• ISSN 1008-505X
  • CN 11-3996/S

麦-豆和麦/玉/豆体系中大豆的磷肥增产增效作用研究

周涛, 徐开未, 王科, 黄蔚, 张朝春, 陈远学

周涛, 徐开未, 王科, 黄蔚, 张朝春, 陈远学. 麦-豆和麦/玉/豆体系中大豆的磷肥增产增效作用研究[J]. 植物营养与肥料学报, 2015, 21(2): 336-345. DOI: 10.11674/zwyf.2015.0207
引用本文: 周涛, 徐开未, 王科, 黄蔚, 张朝春, 陈远学. 麦-豆和麦/玉/豆体系中大豆的磷肥增产增效作用研究[J]. 植物营养与肥料学报, 2015, 21(2): 336-345. DOI: 10.11674/zwyf.2015.0207
ZHOU Tao, XU Kai-wei, WANG Ke, HUANG Wei, ZHANG Chao-chun, CHEN Yuan-xue. Effect of phosphate fertilizer on the improvement of yieldand nutrient use efficiency of soybean in wheat-soybean and wheat/maize/soybean systems[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(2): 336-345. DOI: 10.11674/zwyf.2015.0207
Citation: ZHOU Tao, XU Kai-wei, WANG Ke, HUANG Wei, ZHANG Chao-chun, CHEN Yuan-xue. Effect of phosphate fertilizer on the improvement of yieldand nutrient use efficiency of soybean in wheat-soybean and wheat/maize/soybean systems[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(2): 336-345. DOI: 10.11674/zwyf.2015.0207

麦-豆和麦/玉/豆体系中大豆的磷肥增产增效作用研究

基金项目: 

国家自然科学基金重大国际(地方)合作项目(31210103906),国家现代农业玉米产业技术体系项目(CARS-02-24)资助。

详细信息
    作者简介:

    周涛(1987—),男,四川遂宁人,硕士研究生,主要从事土壤肥力和植物营养研究。E-mail:364462907@qq.com

  • 中图分类号: S344.2;S565.1

Effect of phosphate fertilizer on the improvement of yieldand nutrient use efficiency of soybean in wheat-soybean and wheat/maize/soybean systems

  • 摘要: 【目的】小麦/玉米/大豆旱地三熟模式是我国西南山丘区的主要旱作耕作模式,大豆作为该体系中改善土壤环境的核心作物,明确其增产、增效作用,可指导该体系的科学管理。【方法】于2012、2013年连续2年进行田间试验,采用小麦-大豆(单作)和小麦/玉米/大豆(套作)两种体系,设置5个不同磷水平处理 (SP1、SP2、SP3、SP4、SP5 ),调查了大豆在与玉米共生期和玉米收获后的生物量变化,以及收获期籽粒产量、全株养分含量和养分利用效率的差异。【结果】1)玉米收获前大豆植株地上部生长率,单作为1.52 g/(m2·d),套作为1.18 g/(m2·d),单作比套作高28.8%;玉米收获后,大豆植株地上部生长率,单作为4.15 g/(m2·d),套作为5.60 g/(m2·d),套作显著高于单作34.9%。2) 大豆籽粒产量套作平均比单作高20.3%。单作、套作大豆籽粒产量均随土壤磷含量的增加呈先增加后降低的变化趋势,2年平均产量最高均在SP4处理,套作为2923 kg/hm2,单作为2400 kg/hm2。SP4处理产量与SP2和SP3差异不显著,与SP1和SP5差异显著。 3)收获期大豆籽粒氮、磷、钾含量套作高于单作,茎、荚含量套作低于单作;各部位的氮含量随土壤磷含量的增加先增高后降低,磷、钾含量有随土壤磷含量的增加而增加的趋势。4)小麦+大豆种植带的植株氮、钾积累量,套作体系明显高于轮作体系,且随土壤磷含量的增加先增加后减少。5)小麦+大豆种植带磷肥当季利用率随土壤磷含量的增加而逐渐减小,SP2、SP3、SP4、SP5处理套作体系比单作体系分别高44.6%、74.9%、66.9%、109.5%,平均高74.0%。【结论】套作大豆相比单作大豆具有产量和营养优势,套作大豆茎、荚氮、磷、钾养分相比单作大豆可更多地向籽粒转运,大幅提高其对磷肥当季利用效率。合理施用磷肥也可提高大豆产量。
    Abstract: 【Objectives】 The wheat/maize/soybean intercropping system has become the mainly farming mode in the hilly area of southwest China. Soybean, as the core of the intercropping system, should be researched on its higher yield and efficiency for the scientific management of the system. 【Methods】 A two-years’ field investigation was conducted in the long-term experiment of intercropping system for the comparison of the growth of soybean grown in the wheat/maize/soybean intercropping (IS) and rotation systems (SS). The biomass accumulation and grain yield, nutrient content and nutrient utilization efficiency in the harvest stage were measured in the two systems.【Results】 1)The dry matter accumulation rate (DMAR) of soybeans in IS was significantly lower than in SS before maize harvest, with respective value of 1.18 g/(m2·d) in IS and 1.52 g/(m2·d) in SS; the DMAR in IS became higher than in SS after maize harvest with value of 5.60 g/(m2·d) in IS and 4.15 g/(m2·d) in SS. 2) Soybean grain yield was affected by the soil available P contents. The highest yield was in treatment SP4 (in IS was 2923 kg/ha, in SS was 2400 kg/ha), which was significantly higher than in SP1 and SP5, but not significantly than in SP2 and SP3. The yield in IS was 20.3% higher than in SS. 3) The nitrogen, phosphorus and potassium contents in soybean grain in IS was higher than those in SS, those in stems and pods in IS were lower than in SS. The phosphorus and potassium contents in soybean plants were increased with the increase of soil available P, nitrogen contents was increased first and then decreased with the highest N contents in treatment SP4. 4) Nitrogen and potassium accumulation of the planting strip of wheat and soybean plants (WSPS) in IS were significantly higher than in SS, and decreased after the first increasing with the increase of soil available phosphorus. 5) Although the P fertilizer use efficiency (PUF) of WSPS gradually decreased with the increased soil available P contents, PUF of WSPS in IS were always higher than in SS in the same P inputs,as from P2 to P5 those in IS were 44.6%, 74.9%, 66.9% and 109.5% higher than in SS. 【Conclusions】 Compared with in wheat-soybean rotation, soybeen in wheat/maize/soybean intercropping shows yield and nutritional advantage. In the intercropping system, more nitrogen, phosphorus and potassium are transported from pods and stems to seeds,leading to higher yield and nutrient use efficiency.
  • [null] [1] 杨文钰, 雍太文, 任万军, 等. 发展套作大豆, 振兴大豆产业[J]. 大豆科学, 2008, 27(1): 1-7.
    Yang W Y, Yong T W, Ren W J et al. Develop relay-cropping soybean, revitalize soybean industry[J]. Soybean Science, 2008, 27(1): 1-7.
    [2] 刘增禹, 伍晓燕, 杨文钰, 等. 玉米株型对套作大豆氮素积累、转运和籽粒蛋白质产量的影响[J]. 中国油料作物学报, 2011, 33(6): 574-581.
    Liu Z Y, Wu X Y, Yang W Y et al. Effect of corn plant type on soybean nitrogen accumulation, translocation and seed protein yield under corn/soybean relay-strip cropping system[J]. China Journal of Oil Crop Sciences, 2011, 33(6): 574-581.
    [3] 王竹, 杨文钰, 吴其林. 玉/豆套作荫蔽对大豆光合特性及产量的影响[J]. 作物学报, 2007, 33(9): 1502-1507.
    Wang Z, Yang W Y, Wu Q L. Effects of shading in maize/soybean relay-cropping system on the photosynthetic characteristics and yield of soybean[J]. Acta Agronomica Sinica, 2007, 33(9): 1502-1507.
    [4] 王竹, 杨文钰, 伍晓燕, 等. 玉米株型和幅宽对套作大豆初花期形态建成及产量的影响[J]. 应用生态学报, 2008, 19(2): 323-329.
    Wang Z, Yang W Y, Wu X Y et al. Effects of maize plant type and planting width on the early morphological characters and yield of relay planted soybean[J]. Chinese Journal of Applied Ecology, 2008, 19(2): 323-329.
    [5] 张正翼. 不同密度和田间配置对套作大豆产量和品质的影响[D]. 雅安: 四川农业大学硕士学位论文, 2008.
    Zhang Z Y. Effects of different density and field distribution on yield and quality of relay-cropping soybean[D]. Yaan: MasterThesis, Sichuan Agricultural University, 2008.
    [6] 陈远学, 刘静, 陈新平, 等. 四川轮套作体系的干物质积累、产量及氮素利用效率研究[J]. 中国农业大学学报, 2012, 18(6): 68-79.
    Chen Y X, Liu J, Chen X P et al. Dry matter accumulation, yield and nitrogen use efficiency of crops rotation and intercropping system in Sichuan[J], Journal of China Agricultural University, 2012, 18 (6): 68-79.
    [7] 雍太文, 杨文钰, 向达兵, 等. 小麦/玉米/大豆套作的产量、氮营养表现及种间竞争力的评定[J]. 草业学报, 2012, 21(1): 50-58.
    Yong T W, Yang W Y, Xiang D B et al. Production and N nutrient performance of wheat-maize-soybean relay strip intercropping system and evaluation of interspecies competition[J]. Acta Prataculturae Sinica, 2012, 21(1): 50-58.
    [8] Li L, Sun J B, Zhang F S et al. Wheat/maize or wheat/soybean strip intercropping II. Recovery of compensation of maize and soybean after wheat harvesting[J]. Field Crops Research, 2001, 71: 173-181.
    [9] 陈远学, 周涛, 黄蔚, 等. 小麦玉米大豆间套作体系中小麦施磷后效对大豆产量、营养状况的影响[J]. 植物营养与肥料学报, 2013, 19 (2): 331-339.
    Chen Y X, Zhou T, Huang W et al. Phosphorus after effects on soybean yield and nutrition status in wheat/maize/soybean intercropping system[J]. Plant Nutrition and Fertilizer Science, 2013, 19 (2): 331-339.
    [10] Zhang F S, Li L. Use competitive and facilitative interactions in intercropping systems enhances crop productivity and nutrient-use efficiency[J]. Plant and Soil, 2003, 248: 305-312.
    [11] 唐旭. 小麦-玉米轮作土壤磷素长期演变规律研究[D]. 北京: 中国农业科学院博士学位论文, 2009.
    Tang X. Long-term change of phosphorus in soils under wheat-maize crop rotation in China[D]. Beijing: PhD dissertation, Chinese Academy of Agricultural Sciences, 2009.
    [12] 鲍士旦. 土壤农化分析(第三版)[M]. 北京: 中国农业出版社, 2000.
    Bao S D. Soil and agricultural chemistry analysis (Third edition)[M]. Beijing: China Agriculture Press, 2000.
    [13] 朱元刚, 董树亭, 张吉旺, 等.种植方式对夏玉米光合生产特征和光温资源利用的影响[J]. 应用生态学报, 2012, 21(6): 1417-1424.
    Zhu Y G, Dong S T, Zhang J W et al. Effects of cropping patterns on photosynthesis characteristics of summer maize and its utilization of solar and heat resources. Chinese Journal of Applied Ecology, 2012, 21(6): 1417-1424.
    [14] 陈远学,李汉邯,周涛,等. 施磷对间套作玉米叶面积指数、干物质积累分配及磷肥利用效率的影响[J]. 应用生态学报, 2013,24(10): 2799-2806.
    Chen Y X, Li H H, Zhou T et al. Effects of phosphorus fertilization on leaf area index,biomass accumulation and allocation, and phosphorus use efficiency of intercropped maize[J]. Chinese Journal of Applied Ecology, 2013, 24(10): 2799-2806.
    [15] 王小春, 杨文钰, 任万军, 等. 小麦/玉米/大豆和小麦/玉米/甘薯套作体系下玉米产量及养分吸收的差异[J]. 植物营养与肥料学报, 2012,18(4): 803-812.
    Wang X C, Yang W Y, Ren W J et al. Study on yield and nutrient absorptions of maize in wheat/maize/soybean and wheat/maize/sweet potato relay-intercropping systems[J]. Plant Nutrition and Fertilizer Science, 2012,18(4): 803-812.
    [16] 李潮海, 王群, 梅沛沛, 等. 不同质地土壤上玉米养分吸收和分配特征[J]. 植物营养与肥料学报, 2007, 13(4): 561-568.
    Li C H, Wang Q, Mei P P et al. Characteristics of nutrient absorption and distribution of maize under different soil textures[J]. Plant Nutrition and Fertilizer Science, 2007, 13(4): 561-568.
    [17] 高聚林, 王志刚, 孙继颖, 等. 青贮玉米对氮磷钾的吸收规律[J]. 作物学报, 2006, 32(3): 363-368.
    Gao J L, Wang Z G, Sun J Y et al. Nitrogen phosphorus and potassium absorption in ensilage maize[J]. Acta Agronomica Sinica,2006, (3): 363-368.
    [18] Li L, Sun J B, Zhang F S et al. Wheat/maize or wheat/soybean strip intercropping I. Yield advantage and interspecific interaction on nutrients[J]. Field Crops Research, 2001, 71: 123-137.
    [19] Dalal R C. Effect of intercropping maize with pigeon peas on grain yield and nutrient uptake[J]. Australian Journal of Experimental Agriculture, 1974, 10: 219-224.
    [20] Manson S C, Leihner D E, Vorst J J et al. Cassava-cowpea and cassava-peanut intercropping I. Yield and land use efficiency[J]. Agronomy Journal, 1986, 78: 43-46.
    [21] Harris D, Natarajan M. Physiological basis for yield advantage in a sorghum/groundnut intercrop exposed to drought. 2. Plant temperature, water status, and components of yield[J]. Field Crops Research, 1987, 17: 273-288.
    [22] Natarajan M, Willey R W. Sorghum-pigeonpea intercropping and the effects of plant population density. 1. growth and yield[J]. Journal of Agricultural Science, 1980, 95: 51-58.
    [23] Zhang W F, Ma W Q, Ji Y X et al. Efficiency, economics, and environmental implications of phosphorus resource use and the fertilizer industry in China[J]. Nutrient Cycling in Agroecosystems, 2008, 80: 131-144.
    [24] Zhang L, Werf W V, Bastiaans L et al. Light interception and utilization in relay intercrops of wheat and cotton[J]. Field Crops Research, 2008, 107: 29-42.
  • 期刊类型引用(12)

    1. 尚磊,杨栗恒,王孟雪,王鹏. 连续秸秆还田对大豆产量、磷素吸收特征及土壤磷组分的影响. 大豆科学. 2025(01): 106-116 . 百度学术
    2. 李伟杰,王蕊,孙志玲,黄剑楠,鄂文曌,伊海龙,蔡姗姗,王伟. 呼玛县大豆产量对土壤养分含量的响应. 黑龙江农业科学. 2024(11): 13-18 . 百度学术
    3. 韩本高,李岚涛,周琦,冀昊言,赵剑,赵士诚,王宜伦. 豫北潮土区大豆产量的施磷效应分析. 河南农业大学学报. 2022(04): 561-567 . 百度学术
    4. 顾会战,苟小梅,蔡艳,吴杰,李涛,叶想,何佶弦,张启莉,王栋. 烤烟油菜轮作及平衡施肥对土壤速效钾和烟叶钾的影响. 农学学报. 2022(12): 23-27 . 百度学术
    5. 蔡姗姗,孙磊,魏丹,王伟,李玉梅,张久明,王爽,李艳,高中超. 大豆养分管理研究进展与趋势展望. 大豆科技. 2021(06): 36-40 . 百度学术
    6. 展文洁,刘剑钊,梁尧,袁静超,张洪喜,刘松涛,蔡红光,任军. 不同耕作方式对玉米根系特性及养分吸收转运的影响. 植物营养与肥料学报. 2020(05): 817-825 . 本站查看
    7. 田艺心,曹鹏鹏,张海英,高凤菊. 磷肥减施对间作大豆/玉米农艺性状及产量、经济效益的影响. 山东农业科学. 2020(08): 85-89 . 百度学术
    8. 汤复跃,韦清源,陈文杰,郭小红,梁江,陈渊. 缓释N肥对一年三熟“玉米—大豆”间套作体系农艺性状、产量及效益影响. 大豆科学. 2020(05): 734-741 . 百度学术
    9. 汤复跃,韦清源,陈文杰,郭小红,梁江,陈渊. “春玉米‖春大豆/夏大豆”群体产量、效益及其种间竞争力的评定. 西南农业学报. 2019(07): 1518-1523 . 百度学术
    10. 陈光荣,王立明,杨如萍,董博,杨桂芳,张国宏,杨文钰. 平衡施肥对马铃薯-大豆套作系统中作物产量的影响. 作物学报. 2017(04): 596-607 . 百度学术
    11. 陈波浪,吴海华,罗佳,郝丽娜,盛建东,齐晓晨. 土壤速效磷浓度对立架甜瓜生物量和磷素累积特征的影响. 干旱地区农业研究. 2016(04): 153-158 . 百度学术
    12. 周涛,徐开未,黄蔚,陈新平,张朝春,刘静,卢俊宇,陈远学. 施磷对麦/玉/豆套作体系土壤磷素变化的影响. 中国生态农业学报. 2015(07): 823-831 . 百度学术

    其他类型引用(10)

计量
  • 文章访问数:  3678
  • HTML全文浏览量:  443
  • PDF下载量:  972
  • 被引次数: 22
出版历程
  • 收稿日期:  2014-01-19
  • 修回日期:  2014-05-26
  • 刊出日期:  2015-03-24

目录

    /

    返回文章
    返回