Analysis of patents on arbuscular mycorrhizal fungi
-
摘要:
丛枝菌根真菌 (AMF) 与植物共生在提高植物的抗逆性、抗病性和维护植物健康方面发挥着关键作用,其在农业、林业和生态环境等方面的应用受到广泛关注。本研究基于incoPat科技创新情报平台,检索了2019年前国内外丛枝菌根真菌的专利产出,对专利申请数量、主要申请人、技术构成等方面进行了分析,以揭示国内外丛枝菌根真菌领域的研发状况、技术发展趋势和产学研合作情况。近年来,中国丛枝菌根真菌领域专利数量急剧增加,AMF产品化不断加强,AMF应用领域从农业领域向污染修复领域拓展,结合现代生物、信息技术等新兴技术的AMF检测技术和研究方法正在快速发展,新的研发充分考虑了AMF产品化和应用的结合;我国在丛枝菌根真菌领域的专利申请人多隶属高校和科研院所,企业参与度较低。AMF菌种扩繁和污染修复领域的应用已成为焦点,生物和信息新技术成果正引入AMF检测技术的开发;中国在丛枝菌根真菌领域的产学研合作研发亟需加强。
Abstract:Arbuscular mycorrhizal fungi (AMF) and plant symbiosis plays a key role in improving plant resistance and disease resistance, and maintaining plant health. Their applications in agriculture, forestry and ecological environment have received widespread attention. Based on the incoPat, a technology innovation information platform, retrievals were made of output of patents on AMF at home and abroad before 2019, for analysis of number of applications, technology composition, major applicants, etc. of the patents, in an attempt to reveal R&D status, technology development trends and industry-university-research cooperation in the field of AMF. In recent years, the number of patents has been increasing significantly in China. AMF propagation techniques have been continuously strengthened. Application fields of AMF have extended from agriculture to soil pollution remediation. Testing and research methods are being developed in combination with emerging technologies such as modern information technology, and integration of AMF commercialization and application is fully considered in the new R&D. At present, most of the patent applicants in this aspect in China are from universities and scientific research institutions, fewer from enterprises. AMF strain propagation and application in pollution remediation have become a focus. Novel technological achieved in the fields of biology and information science are being introduced into the development of AMF detection technology. In China, the industry-university-research cooperation in this field needs to be strengthened urgently.
-
Keywords:
- arbuscular mycorrhizal fungi (AMF) /
- technique /
- patent analysis /
- development trend
-
-
图 2 主要研发机构专利申请量的年变化趋势
[注(Note):HUST—Henan University of Science and Technology;TERI—The Energy and Resources Institute;CUMT—China University of Mining and Technology;INRA—Institut National De La Recherche Agronomique;CNRS—French National Centre for Sciontific Research. 气泡大小表示研究机构的专利申请量Bubble size indicates the number of patent applications from research institutions.]
Figure 2. Annual variation trend of the number of patent applications from major research and development institutions
图 3 全球丛枝菌根真菌领域专利的技术分布
[注(Note):A01G—水稻、蔬菜、果树、花卉等农林植物的栽培;灌溉 Cultivation of agricultural and forestry plants, such as rice, vegetable, fruit, flower; irrigation;C12N—微生物或酶;促进微生物生长的组合物;繁殖、保藏或维持微生物;变异或遗传工程;培养基Micro-organisms or enzymes; composition promoting the growth of microorganisms; propagating, preserving, or maintaining micro-organisms; mutation or genetic engineering; culture media;C05G—分属于C05大类下各小类中肥料的混合物;由一种或多种肥料与无特殊肥效的物质,例如农药、土壤调理剂、润湿剂所组成的混合物;固体肥料Mixtures of fertilizers covered individually by different subclasses of class,-see cross reference IPCC05; mixtures of one or more fertilizers with materials not having a specific fertilizing activity, e.g. pesticides, soil-conditioners, wetting agents; solid fertilizers;A01N—人体、动植物体或其局部的保存;杀生剂,例如作为消毒剂,作为农药或作为除草剂;害虫驱避剂或引诱剂;植物生长调节剂Preservation of bodies of humans or animals or plants or parts thereof; biocides, e.g. as disinfectants, as pesticides, as herbicides; pest repellants or attractants; plant growth regulators;C05F—不包含在C05B、C05C小类中的有机肥料,如用废弃物或垃圾制成的肥料Organic fertilisers not covered by subclasses-see cross reference IPC C05B,-see cross reference IPC C05C, e.g. fertilizers from waste or refuse; A01H—新植物或获得新植物的方法;通过组织培养技术的植物再生New plants or processes for obtaining them; plant reproduction by tissue culture techniques:B09C—污染土壤的再生Reclamation of contaminated soil; C09K—不包含在其他类目中的各种应用材料;不包含在其他类目中的材料的各种应用Materials for miscellaneous applications, not provided for elsewhere; C10G—烃油裂化;液态烃混合物的制备,例如用破坏性加氢反应、低聚反应、聚合反应;从油页岩、油矿或油气中回收烃油;含烃类为主的混合物的精制;石脑油的重整;地蜡Cracking hydrocarbon oils; production of liquid hydrocarbon mixtures, e.g. by destructive hydrogenation, oligomerisation, polymerisation; recovery of hydrocarbon oils from oil-shale, oil-sand, or gases; refining mixtures mainly consisting of hydrocarbons; reforming of naphtha; mineral waxes; C12M—酶学或微生物学装置Apparatus for enzymology or microbiology;G01N—借助于测定材料的化学或物理性质来测试或分析材料Investigating or analysing materials by determining their chemical or physical properties;A01B—农业或林业的整地,一般农业机械或农具的部件、零件或附件Soil working in agriculture or forestry; parts, details, or accessories of agricultural machines or implements, in general.]
Figure 3. Distribution of the technologies patented on arbuscular mycorrhizal fungi in the world
-
[1] 李晓林, 冯固. 丛枝菌根生态生理[M]. 北京: 华文出版社, 2001. 4–5. Li X L, Feng G. Arbuscular mycorrhiza ecophysiology[M]. Beijing: Sino-Culture Press, 2001. 4–5.
[2] Smith S E, Read D. Mycorrhizal symbiosis (3rd Edition)[M]. New York: Academic Press, 2008.11–32.
[3] 王幼珊, 张淑彬, 张美庆. 中国丛枝菌根真菌资源与种质资源[M]. 北京: 中国农业出版社, 2012. Wang Y S, Zhang S B, Zhang M Q. Resources and germplasm resources of arbuscular mycorrhizal fungi in China[M]. Beijing: China Agriculture Press, 2012.
[4] 陈保冬, 于萌, 郝志鹏, 等. 丛枝菌根真菌应用技术研究进展[J]. 应用生态学报, 2019, 30(3): 1035-1046. Chen B D, Yu M, Hao Z P, et al. Research progress in arbuscular mycorrhizal technology[J]. Chinese Journal of Applied Ecology, 2019, 30(3): 1035-1046.
[5] Sekar S, Paulraj P. Strategic mining of cyanobacterial patents from the USPTO patent database and analysis of their scope and implications[J]. Journal of Applied Phycology, 2007, 19(3): 277-292. DOI: 10.1007/s10811-006-9136-5
[6] Liu C Y, Yang J C. Decoding patent information using patent maps[J]. Data Science Journal, 2008, 7: 14-22. DOI: 10.2481/dsj.7.14
[7] Fu B R, Hsu S W, Liu C H, et al. Statistical analysis of patent data relating to the organic Rankine cycle[J]. Renewable and Sustainable Energy Reviews, 2014, 39: 986-994. DOI: 10.1016/j.rser.2014.07.070
[8] Bi Y L, Li X L, Wang H G, et al. Establishment of dual culture between vesicular-arbuscular mycorrhizal fungus Sclerocystis sinuosa and transformed Ri T-DNA carrot roots in vitro[J]. Plant and Soil, 2004, 261: 239-243. DOI: 10.1023/B:PLSO.0000035537.16639.7b
[9] Harikumar V S. A new method of propagation of arbuscular mycorrhizal fungi in field cropped sesame (Sesamum indicum L.)[J]. Symbiosis, 2017, 73: 71–74. DOI: 10.1007/s13199-017-0482-7
[10] Selvakumar G, Shagol C, Kang Y, et al. Arbuscular mycorrhizal fungi spore propagation using single spore as starter inoculum and a plant host[J]. Journal of Applied Microbiology, 2018, 124: 1556–1565. DOI: 10.1111/jam.13714
[11] Kokkoris V, Hart M. In vitro propagation of arbuscular mycorrhizal fungi may drive fungal evolution[J]. Frontiers in Microbiology, 2019, 10: 2420-2420. DOI: 10.3389/fmicb.2019.02420
[12] IJdo M, Cranenbrouck S, Declerck S. Methods for largescale production of AM fungi: Past, present, and future[J]. Mycorrhiza, 2011, 21: 1-16. DOI: 10.1007/s00572-010-0337-z
[13] Vosátka M, Látr A, Gianinazzi S, et al. Development of arbuscular mycorrhizal biotechnology and industry: Current achievements and bottlenecks[J]. Symbiosis, 2012, 58: 29-37. DOI: 10.1007/s13199-012-0208-9
[14] Oliveira R S, Rocha I, Ma Y, et al. Seed coating with arbuscular mycorrhizal fungi as an ecotechnological approach for sustainable agricultural production of common wheat (Triticum aestivum L.)[J]. Journal of Toxicology and Environmental Health, 2016, 79: 329-337. DOI: 10.1080/15287394.2016.1153448
[15] Lopez-Raez J A, Charnikhova T, Fernandez I, et al. Arbuscular mycorrhizal symbiosis decreases strigolactone production in tomato[J]. >Journal of Plant Physiology, 2011, 168(3): 294-297. DOI: 10.1016/j.jplph.2010.08.011
[16] Liao D H, Wang S S, Cui M M, et al. Phytohormones regulate the development of arbuscular mycorrhizal symbiosis[J]. International Journal of Molecular Sciences, 2018, 19: 3146. DOI: 10.3390/ijms19103146
[17] Bruijn F J D. The model legume Medicago truncatula[M]. John Wiley & Sons, 2019. 485–500.
[18] 刘润进, 陈应龙. 菌根学[M]. 北京: 科学出版社, 2007. Liu R J, Chen Y L. Mycorrhizology[M]. Beijing: Science Press, 2007.
[19] Ali H, Khan E, Sajad M A. Phytoremediation of heavy metals—Concepts and applications[J]. Chemosphere, 2013, 91(7): 869-881. DOI: 10.1016/j.chemosphere.2013.01.075
[20] Sarwar N, Imran M, Shaheen M R, et al. Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives[J]. Chemosphere, 2017, 171: 710-721. DOI: 10.1016/j.chemosphere.2016.12.116
[21] Wang G, Wang L, Ma F, et al. Integration of earthworms and arbuscular mycorrhizal fungi into phytoremediation of cadmium-contaminated soil by Solanum nigrum L[J]. Journal of Hazardous Materials, 2020, 389.
[22] 周利承, 曹梦珂, 郑晨露, 等. 接种丛枝菌根真菌对紫花苜蓿修复石油污染土壤的潜在作用[J]. 应用与环境生物学报, 2020, 26(5): 1129-1137. Zhou L C, Cao M K, Zheng C L, et al. The potential effect of Medicago sativa inoculated with arbuscular mycorrhizal fungi on remedying petroleum-contaminated soil[J]. Chinese Journal of Applied & Environmental Biology, 2020, 26(5): 1129-1137.
[23] 刘润进, 唐明, 陈应龙. 菌根真菌与植物抗逆性研究进展[J]. 菌物研究, 2017, 15(1): 70-88. Liu R J, Tang M, Chen Y L. Recent advances in the study of mycorrhizal fungi and stress resistance of plants[J]. Journal of Fungal Research, 2017, 15(1): 70-88.
[24] Li S P, Bi Y L, Kong W P, et al. Effects of arbuscular mycorrhizal fungi on ecological restoration in coal mining areas[J]. Russian Journal of Ecology, 2015, 46(5): 431-437. DOI: 10.1134/S1067413615050173
[25] Chen M, Arato M, Borghi L, et al. Beneficial services of arbuscular mycorrhizal fungi – from ecology to application[J]. Frontiers in Plant Science, 2018, 9.
[26] Yan Y J, Zhao B Q, Xu W N, et al. The future prospects of arbuscular mycorrhizal fungi in slope ecological restoration[J]. Polish Journal Environmental Studies, 2020, 29(3): 2031-2040. DOI: 10.15244/pjoes/111509
[27] 林先贵, 胡君利, 戴珏, 等. 丛枝菌根真菌群落结构与多样性研究方法概述及实例比较[J]. 应用与环境生物学报, 2017, 23(2): 0343-0350. Lin X G, Hu J L, D J, et al. Overview and comparison of research methods for determining the community structure and diversity of arbuscular mycorrhizal fungi[J]. Chinese Journal of Applied & Environmental Biology, 2017, 23(2): 343-350.
[28] Yao Q Z, Yan W, Wei J. Establishment of a quality test for arbuscular mycorrhizal inoculumn[J]. International journal of agriculture and biology, 2018, 20(4): 926-932.
-
期刊类型引用(5)
1. 黄欢,樊娅萍,宋柏权,王倡宪. 连作土壤高温处理与摩西球囊霉对黄瓜幼苗生长及养分吸收的影响. 中国土壤与肥料. 2025(02): 191-201 . 百度学术
2. 李雯婧,刘煜杰,张义飞,林力涛,王平. 微生物技术在农林草业生态保护与生态修复中的应用——以菌根真菌技术为例. 环境工程技术学报. 2024(06): 1905-1915 . 百度学术
3. 张嘉慧,邢佳佳,彭丽媛,邬奇峰,陈俊辉,徐秋芳,秦华. 丛枝菌根真菌提高感染青枯菌番茄根际土壤细菌群落多样性和稳定性及有益菌属相对丰度. 植物营养与肥料学报. 2023(01): 120-131 . 本站查看
4. 苗志加,孟祥源,李书缘,马超,李晴,安贺銮,赵鑫,赵志瑞. 丛枝菌根真菌修复重金属污染土壤及增强植物耐性研究进展. 农业环境科学学报. 2023(02): 252-262 . 百度学术
5. 张海娟,芦光新,范月君,马坤,赵阳安. 4种宿主植物对根内球囊霉和摩西球囊霉的扩繁效果及菌根接种效应. 草原与草坪. 2023(03): 84-91 . 百度学术
其他类型引用(3)