 2019, 5(12): 1297−1308. DOI: 10.1038/s41477-019-0565-y

    [85]

    Wang Z, Hong Y C, Zhu G T, et al. Loss of salt tolerance during tomato domestication conferred by variation in a Na+/K+ transporter[J]. The EMBO Journal, 2020, 39(10): e103256. DOI: 10.15252/embj.2019103256

    [86]

    Møller I S, Gilliham M, Jha D, et al. Shoot Na+ exclusion and increased salinity tolerance engineered by cell type–specific alteration of Na+ transport in Arabidopsis[J]. The Plant Cell, 2009, 21(7): 2163−2178. DOI: 10.1105/tpc.108.064568

    [87]

    Wang Q L, Sun A Z, Chen S T, et al. SPL6 represses signalling outputs of ER stress in control of panicle cell death in rice[J]. Nature Plants, 2018, 4(5): 280−288. DOI: 10.1038/s41477-018-0131-z

    [88]

    Wang M, Cheng J, Wu J H, et al. Variation in TaSPL6-D confers salinity tolerance in bread wheat by activating TaHKT1;5-D while preserving yield-related traits[J]. Nature Genetics, 2024, 56: 1257−1269.

    [89]

    Cao Y B, Liang X Y, Yin P, et al. A domestication-associated reduction in K+-preferring HKT transporter activity underlies maize shoot K+ accumulation and salt tolerance[J]. New Phytologist, 2019, 222(1): 301−317. DOI: 10.1111/nph.15605

    [90]

    Yin P, Liang X Y, Zhao H S, et al. Cytokinin signaling promotes salt tolerance by modulating shoot chloride exclusion in maize[J]. Molecular Plant, 2023, 16(6): 1031−1047. DOI: 10.1016/j.molp.2023.04.011

    [91]

    Wang M, Qin L M, Xie C, et al. Induced and constitutive DNA methylation in a salinity-tolerant wheat introgression line[J]. Plant & Cell Physiology, 2014, 55(7): 1354−1365.

    [92]

    Liu S T, Liu S W, Wang M, et al. A Wheat SIMILAR TO RCD-ONE gene enhances seedling growth and abiotic stress resistance by modulating redox homeostasis and maintaining genomic integrity[J]. The Plant Cell, 2014, 26(1): 164−180. DOI: 10.1105/tpc.113.118687

    [93]

    Wang M, Yuan J R, Qin L M, et al. TaCYP81D5, one member in a wheat cytochrome P450 gene cluster, confers salinity tolerance via reactive oxygen species scavenging[J]. Plant Biotechnology Journal, 2020, 18(3): 791−804.

    [94]

    Wang M, Wang M, Zhao M, et al. TaSRO1 plays a dual role in suppressing TaSIP1 to fine tune mitochondrial retrograde signaling and enhance salinity stress tolerance[J]. New Phytologist, 2022, 236(2): 495−511. DOI: 10.1111/nph.18340

    [95]

    Zhang H L, Yu F F, Xie P, et al. A Gγ protein regulates alkaline sensitivity in crops[J]. Science, 2023, 379: eade8416. DOI: 10.1126/science.ade8416

    [96]

    Zheng L L, Hu Y F, Yang T Z, et al. A root cap-localized NAC transcription factor controls root halotropic response to salt stress in Arabidopsis[J]. Nature Communications, 2024, 15(1): 2061. DOI: 10.1038/s41467-024-46482-7

    [97]

    Yu B, Zheng W N, Xing L, et al. Root twisting drives halotropism via stress-induced microtubule reorientation[J]. Developmental Cell, 2022, 57(20): 2412−2425. DOI: 10.1016/j.devcel.2022.09.012

    [98]

    Wang Y Y, Cao Y B, Liang X Y, et al. A dirigent family protein confers variation of Casparian strip thickness and salt tolerance in maize[J]. Nature Communications, 2022, 13(1): 2222. DOI: 10.1038/s41467-022-29809-0

    [99]

    Gao Y Q, Huang J Q, Reyt G, et al. A dirigent protein complex directs lignin polymerization and assembly of the root diffusion barrier[J]. Science, 2023, 382: 464−471. DOI: 10.1126/science.adi5032

  • 期刊类型引用(1)

    1. 冯英明,农伟,陈醒韵,韩宏祥,郑雨欣,田晓,唐娇,郭依唯,黄朝政,李学文,石磊,喻敏. 纳米硅生物矿化沉积赋予水稻根边缘细胞及根尖耐铝性的生理机制. 中国农业科学. 2024(24): 4871-4883 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  412
  • HTML全文浏览量:  48
  • PDF下载量:  181
  • 被引次数: 1
出版历程
  • 收稿日期:  2024-05-21
  • 录用日期:  2024-05-31
  • 网络出版日期:  2024-06-16
  • 刊出日期:  2024-07-29

目录

/

返回文章
返回