• ISSN 1008-505X
  • CN 11-3996/S
郭楠, 瞿红叶, 高菲, 徐国华. 氨基酸转运蛋白介导植物免疫研究进展[J]. 植物营养与肥料学报, 2023, 29(12): 2360-2370. DOI: 10.11674/zwyf.2023430
引用本文: 郭楠, 瞿红叶, 高菲, 徐国华. 氨基酸转运蛋白介导植物免疫研究进展[J]. 植物营养与肥料学报, 2023, 29(12): 2360-2370. DOI: 10.11674/zwyf.2023430
GUO Nan, QU Hong-ye, GAO Fei, XU Guo-hua. The roles of amino acid transporters in plant immunity[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(12): 2360-2370. DOI: 10.11674/zwyf.2023430
Citation: GUO Nan, QU Hong-ye, GAO Fei, XU Guo-hua. The roles of amino acid transporters in plant immunity[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(12): 2360-2370. DOI: 10.11674/zwyf.2023430

氨基酸转运蛋白介导植物免疫研究进展

The roles of amino acid transporters in plant immunity

  • 摘要: 植物生长发育需要大量的氮素养分,氨基酸作为大多数植物体内主要的氮素运输形式,影响植物整个生命活动。氨基酸转运蛋白负责氨基酸在组织和细胞间的跨膜运输,其通过调节植物体内氨基酸稳态,影响着植物的生长发育和抗逆能力。近年来,氨基酸和氨基酸转运蛋白在植物免疫和抗病中的功能及其调控机制取得了一些突破性的研究进展。我们详细阐述了氨基酸运输、代谢在植物防御中的作用,总结了参与植物免疫的氨基酸透性酶家族(AAPs)、赖氨酸组氨酸转运蛋白家族(LHTs)、阳离子氨基酸转运蛋白家族(CATs)以及多种酸进出转运蛋白家族(UMAMITs)基因在病原菌侵染植物过程中的调节机制。转运蛋白LHT1不仅介导植物根系氨基酸的吸收和地上部氨基酸的转运,还参与了植物生长和免疫调节。本文以LHT1为例,对比了拟南芥和水稻lht1突变体植物在感染病原菌后自身的免疫过程,突出其在参与植物感染活体营养型和死体营养型病原菌过程中功能的差异性,构建了氨基酸转运蛋白调控植物免疫过程的基本分子模型。未来研究需要重点解析:1)哪些氨基酸是植物防御机制的关键营养或信号物质;2)病原菌侵染植物后,植物体内氨基酸信号的传导过程;3)植物氨基酸转运蛋白如何识别病原菌;4)植物氨基酸转运蛋白如何调节植物和病原菌间的营养竞争和资源分配;5)氨基酸转运蛋白如何调控水杨酸/茉莉酸途径参与植物抗病;6)植物−微生物间基因是否存在串扰等一系列问题。通过这些研究,深入探索植物氨基酸运输对植物−病原菌互作的调控机制,挖掘介导植物抗病的关键氨基酸转运蛋白,有助于培育既高产又优质且抗病的理想品种。

     

    Abstract: Plants require large amounts of nitrogen (N) for their growth and development. Amino acids (AAs) act as the predominant transport forms of N within plants, involve deeply in the entire life cycle of plants. Amino acid transporters (AATs) mediate the long-distance transfer of AAs from the source to the sink in plants and function in amino acid homeostasis. AATs regulate the plant growth and development and the immunity system for stress resistance that are triggered by infected pathogens including fungi, bacteria, viruses, and nematodes. In recent years, the functions and regulatory mechanisms of AAs and AATs in plant immunoreactions and disease resistance have achieved some remarkable breakthroughs. We elaborated the roles and metabolism of AATs in plant immunity. Meanwhile, we summarized the molecular mechanisms of amino acid permeases (AAPs), lysine and histidine transporters (LHTs), cationic amino acid transporters (CATs), and multiple acids moving in and out the transporter family (UMAMITs) in plant defense to pathogen diseases. LHT1 functions in root uptake and source-to-sink allocation of amino acids in plants, and modulates both plant growth and defense immunity. Taking Arabidopsis and rice (Oryza sative) LHT1 as an example, we highlighted how LHT1 responding to the attack of biotrophic, hemi biotrophic, or necrotrophic pathogens, and the divergent roles of LHT1 in monocotyledon and dicotyledon in the plant defenses. In addition, we establish a working model underlying the interplay of plants and pathogens for the AATs mediated regulatory processes of plant immunity. The researches needed for trade-off among the yield, quality and defense in plants included: 1) Which amino acids are the key nutrients or signaling molecules for plant defense? 2) What is the transition of amino acid signaling in plant cells during pathogen infection? 3) How do plant AATs sense pathogens? 4) How do plant AATs control nutrient exchange between plants and pathogens? 5) How do plant AATs modulate plant immunity in salicylic acid- and/or jasmonic acid-dependent manners? 6) Is there a crosstalk between plant and microbe genes during pathogen infection? The approaches will provide solutions for breeding ideal cultivars of high yield, excellent quality, and resistance to pathogenic attack.

     

/

返回文章
返回