Citation: | HUANG Yu-qing, CHEN Ting-ting, LI Yong, HUANG Zhi-gang, LI Jing-yi, DAI Liang, WANG Xu, GUO Hao, LIU Xiao-mei, KANG Zhen-wei. Effectiveness of grass planting in drainage ditches to intercept nitrogen and phosphorus pollution from farmland into rivers[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(11): 1993-2000. DOI: 10.11674/zwyf.2021462 |
The coupling effect of excessive fertilization with rainfall runoff causes a large amount of nitrogen and phosphorus loss from farmland into river channels, resulting in water pollution of rivers and lakes. This effect is very severe in the intensive agricultural sloping lands with shallow soil layer and poor water storage of tropics and subtropics. Under rainfall events, the fertilizer will be more easily lost from slopping land and transported to rivers and lakes through ditches, resulting in water pollution downstream. How to control the transport of this non-point source pollutants derived from farmland erosion to rivers and lakes has attracted more and more attention. Therefore, a plant interception system was constructed in the downstream ditches of watershed, and the effectiveness of this system was evaluated in term of reduction of nitrogen and phosphorus pollutants passed through this plant interception system. It is expected that this study can provide a theoretical basis for the control of water erosion-induced agricultural non-point source pollutants in the watershed.
In this study, a 500 meters long ditch in the downstream was selected in Nala small watershed, located in the water source area of Kelan Reservoir, Guangxi. This ditch collects the water of the upper watershed and directly transport to the reservoir. The dominant plants, Cynodon dactylon (L.) Pers and Pennisetum purpureum, and the introduced plant Vetiveria zizanioides (L.) Nash, transplanting from a Nanning Market, Guangxi, were planted spacing out in the ditch. Water samples were collected from inlet and outlet of ditch, respectively, for testing at 13 rainfall events, and the benefits of planted grasses in controlling non-point source pollution ware investigated.
Compared with the upstream inlet of watershed, the concentration of dissolved total nitrogen (TDN) in the downstream outlet of the vegetated ditches decreased from 17.55 mg/L to 12.43 mg/L, and NH4+-N decreased from 1.06 mg/L to 0.73 mg/L. NO3−-N concentration decreased from 15.10 mg/L to 10.92 mg/L, and dissolved total phosphorus (TDP) decreased from 0.031 mg/L to 0.021 mg/L. The average removal rates of TDN, NH4+-N, NO3−-N and TDP from watershed input ditches under rainfall events by plants were 31.90%, 27.92%, 29.80% and 31.02%, respectively.
The results showed that in the intensive multi-runoff agricultural watershed of tropical and subtropical regions, grass planting in ditches linking upstream slopes with downstream rivers or lakes can effectively intercept and remove nitrogen and phosphorus runoff. This measure is a simple, feasible and effective approach for preventing and controlling agricultural non-point source pollution in small watershed, and is worthy of popularization and application.
[1] |
王丹. 三峡库区氮、磷面源污染负荷模拟及水质评价[D]. 重庆: 西南大学博士学位论文, 2016
Wang D. The load simulation of nitrogen and phosphorus non-point source pollution and water quality assessment in the Three Gorges Reservoir[D]. Chongqing: PhD Dissertation of Southwest University, 2016.
|
[2] |
阿迪力·吐拉尔别克, 李森, 程艳. 流域非点源污染关键影响因素识别分析[J]. 新疆环境保护, 2019, 41(4): 6–11. Adili·Tulaerbiek, Li S, Cheng Y. Identification and analysis of key influence factors of nonpoint source pollution in river basins[J]. Environmental Protection of Xinjiang, 2019, 41(4): 6–11.
Adili·Tulaerbiek, Li S, Cheng Y. Identification and analysis of key influence factors of nonpoint source pollution in river basins[J]. Environmental Protection of Xinjiang, 2019, 41(4): 6-11.
|
[3] |
孙铁珩, 宋雪英. 中国农业环境问题与对策[J]. 农业现代化研究, 2008, 29(6): 646–648. Sun T H, Song X Y. Problems on Chinese agricultural environment and countermeasures[J]. Research of Agricultural Modernization, 2008, 29(6): 646–648. DOI: 10.3969/j.issn.1000-0275.2008.06.002
Sun T H, Song X Y. Problems on Chinese agricultural environment and countermeasures[J]. Research of Agricultural Modernization, 2008, 29 (6): 646-648. DOI: 10.3969/j.issn.1000-0275.2008.06.002
|
[4] |
Jiang C L, Fan X Q, Cui G B, et al. Removal of agricultural non-point source pollutants by ditch wetlands: Implications for lake eutrophication control[J]. Hydrobiologia, 2007, 581(1): 319–327. DOI: 10.1007/s10750-006-0512-6
|
[5] |
陆宏鑫, 吕伟娅, 严成银. 生态沟渠植物对农田排水中氮磷的截留和去除效应[J]. 江苏农业学报, 2013, 29(4): 791–795. Lu H X, Lü W Y, Yan C Y. Interception and removal of nitrogen and phosphorus by ecological ditch plant in agricultural drainage ditch[J]. Jiangsu Journal of Agricultural Science, 2013, 29(4): 791–795. DOI: 10.3969/j.issn.1000-4440.2013.04.017
Lu H X, Lv W Y, Yan C Y. Interception and removal of nitrogen and phosphorus by ecological ditch plant in agricultural drainage ditch[J]. Jiangsu Journal of Agricultural Science, 2013, 29(4): 791-795. DOI: 10.3969/j.issn.1000-4440.2013.04.017
|
[6] |
韩例娜, 李裕元, 石辉, 等. 水生植物对农田排水沟渠氮磷迁移生态阻控效果比较研究[J]. 农业现代化研究, 2012, 33(1): 117–120. Han L N, Li Y Y, Shi H, et al. Study on comparison of different aquatic plant on nitrogen and phosphorus ecological control measures in drainage ditch of farmland in Southern China[J]. Research of Agricultural Modernization, 2012, 33(1): 117–120. DOI: 10.3969/j.issn.1000-0275.2012.01.026
Han L N, Li Y Y, Shi H, et al. Study on comparison of different aquatic plant on nitrogen and phosphorus ecological control measures in drainage ditch of farmland in Southern China[J]. Research of Agricultural Modernization, 2012, 33(1): 117-120. DOI: 10.3969/j.issn.1000-0275.2012.01.026
|
[7] |
Fu D F, Gong W J, Xu Y, et al. Nutrient mitigation capacity of agricultural drainage ditches in Tai lake basin[J]. Ecological Engineering, 2014, 71: 101–107. DOI: 10.1016/j.ecoleng.2014.07.043
|
[8] |
于淼, 马国胜, 赵昌平, 等. 氮磷生态拦截集成技术治理湖泊岸区农业面源污染分析研究[J]. 环境科学与管理, 2015, 40(1): 72–74. Yu M, Ma G S, Zhao C P, et al. Analysis on controlling rural non-point pollution in lake shore area by eco-retain of nitrogen and phosphorus integrated technology[J]. Enviromental Science and Management, 2015, 40(1): 72–74. DOI: 10.3969/j.issn.1673-1212.2015.01.019
Yu M, Ma G S, Zhao C P, et al. Analysis on controlling rural non-point pollution in lake shore areaby eco-retain of nitrogen and phosphorus integrated technology[J]. Enviromental Science and Management, 2015, 40(1): 72-74. DOI: 10.3969/j.issn.1673-1212.2015.01.019
|
[9] |
张树楠, 肖润林, 刘锋, 吴金水. 生态沟渠对氮、磷污染物的拦截效应[J]. 环境科学, 2015, 36(12): 4516–4522. Zhang S N, Xiao R L, Liu F, Wu J S. Interception effect of vegetated drainage ditch on nitrogen and phosphorus from drainage ditches[J]. Enviromental Science, 2015, 36(12): 4516–4522.
Zhang S N, Xiao R L, Liu F, Wu J S. Interception effect of vegetated drainage ditch on nitrogen and phosphorusfrom drainage ditches[J]. Enviromental Science, 2015, 36(12): 4516-4522.
|
[10] |
Wang J L, Chen G F, Fu Z S, et al. Application performance and nutrient stoichiometric variation of ecological ditch systems in treating non-point source pollutants from paddy fields[J]. Agriculture, Ecosystems and Environment, 2020, 299: 106989. DOI: 10.1016/j.agee.2020.106989
|
[11] |
Herzon I, Helenius J. Agricultural drainage ditches, their biological importance and functioning[J]. Biological Conservation, 2008, 141(5): 1171–1183. DOI: 10.1016/j.biocon.2008.03.005
|
[12] |
Gill S L, Spurlock F C, Goh K S, et al. Vegetated ditches as a management practice in irrigated alfalfa[J]. Environmental Monitoring and Assessment, 2008, 144(1–3): 261–267. DOI: 10.1007/s10661-007-9988-4
|
[13] |
李炳杨. 广西甘蔗种植现状、问题及对策[J]. 热带农业科学, 2018, 38(4): 119–127. Li B Y. The present situation, problems and countermeasures of sugarcane cultivation in Guangxi[J]. Chinese Journal of Tropical Agriculture, 2018, 38(4): 119–127.
Li B Y. The present situation, problems and countermeasures of sugarcane cultivation in Guangxi[J]. Chinese Journal of Tropical Agriculture, 2018, 38(4): 119-127.
|
[14] |
Li Y, Mo Y Q, Are K S, et al. Sugarcane planting patterns control ephemeral gully erosion and associated nutrient losses: Evidence from hillslope observation[J]. Agriculture, Ecosystems and Environment, 2021, 309: 107289.
|
[15] |
Li Y, Are K S, Qin Z H, et al. Farmland size increase significantly accelerates road surface rill erosion and nutrient losses in southern subtropics of China[J]. Soil & Tillage Research, 2020, 204: 104689.
|
[16] |
Li Y, Tang C, Huang Z G, et al. Increase in farm size significantly accelerated stream channel erosion and associated nutrient losses from an intensive agricultural watershed[J]. Agriculture, Ecosystems and Environment, 2020, 295: 106900.
|
[17] |
Li Y, Are K S, Huang Z G, et al. Particulate N and P exports from sugarcane growing watershed are more influenced by surface runoff than fertilization[J]. Agriculture, Ecosystems and Environment, 2020, 302: 107087.
|
[18] |
Li Y, Abegunrin T P, Guo H, et al. Variation of dissolved nutrient exports by surface runoff from sugarcane watershed is controlled by fertilizer application and ground cover[J]. Agriculture, Ecosystems and Environment, 2020, (303): 107121.
|
[19] |
李会彬, 赵玉靖, 王丽宏, 等. 磷对华北地区狗牙根营养体建坪效果的影响[J]. 河南农业科学, 2013, 42(8): 102–104, 111. Li H B, Zhao Y J, Wang L H, et al. Effects of phosphorus on vegetative establishment of Bermudagrass Turf in North China[J]. Journal of Henan Agricultural Sciences, 2013, 42(8): 102–104, 111. DOI: 10.3969/j.issn.1004-3268.2013.08.025
Li H B, Zhao Y J, Wang L H, et al. Effects of phosphorus on vegetative establishment of bermudagrass turf in North China[J]. Journal of Henan Agricultural Sciences, 2013, 42(8): 102-104, 111. DOI: 10.3969/j.issn.1004-3268.2013.08.025
|
[20] |
马博英. 香根草逆境生理生态适应研究进展[J]. 生物学杂志, 2009, 26(1): 65–68. Ma B Y. Advances in stress physiological-ecological adaptation of vetiver[J]. Journal of Biology, 2009, 26(1): 65–68.
Ma B Y. Advances in stress physiological-ecological adaptation of vetiver[J]. Journal of Biology, 2009, 26(1): 65-68
|
[21] |
Oshunsanya S O, Li Y, Yu H. Vetiver grass hedgerows significantly reduce nitrogen and phosphorus losses from fertilized sloping lands[J]. Science of the Total Environment, 2019, 661: 86–94. DOI: 10.1016/j.scitotenv.2019.01.129
|
[22] |
颜明娟, 方志坚, 翁伯琦, 等. 牧草轮作对奶牛场污水氮、磷的净化效果研究[J]. 生态环境学报, 2011, 20(10): 1540–1546. Yan M J, Fang Z J, Weng B Q, et al. Effect of herbage rotation on nitrogen and phosphorus removal efficiency in the wetland treating dairy farm wastewater[J]. Ecology and Environmental Sciences, 2011, 20(10): 1540–1546. DOI: 10.3969/j.issn.1674-5906.2011.10.026
Yan M J, Fang Z J, Weng B Q, et al. Effect of herbage rotation on nitrogen and phosphorus removal efficiency in the wetland treating dairy farm wastewater[J]. Ecology and Environmental Sciences, 2011, 20(10): 1540-1546. DOI: 10.3969/j.issn.1674-5906.2011.10.026
|
[23] |
田昌, 陈敏, 周旋, 等. 生态沟渠对小流域农田排水中氮磷的拦截效果研究[J]. 中国土壤与肥料, 2020, (4): 186–191. Tian C, Chen M, Zhou X, et al. Effects of ecological ditch on interception of nitrogen and phosphorus in farmland drainage in small watershed[J]. Soil and Fertilizer Sciences in China, 2020, (4): 186–191. DOI: 10.11838/sfsc.1673-6257.19317
Tian C, Chen M, Zhou X, et al. Effects of ecological ditch on interception of nitrogen and phosphorus in farmland drainage in small watershed[J]. Soil and Fertilizer Sciences in China, 2020, (4): 186-191. DOI: 10.11838/sfsc.1673-6257.19317
|
[24] |
田潇, 周运超, 蔡先立, 等. 坡耕地不同物种植物篱对面源污染物的拦截效率及影响因素[J]. 农业环境科学学报, 2015, 34(3): 494–500. Tian X, Zhou Y C, Cai X L, et al. Effects of different plant species hedgerows on interception of non-point source pollutants in sloping cultivated land[J]. Journal of Agro-Environment Science, 2015, 34(3): 494–500. DOI: 10.11654/jaes.2015.03.011
Tian X, Zhou Y C, Cai X L, et al. Effects of different plant species hedgerows on interception of non-point source pollutants in sloping cultivated land[J]. Journal of Agro-Environment Science, 2015, 34(3): 494-500. DOI: 10.11654/jaes.2015.03.011
|
[25] |
张丽娟, 巨晓棠, 吉艳芝, 等. 夏季休闲与种植对华北潮土剖面残留硝态氮分布的影响[J]. 植物营养与肥料学报, 2010, 16(2): 312–320. Zhang L J, Ju X T, Ji Y Z, et al. Effects of fallow and plant growth in summer on the movement of residual nitrate in aquic soil on North China Plain[J]. Journal of Plant Nutrition and Fertilizers, 2010, 16(2): 312–320. DOI: 10.11674/zwyf.2010.0208
Zhang L J, Ju X T, Ji Y Z, et al. Effects of fallow and plant growth in summer on the movement of residual nitrate in aquic soil on North China Plain[J]. Journal of Plant Nutrition and Fertilizers, 2010, 16(2): 312-320. DOI: 10.11674/zwyf.2010.0208
|
[26] |
Smith D R. Assessment of in-stream phosphorus dynamics in agricultural drainage ditches[J]. Science of the Total Environment, 2009, 407(12): 3883–3889. DOI: 10.1016/j.scitotenv.2009.02.038
|
[27] |
金树权, 周金波, 朱晓丽, 等. 10种水生植物的氮磷吸收和水质净化能力比较研究[J]. 农业环境科学学报, 2010, 29(8): 1571–1575. Jin S Q, Zhou J B, Zhu X L, et al. Comparison of nitrogen and phosphorus uptake and water purification ability of ten aquatic macrophytes[J]. Journal of Agro-Environment Science, 2010, 29(8): 1571–1575.
Jin S Q, Zhou J B, Zhu X L, et al. Comparison of nitrogen and phosphorus uptake and water purification ability of ten aquatic macrophytes. [J]. Journal of Agro-Environment Science, 2010, 29(8): 1571-1575.
|
[28] |
Kumwimba M N, Meng F G, Iseyemi O, et al. Removal of non-point source pollutants from domestic sewage and agricultural runoff by vegetated drainage ditches (VDDs): Design, mechanism, management strategies, and future directions[J]. Science of the Total Environment, 2018, 639: 742–759. DOI: 10.1016/j.scitotenv.2018.05.184
|
[29] |
Xie Y H, Wen M Z, Yu D, et al. Growth and resource allocation of water hyacinth as affected by gradually increasing nutrient concentrations[J]. Aquatic Botany, 2004, 79(3): 257–266. DOI: 10.1016/j.aquabot.2004.04.002
|
[30] |
Kumwimba M N, Dzakpasu M, Zhu B, Muyembe D K. Uptake and release of sequestered nutrient in subtropical monsoon ecological ditch plant species[J]. Water, Air, & Soil Pollution, 2016, 227(11): 396–427.
|
[31] |
徐德福, 徐建民, 王华胜, 等. 湿地植物对富营养化水体中氮、磷吸收能力研究[J]. 植物营养与肥料学报, 2005, 11(5): 597–601. Xu D F, Xu J M, Wang H S, et al. Absorbability of wetland plants on N and P from eutrophic water[J]. Journal of Plant Nutrition and Fertilizers, 2005, 11(5): 597–601. DOI: 10.3321/j.issn:1008-505X.2005.05.005
Xu D F, Xu J M, Wang H S, et al. Absorbability of wetland plants on N and P from eutrophic water. [J]. Journal of Plant Nutrition and Fertilizers, 2005, 11(5): 597-601. DOI: 10.3321/j.issn:1008-505X.2005.05.005
|
[32] |
孙宇. 洋河水库水环境的水生植物修复研究[D]. 武汉: 华中农业大学硕士学位论文, 2006
Sun Y. Study on aquatic phytoremediation for improving water quality of Yanghe Reservoir[D]. Wuhan: MS Thesis of Huazhong Agricultural University, 2006.
|
[33] |
Lai W L, Wang S Q, Peng C L, Chen Z H. Root features related to plant growth and nutrient removal of 35 wetland plants[J]. Water Research, 2011, 45(13): 3941–3950. DOI: 10.1016/j.watres.2011.05.002
|
[34] |
付菊英, 高懋芳, 王晓燕. 生态工程技术在农业非点源污染控制中的应用[J]. 环境科学与技术, 2014, 37(5): 169–175. Fu J Y, Gao M F, Wang X Y. Application of ecological engineering technology in agricultural nonpoint source pollution control[J]. Environmental Science & Technology, 2014, 37(5): 169–175.
Fu J Y, Gao M F, Wang X Y. Application of ecological engineering technology in agricultural nonpoint source pollution control[J]. Environmental Science & Technology, 2014, 37(5): 169-175.
|
[35] |
张树楠, 肖润林, 余红兵, 刘锋. 水生植物刈割对生态沟渠中氮、磷拦截的影响[J]. 中国生态农业学报, 2012, 20(8): 1066–1071. Zhang S N, Xiao R L, Yu H B, Liu F. Effects of cutting aquatic plants on nitrogen and phosphorus interception in ecological ditches[J]. Chinese Journal of Eco-Agriculture, 2012, 20(8): 1066–1071. DOI: 10.3724/SP.J.1011.2012.01066
Zhang S N, Xiao R L, Yu H B, Liu F. Effects of cutting aquatic plants on nitrogen and phosphorus interception in ecological ditches [J]. Chinese Journal of Eco-Agriculture, 2012, 20(8): 1066-1071. DOI: 10.3724/SP.J.1011.2012.01066
|
[36] |
Gerke S, Baker L, Xu Y. Nitrogen transformations in a wet land receiving lagoon effluent: Sequential model and implications for water reuse[J]. Water Research, 2001, 35(16): 3857–3866. DOI: 10.1016/S0043-1354(01)00121-X
|
[37] |
Taylor J, Moore M T, Scott J T. Contrasting nutrient mitigation and denitrification potential of agricultural drainage environments with different emergent aquatic macrophytes[J]. Journal of Environmental Quality, 2015, 44(4): 1304–1314. DOI: 10.2134/jeq2014.10.0448
|
[38] |
张鸿, 陈光荣, 吴振斌, 邓家齐. 两种人工湿地中氮、磷净化率与细菌分布关系的初步研究[J]. 华中师范大学学报(自然科学版), 1999, (4): 575–578. Zhang H, Chen G R, Wu Z B, Deng J Q. The study on the relationship between N, P removing rates and the distribution of bacteria in two artifical wetlands[J]. Journal of Central China Normal University (Natural Sciences Edition), 1999, (4): 575–578.
Zhang H, Chen G R, Wu Z B, Deng J Q. The study on the relationship between N, P removing rates and the distribution of bacteria in two artifical wetlands[J]. Journal of Central China Normal University(Natural Sciences), 1999, (4): 575-578.
|
[39] |
艾超, 孙静文, 王秀斌, 等. 植物根际沉积与土壤微生物关系研究进展[J]. 植物营养与肥料学报, 2015, 21(5): 1343–1351. Ai C, Sun J W, Wang X B, et al. Advances in the study of the relationship between plant trhizodeposition and soil microorganism[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(5): 1343–1351. DOI: 10.11674/zwyf.2015.0530
Ai C, Sun J W, Wang X B, et al. Advances in the study of the relationship between plan trhizodeposition and soil microorganism[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(5): 1343-1351. DOI: 10.11674/zwyf.2015.0530
|
[40] |
邵秋雨, 董醇波, 韩燕峰, 梁宗琦. 植物根际微生物组的研究进展[J]. 植物营养与肥料学报, 2021, 27(1): 144–152. Shao Q Y, Dong C B, Han Y F, Liang Z Q. Research progress in the rhizosphere microbiome of plants[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(1): 144–152.
Shao Q Y, Dong C B, Han Y F, Liang Z Q. Research progress in the rhizosphere microbiome of plants. [J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(1): 144-152.
|
1. |
杨翠红,王旭,郭豪,李勇,陈婷婷,黄智刚,周小淇,吴宗猛,杨江怡. 流域泥沙入河负荷辨识方法. 中国水土保持科学(中英文). 2025(01): 193-199 .
![]() | |
2. |
汪栩志,张克强,沈修卿,申锋,郭毅侠,沈仕洲. 基于SWAT模型的洱海流域面源污染最佳管理措施研究. 中国生态农业学报(中英文). 2025(02): 240-251 .
![]() | |
3. |
何凡,许超,林宇迪,周婷,闫晨煜,张荣炳,贾洪柏. 氮磷拦截工程在农业面源污染中的设计与应用. 浙江农业科学. 2024(07): 1714-1719 .
![]() | |
4. |
李森,胡家帅,梁洁,张可,刘晓玲,李朝均,罗鸿兵,卿静,林源茂,张笑笑,安晓婵,张小洪. 林下生态系统拦截猕猴桃种植区氮磷径流污染效果研究. 农业与技术. 2023(12): 76-79 .
![]() | |
5. |
赵明涛,谭鹏,何彤慧,何玉实,王超群. 银川平原水葫芦·大薸引种栽培及水体氮磷去除研究. 安徽农业科学. 2023(13): 70-74+88 .
![]() | |
6. |
闫凯旋,马萌萌,李卫国,洪立洲. 江苏沿海地区不同施肥模式对梨园氮磷流失的影响. 浙江农业科学. 2023(09): 2181-2187 .
![]() | |
7. |
周小淇,陈婷婷,李勇,杨翠红,吴宗猛,郭豪,杨江怡,王旭,黄智刚. 不同植被盖度香根草减少沟渠侵蚀和C, N, P流失的有效性. 水土保持通报. 2023(05): 62-68 .
![]() | |
8. |
黎静宜,李勇,黄智刚,郭豪,陈婷婷,黄俣晴,戴谅,刘小梅,王旭. 甘蔗集约化种植区施肥显著增加入河硝态氮污染:基于氮氧同位素的流域示踪. 植物营养与肥料学报. 2022(01): 104-113 .
![]() | |
9. |
房凯,李磊,周国胜,王彦东,武鹏,王中文,刘亮军,丁继辉. 不同排水模式下农田污染物消纳规律研究. 中国农村水利水电. 2022(11): 141-147 .
![]() | |
10. |
程浩淼,季书,葛恒军,朱腾义,冯绍元. 生态沟渠对农田面源污染的消减机理及其影响因子分析. 农业工程学报. 2022(21): 42-52 .
![]() |