• ISSN 1008-505X
  • CN 11-3996/S
李慧敏, 李炯珊, 张克燕, 张春辉, 季春丽, 王计平, 李润植. 微藻生物肥提高谷子对氮磷胁迫的耐受性[J]. 植物营养与肥料学报, 2024, 30(6): 1130-1141. DOI: 10.11674/zwyf.2024023
引用本文: 李慧敏, 李炯珊, 张克燕, 张春辉, 季春丽, 王计平, 李润植. 微藻生物肥提高谷子对氮磷胁迫的耐受性[J]. 植物营养与肥料学报, 2024, 30(6): 1130-1141. DOI: 10.11674/zwyf.2024023
LI Hui-min, LI Jiong-shan, ZHANG Ke-yan, ZHANG Chun-hui, JI Chun-li, WANG Ji-ping, LI Run-zhi. Microalgae biofertilizer increases foxtail millet tolerance to nitrogen and phosphorus stress[J]. Journal of Plant Nutrition and Fertilizers, 2024, 30(6): 1130-1141. DOI: 10.11674/zwyf.2024023
Citation: LI Hui-min, LI Jiong-shan, ZHANG Ke-yan, ZHANG Chun-hui, JI Chun-li, WANG Ji-ping, LI Run-zhi. Microalgae biofertilizer increases foxtail millet tolerance to nitrogen and phosphorus stress[J]. Journal of Plant Nutrition and Fertilizers, 2024, 30(6): 1130-1141. DOI: 10.11674/zwyf.2024023

微藻生物肥提高谷子对氮磷胁迫的耐受性

Microalgae biofertilizer increases foxtail millet tolerance to nitrogen and phosphorus stress

  • 摘要:
    目的 氮磷营养缺乏是作物生长发育的重要限制因素。微藻生物肥是由单细胞光合藻类生物质构成的一种新型肥料,其促进作物生长和改良土壤肥力的功效备受关注。本研究旨在解析微藻生物肥对谷子(Setaria italica L.)生长的促进作用,特别是提高谷子对氮磷缺乏的耐受性的生物学功能,为微藻生物肥在谷子等作物的化肥减量和绿色可持续生产的应用提供理论支撑。
    方法 供试谷子品种为‘晋谷21’。采用水培试验,设置正常氮磷(霍格兰标准营养液中氮和磷含量分别为210和71 mg/L)、无氮磷(营养液中氮和磷含量均为0 mg/L)和1/2氮磷(营养液中氮和磷含量分别为105和35.5 mg/L) 3个氮磷水平。制备小球藻(Chlorella sp. DT01) (DT)、埃氏小球藻(Chlorella emersonii) (AS)和蛋白核小球藻(Chlorella pyrenoidosa) (DB) 3种微藻生物肥,分别与3个氮磷处理液等比混合,共构成9个处理,每个氮磷水平下设置1个不添加微藻微生物溶液处理为对照。在谷子幼苗生长至两叶一心时,将其移入处理液中,在温室条件下连续培养9天,期间每3天补充1次处理液。处理结束时,测定各处理谷子幼苗的生长指标、生物量、色素含量、光合活性和氮磷含量等生理生化参数,并通过qRT-PCR技术分析氮磷转运蛋白相关基因(SiNRT1.11SiNRT2.1SiPHT1.2SiPHT1.1)的表达谱。
    结果 与正常氮磷处理相比,无氮磷和1/2氮磷处理均显著降低了谷子幼苗生物量、光合色素(叶绿素a,b和类葫萝卜素)含量和光合作用。在3种剂量氮磷处理下,施用3种微藻生物肥处理均显著提高谷子幼苗鲜重和干重、光合色素含量(特别是类胡萝卜素)和光合作用参数实际光化学效率Y(II),光化学淬灭系数qP和非光化学淬灭系数NPQ。此外,微藻生物肥还显著增加了谷子幼苗全氮和全磷含量。微藻生物肥DT处理的促生效应最显著。qRT-PCR检测谷子幼苗氮磷转运相关基因表达显示,微藻生物肥DT处理显著上调谷子幼苗地上部硝酸盐转运蛋白基因SiNRT1.11和根系硝酸盐转运蛋白基因SiNRT2.1的表达,以及根系中磷酸盐转运蛋白基因SiPHT1.2SiPHT1.1的表达。
    结论 施用微藻生物肥能显著提高谷子幼苗地上部硝酸盐转运蛋白基因SiNRT1.11和根系硝酸盐转运蛋白基因SiNRT2.1,以及根系中磷酸盐转运蛋白基因SiPHT1.2SiPHT1.1的表达,进而改善谷子幼苗生长和光合生理特性,提高谷子对氮磷胁迫的抗性。

     

    Abstract:
    Objectives Nitrogen (N) and phosphorus (P) nutrient deficiency is an important factor inhibiting crop growth and development. Microalgal biofertilizer is a novel fertilizer consisting of single-cell photosynthetic algal biomass. An increasing attention is focused on the effects of microalgal biofertilizer in promoting crop growth and improving soil fertility. This study aimed to investigate the growth-promoting effect of microalgal biofertilizer on foxtail millet (Setaria italica L.), particularly, its function in enhancing foxtail millet tolerance to N and P deficiency stresses, providing a theoretical foundation for microalgal biofertilizer application in foxtail millet and other crop production for reducing chemical fertilizer usage and promoting green sustainability.
    Methods A hydroponic method was used to cultivate millet seedlings of Jingu 21 variety. The N-P treatment included normal level of N and P in Hoagland nutrient solution (N 210 mg/L and P 71 mg/L, respectively), 1/2 level of N and P in the nutrient solution (N 105 mg/L and P 35.5 mg/L, respectively), and none of N and P addition in the nutrient solution. Three microalgal biofertilizers, namely Chlorella sp. DT01 (DT), Chlorella emersonii (AS), and Chlorella pyrenoidosa (DB), were prepared, and then combined with the three N-P treatments at 1∶1 ratio, respectively, totally composing nine treatments. Microalgal biofertilizer-free control was set for each N-P treatment. The millet seedlings at age of two-open leaves and one-sprout were transferred to these 12 treatment solutions, and cultivated in a greenhouse for 9 days, with the treatment solutions replenished every 3 days. At the end of the treatments, the seedlings were harvested for measurement of seedling growth, biomass, pigment content, photosynthetic activity, N and P contents, as well as the expression profiles of nitrate transporter genes (SiNRT1.11 and SiNRT2.1) and phosphate transporter genes (SiPHT1.2 and SiPHT1.1).
    Results Compared with normal N-P treatment, the NP-free and 1/2 NP treatments significantly reduced biomass, pigment (chlorophyll a, b and carotenoid) content and photosynthesis of foxtail millet seedlings. Under all the three N-P conditions, application of each of the three microalgal biofertilizers significantly increased the fresh weight and dry weight, pigment content (especially carotenoids) and three photosynthetic parameters (actual photochemical efficiency Y(II), photochemical quenching coefficient qP and non-photochemical quenching coefficient NPQ) of millet seedlings. Furthermore, the microalgae biofertilizer application largely enhanced the total N and P contents in millet seedlings. Of the three microalgal biofertilizers, DT demonstrated the most pronounced growth-promoting effect. Additionally, qRT-PCR analysis of N or P transportation related genes revealed that DT treatment significantly up-regulated the expression of nitrate transporter gene SiNRT1.11 in the shoots and the nitrate transporter gene SiNRT2.1 in the roots of foxtail millet seedlings, as well as phosphate transporter genes SiPHT1.2 and SiPHT1.1 in root tissues of millet.
    Conclusions Application of the three microalgal biofertilizers, especially DT, could significantly up-regulate the expression of nitrate transporter gene SiNRT1.11 in the shoots and the nitrate transporter gene SiNRT2.1 in the roots, and phosphate transporter genes SiPHT1.2 and SiPHT1.1 in roots under N and P deficiency, thus promote foxtail millet seedling growth, photosynthetic efficiency, and resistance to nitrogen and phosphorus deficiency.

     

/

返回文章
返回