• ISSN 1008-505X
  • CN 11-3996/S
MA Xin, CAI Feng-le, MU Xin-yuan, LI Hong-ping, SHAO Rui-xin, LI Shu-yan, XU Jia-min, WANG Shuai-li, LU Liang-tao, ZHAO Xia, ZHAO Ya-li, LIU Tian-xue. Effects of nitrogen application rate on photosynthetic physiology of maize leaves and yield under high temperature stress at ear stage[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(10): 1852-1866. DOI: 10.11674/zwyf.2022035
Citation: MA Xin, CAI Feng-le, MU Xin-yuan, LI Hong-ping, SHAO Rui-xin, LI Shu-yan, XU Jia-min, WANG Shuai-li, LU Liang-tao, ZHAO Xia, ZHAO Ya-li, LIU Tian-xue. Effects of nitrogen application rate on photosynthetic physiology of maize leaves and yield under high temperature stress at ear stage[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(10): 1852-1866. DOI: 10.11674/zwyf.2022035

Effects of nitrogen application rate on photosynthetic physiology of maize leaves and yield under high temperature stress at ear stage

More Information
  • Received Date: January 17, 2022
  • Accepted Date: May 16, 2022
  • Available Online: September 04, 2022
  • [Objectives] 

    We investigated the effects of different N application rates on photosynthetic physiology and yield of maize under high temperature stress at ear stage.

    [Methods] 

    Artificial high temperature stress experiment was carried out in 2020–2021. Three N application rates were low nitrogen (N 90 kg/hm2, N90), medium N (N 180 kg/hm2, N180) and high N (N 270 kg/hm2, N270), while the maize cultivars were heat resistant cultivar Zhengdan 958 (ZD 958) and heat susceptive cultivar Xianyu 335 (XY 335). High temperature (HT) treatment lasted for 12 days (2020) and 9 days (2021) from the 11th leaf development stage to tasseling stage, and the naturally growing plants were used as the control (CK). The mean daily maximum temperatures of high temperature and control during the treatment period were 41.9℃, 35.9℃ (2020) and 40.8℃, 37.7℃ (2021), and the mean temperature difference between day and night were 19.3℃, 13.0℃ (2020) and 18.1℃, 14.8℃ (2021). The photosynthetic pigment content, photosynthetic parameters, chlorophyll fluorescence parameters, photosynthetic enzyme activity, grain yield and yield components in ear leaves of the two varieties were investigated, and the interaction among temperature, cultivars and N application rate was analyzed.

    [Results] 

    1) From the 11th leaf development stage to tasseling stage, high temperature stress increased the activities of phosphoenolpyruvate carboxylase (PEPCase) and ribulose-1,5-diphosphate carboxylase/oxygenase (Rubisco), and decreased the content of photosynthetic pigment, net photosynthetic rate (Pn), chlorophyll fluorescence parameters of ear leaves, and the maize yield of two cultivars. The effect of high temperature on heat susceptive cultivar XY 335 was greater than heat resistant cultivar ZD 958. 2) Under the control condition, photosynthetic pigment content, Pn, maximum photochemical efficiency (Fv/Fm), PEPCase activity, Rubisco activity, grain yield and yield components of the two cultivars increased with the increase of N application rate. Under the high temperature condition, they showed a trend of rising first and then falling with the increase of N application rate, and N 180 treatment was the highest. 3) Cultivars temperature, N application rates and the interaction between temperature and N application rates had significant effects on photosynthetic performance indexes and yield (P<0.01). Compared with the CK, under the high temperature condition, all indexes decreased the most in N270 treatment. This indicated that high nitrogen aggravated the photosynthetic performance of maize ear leaves and intensified the damage of high temperature, which was more obvious in XY 335. 4) Correlation analysis showed that the yield of the two cultivars was extremely significantly and positively correlated with ear diameter, kernels per ear, photosynthetic pigment content, Pn, Fv/Fm, actual photochemical efficiency (YⅡ), apparent electron transfer efficiency (ETR) and photochemical quenching coefficient (qP) (P<0.01). Ear diameter and kernels per ear were significantly correlated with photosynthetic physiological indexes (P<0.01). Therefore, the results showed that the decrease of photosynthetic performance led to decrease in grain number per spike, which led to decrease in yield.

    [Conclusions] 

    High temperature stress from the 11th leaf development stage to tasseling stage can significantly inhibit photosynthetic physiology and decrease yield of maize. Medium N application (180 kg/hm2) can alleviate heat stress, improve photosynthetic physiological activity and increase yield, while high nitrogen application (270 kg/hm2) increase the yield loss caused by high temperature.

  • [1]
    任寒, 刘鹏, 董树亭, 等. 高温胁迫影响玉米生长发育的生理机制研究进展[J]. 玉米科学, 2019, 27(5): 109–115. Ren H, Liu P, Dong S T, et al. Research advancements of effect of high temperature stress on growth and development of maize[J]. Journal of Maize Sciences, 2019, 27(5): 109–115.

    Ren H, Liu P, Dong S T, et al. Research advancements of effect of high temperature stress on growth and development of maize[J]. Journal of Maize Sciences, 2019, 27(5): 109-115.
    [2]
    和骅芸, 胡琦, 潘学标, 等. 气候变化背景下华北平原夏玉米花期高温热害特征及适宜播期分析[J]. 中国农业气象, 2020, 41(1): 1–15. He H Y, Hu Q, Pan X B, et al. Characteristics of heat damage during flowering period of summer maize and suitable sowing date in North China Plain under climate change[J]. Chinese Journal of Agrometeorology, 2020, 41(1): 1–15. DOI: 10.3969/j.issn.1000-6362.2020.01.001

    He H Y, Hu Q, Pan X B, et al. Characteristics of heat damage during flowering period of summer maize and suitable sowing date in North China Plain under climate change[J]. Chinese Journal of Agrometeorology, 2020, 41(1): 1-15. DOI: 10.3969/j.issn.1000-6362.2020.01.001
    [3]
    Zhou Y Q, Ren G Y. Change in extreme temperature event frequency over mainland China, 1961–2008[J]. Climate Research, 2011, 50(2–3): 125–139.
    [4]
    王丽君. 黄淮海平原夏玉米季干旱、高温的发生特征及对产量的影响[D]. 北京: 中国农业大学博士学位论文, 2018.

    Wang L J. Spatiol-temporal characteristics of drought, heat and its effect on yield for summer maize in Huang-Huai-Hai Plant, China[D]. Beijing: PhD Dissertation of China Agricultural University, 2018.
    [5]
    徐欣莹, 邵长秀, 孙志刚, 等. 高温胁迫对玉米关键生育期生理特性和产量的影响研究进展[J]. 玉米科学, 2021, 29(2): 81–88, 96. Xu X Y, Shao C X, Sun Z G, et al. Research progress on the effect of heat stress on physiological characteristics of maize at key growth stage and the yield[J]. Journal of Maize Sciences, 2021, 29(2): 81–88, 96.

    Xu X Y, Shao C X, Sun Z G, et al. Research progress on the effect of heat stress on physiological characteristics of maize at key growth stage and the yield[J]. Journal of Maize Sciences, 2021, 29(2): 81-88, 96.
    [6]
    付景, 孙宁宁, 刘天学, 等. 高温胁迫对玉米形态、叶片结构及其产量的影响[J]. 玉米科学, 2019, 27(1): 46–53. Fu J, Sun N N, Liu T X, et al. Effect of high temperature stress on morphology, leaf structure and grain yield of maize[J]. Journal of Maize Sciences, 2019, 27(1): 46–53.

    Fu J, Sun N N, Liu T X, et al. Effect of high temperature stress on morphology, leaf structure and grain yield of maize[J]. Journal of Maize Sciences, 2019, 27(1): 46-53.
    [7]
    张吉旺, 董树亭, 王空军, 等. 大田增温对夏玉米光合特性的影响[J]. 应用生态学报, 2008, 19(1): 81–86. Zhang J W, Dong S T, Wang K J, et al. Effects of increasing field temperature on photosynthetic characteristics of summer maize[J]. Chinese Journal of Applied Ecology, 2008, 19(1): 81–86.

    Zhang J W, Dong S T, Wang K J, et al. Effects of increasing field temperature on photosynthetic characteristics of summer maize[J]. Chinese Journal of Applied Ecology, 2008, 19(1): 81-86.
    [8]
    于康珂, 孙宁宁, 齐红志, 等. 不同成熟度玉米叶片光合生理对高温胁迫的响应特征及其基因型差异[J]. 河南农业科学, 2017, 46(5): 34–38. Yu K K, Sun N N, Qi H Z, et al. Photosynthetic physiological response character of different maturity maize leaves to heat stress and their genotype difference[J]. Journal of Henan Agricultural Sciences, 2017, 46(5): 34–38.

    Yu K K, Sun N N, Qi H Z, et al. Photosynthetic physiological response character of different maturity maize leaves to heat stress and their genotype difference[J]. Journal of Henan Agricultural Sciences, 2017, 46(5): 34-38.
    [9]
    付景, 孙宁宁, 刘天学, 等. 穗期高温对玉米子粒灌浆生理及产量的影响[J]. 作物杂志, 2019, (3): 118–125. Fu J, Sun N N, Liu T X, et al. The effects of high temperature at spike stage on grain-filling physiology and yield of maize[J]. Crops, 2019, (3): 118–125.

    Fu J, Sun N N, Liu T X, et al. The effects of high temperature at spike stage on grain-filling physiology and yield of maize[J]. Crops, 2019, (3): 118-125.
    [10]
    高英波, 张慧, 单晶, 等. 吐丝前高温胁迫对不同耐热型夏玉米产量及穗发育特征的影响[J]. 中国农业科学, 2020, 53(19): 3954–3963. Gao Y B, Zhang H, Shan J, et al. Effects of pre-silking high temperature stress on yield and ear development characteristics of different heat-resistant summer maize cultivars[J]. Scientia Agricultura Sinica, 2020, 53(19): 3954–3963. DOI: 10.3864/j.issn.0578-1752.2020.19.009

    Gao Y B, Zhang H, Shan J, et al. Effects of pre-silking high temperature stress on yield and ear development characteristics of different heat-resistant summer maize cultivars[J]. Scientia Agricultura Sinica, 2020, 53(19): 3954-3963. DOI: 10.3864/j.issn.0578-1752.2020.19.009
    [11]
    陶志强, 陈源泉, 隋鹏, 等. 华北春玉米高温胁迫影响机理及其技术应对探讨[J]. 中国农业大学学报, 2013, 18(4): 20–27. Tao Z Q, Chen Y Q, Sui P, et al. Effects of high temperature stress on spring maize and its technologic solutions in North China Plain[J]. Journal of China Agricultural University, 2013, 18(4): 20–27. DOI: 10.11841/j.issn.1007-4333.2013.04.04

    Tao Z Q, Chen Y Q, Sui P, et al. Effects of high temperature stress on spring maize and its technologic solutions in North China Plain[J]. Journal of China Agricultural University, 2013, 18(4): 20-27. DOI: 10.11841/j.issn.1007-4333.2013.04.04
    [12]
    Sadras V O, Vadez V, Purushothaman R, et al. Unscrambling confounded effects of sowing date trials to screen for crop adaptation to high temperature[J]. Field Crops Research, 2015, 177: 1–8. DOI: 10.1016/j.fcr.2015.02.024
    [13]
    Cakmak I. The role of potassium in alleviating detrimental effects of abiotic stresses in plants[J]. Journal of Plant Nutrition and Soil Science, 2005, 168(4): 521–530. DOI: 10.1002/jpln.200420485
    [14]
    谷岩, 胡文河, 徐百军, 等. 氮素营养水平对膜下滴灌玉米穗位叶光合及氮代谢酶活性的影响[J]. 生态学报, 2013, 33(23): 7399–7407. Gu Y, Hu W H, Xu B J, et al. Effects of nitrogen on photosynthetic characteristics and enzyme activity of nitrogen metabolism in maize under-mulch-drip irrigation[J]. Acta Ecologica Sinica, 2013, 33(23): 7399–7407. DOI: 10.5846/stxb201208231193

    Gu Y, Hu W H, Xu B J, et al. Effects of nitrogen on photosynthetic characteristics and enzyme activity of nitrogen metabolism in maize under-mulch-drip irrigation[J]. Acta Ecologica Sinica, 2013, 33(23): 7399-7407. DOI: 10.5846/stxb201208231193
    [15]
    孟战赢, 王育红, 王向阳, 等. 密度对夏玉米灌浆特性及产量的影响[J]. 河南农业科学, 2011, 40(12): 48–51. Meng Z Y, Wang Y H, Wang X Y, et al. The effects of increasing density on summer grouting characteristics and yield[J]. Journal of Henan Agricultural Sciences, 2011, 40(12): 48–51. DOI: 10.3969/j.issn.1004-3268.2011.12.012

    Meng Z Y, Wang Y H, Wang X Y, et al. The effects of increasing density on summer grouting characteristics and yield[J]. Journal of Henan Agricultural Sciences, 2011, 40(12): 48-51. DOI: 10.3969/j.issn.1004-3268.2011.12.012
    [16]
    刘洪展, 郑风荣, 赵世杰. 高温胁迫下氮素营养对小麦叶片原初光能转化特性的影响[J]. 安徽农业科学, 2005, 33(9): 1590–1591,1595. Liu H Z, Zheng F R, Zhao S J. Effect of nitrate nutrition on the conversion of light energy of wheat leaf under high-temperature stress[J]. Journal of Anhui Agricultural Sciences, 2005, 33(9): 1590–1591,1595. DOI: 10.3969/j.issn.0517-6611.2005.09.016

    Liu H Z, Rong F R, Zhao S J. Effect of nitrate nutrition on the conversion of light energy of wheat leaf under high-temperature stress[J]. Journal of Anhui Agricultural Sciences, 2005, 33(9): 1590-1591, 1595. DOI: 10.3969/j.issn.0517-6611.2005.09.016
    [17]
    米美多, 慕宇, 代晓华, 等. 花后高温胁迫下不同施氮量对春小麦抗氧化特性的影响[J]. 江苏农业科学, 2017, 45(1): 52–56. Mi M D, Mu Y, Dai X H, et al. Effects of nitrate nutrition on active oxygen metabolism in the leaves of wheat seedlings under heat-stress condition[J]. Jiangsu Agricultural Sciences, 2017, 45(1): 52–56.

    Mi M D, Mu Y, Dai X H, et al. Effects of nitrate nutrition on active oxygen metabolism in the leaves of wheat seedlings under heat-stress condition[J]. Jiangsu Agricultural Sciences, 2017, 45(1): 52-56.
    [18]
    Wang J, Fu P X, Lu W P, et al. Application of moderate nitrogen levels alleviates yield loss and grain quality deterioration caused by post-silking heat stress in fresh waxy maize[J]. The Crop Journal, 2020, 8(6): 1081–1092. DOI: 10.1016/j.cj.2019.11.007
    [19]
    于康珂, 孙宁宁, 詹静, 等. 高温胁迫对不同热敏型玉米品种雌雄穗生理特性的影响[J]. 玉米科学, 2017, 25(4): 84–91. Yu K K, Sun N N, Zhan J, et al. Effect of high temperature stress on physiological characteristics of tassel and ear in different maize varieties[J]. Journal of Maize Sciences, 2017, 25(4): 84–91.

    Yu K K, Sun N N, Zhan J, et al. Effect of high temperature stress on physiological characteristics of tassel and ear in different maize varieties[J]. Journal of Maize Sciences, 2017, 25(4): 84-91.
    [20]
    李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000.

    Li H S. Principles and techniques of plant physiological biochemical experiment[M]. Beijing: Higher Education Press, 2000.
    [21]
    张忠学, 尚文彬, 齐智娟, 等. 不同水氮管理下玉米叶片衰老对氮转移效率的影响[J]. 农业机械学报, 2019, 50(12): 297–303, 267. Zhang Z X, Shang W B, Qi Z J, et al. Effects of different water and nitrogen managements on nitrogen remobilization efficiency during leaf senescence in maize[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(12): 297–303, 267. DOI: 10.6041/j.issn.1000-1298.2019.12.034

    Zhang Z X, Shang W B, Qi Z J, et al. Effects of different water and nitrogen managements on nitrogen remobilization efficiency during leaf senescence in maize[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(12): 297-303, 267. DOI: 10.6041/j.issn.1000-1298.2019.12.034
    [22]
    郭书奎, 赵可夫. NaCl胁迫抑制玉米幼苗光合作用的可能机理[J]. 植物生理学报, 2001, 27(6): 461–466. Guo S K, Zhao K F. The possible mechanisms of NaCl inhibit photosynthesis of maize seedlings[J]. Plant Physiology Journal, 2001, 27(6): 461–466. DOI: 10.3321/j.issn:1671-3877.2001.06.004

    Guo S K, Zhao K F. The possible mechanisms of NaCl inhibit photosynthesis of maize seedlings[J]. Plant Physiology Journal, 2001, 27(6): 461-466. DOI: 10.3321/j.issn:1671-3877.2001.06.004
    [23]
    陈翔, 鲍杨俊, 李庆, 等. 黄淮海夏玉米花期高温发生特点、危害机理与防控措施综述[J]. 安徽农业大学学报, 2020, 47(2): 304–308. Chen X, Bao Y J, Li Q, et al. Review on characteristics of high temperature and its damage, and prevention measures of summer maize in Huang-Huai-Hai area[J]. Journal of Anhui Agricultural University, 2020, 47(2): 304–308.

    Chen X, Bao Y J, Li Q, et al. Review on characteristics of high temperature and its damage, and prevention measures of summer maize in Huang-Huai-Hai area[J]. Journal of Anhui Agricultural University, 2020, 47(2): 304-308.
    [24]
    韩学涛. 喷施水杨酸和6-苄氨基腺嘌呤对夏玉米高温胁迫的缓解作用[D]. 泰安: 山东农业大学硕士学位论文, 2021.

    Han X T. Alleviating effect of spraying salicylic acid and 6-benzylamino adenine on high temperature stress of summer maize[D]. Tai’an, Shandong: MS Thesis of Shandong Agricultural University, 2021.
    [25]
    刘连涛, 李存东, 孙红春, 等. 氮素营养水平对棉花衰老的影响及其生理机制[J]. 中国农业科学, 2009, 42(5): 1575–1581. Liu L T, Li C D, Sun H C, et al. Effects of nitrogen on cotton senescence and the corresponding physiological mechanisms[J]. Scientia Agricultura Sinica, 2009, 42(5): 1575–1581. DOI: 10.3864/j.issn.0578-1752.2009.05.009

    Liu L T, Li C D, Sun H C, et al. Effects of nitrogen on cotton senescence and the corresponding physiological mechanisms[J]. Scientia Agricultura Sinica 2009, 42(5): 1575-1581. DOI: 10.3864/j.issn.0578-1752.2009.05.009
    [26]
    朱成刚, 李卫红, 马晓东, 等. 塔里木河下游干旱胁迫下的胡杨叶绿素荧光特性研究[J]. 中国沙漠, 2011, 31(4): 927–936. Zhu C G, Li W H, Ma X D, et al. Chlorophyll fluorescence characteristic of Populus euphratica under drought stress in the lower reaches of Tarim River[J]. Journal of Desert Research, 2011, 31(4): 927–936.

    Zhu C G, Li W H, Ma X D, et al. Chlorophyll fluorescence characteristic of Populus euphratica under drought stress in the lower reaches of Tarim River [J]. Journal of Desert Research, 2011, 31(4): 927-936.
    [27]
    冯波, 刘延忠, 孔令安, 等. 氮肥运筹对垄作小麦生育后期光合特性及产量的影响[J]. 麦类作物学报, 2008, 28(1): 107–112. Feng B, Liu Y Z, Kong L A, et al. Effects of nitrogen application strategy on photosynthetic characteristics and grain yield of wheat with bed planting[J]. Journal of Triticeae Crops, 2008, 28(1): 107–112. DOI: 10.7606/j.issn.1009-1041.2008.01.021

    Feng B, Liu Y Z, Kong L A, et al. Effects of nitrogen application strategy on photosynthetic characteristics and grain yield of wheat with bed planting [J]. Journal of Triticeae Crops, 2008, (1): 107-112. DOI: 10.7606/j.issn.1009-1041.2008.01.021
    [28]
    钟小莉, 马晓东, 吕豪豪, 等. 干旱胁迫下氮素对胡杨幼苗生长及光合的影响[J]. 生态学杂志, 2017, 36(10): 2777–2786. Zhong X L, Ma X D, Lü H H, et al. Effect of nitrogen on growth and photosynthesis of Populus euphratica seedlings under drought stress[J]. Chinese Journal of Ecology, 2017, 36(10): 2777–2786.

    Zhong X L, Ma X D, Lü H H, et al. Effect of nitrogen on growth and photosynthesis of Populus euphratica seedlings under drought stress[J]. Chinese Journal of Ecology, 2017, 36(10): 2777-2786.
    [29]
    Yan P, Chen Y Q, Dadouma A, et al. Effect of nitrogen regimes on narrowing the magnitude of maize yield penalty caused by high temperature stress in North China Plain[J]. Plant, Soil and Environment, 2017, 63(3): 131–138. DOI: 10.17221/6/2017-PSE
    [30]
    崔丽娜, 董树亭. 不同氮肥处理下高温胁迫对夏玉米产量及叶片超微构造的影响[J]. 玉米科学, 2020, 28(1): 92–97. Cui L N, Dong S T. Effects of heat stress on grain yield and leaf anatomical structure in summer maize in different nitrogen fertilizer application[J]. Journal of Maize Sciences, 2020, 28(1): 92–97.

    Cui L N, Dong S T. Effects of heat stress on grain yield and leaf anatomical structure in summer maize in different nitrogen fertilizer application[J]. Journal of Maize Sciences, 2020, 28(1): 92-97.
    [31]
    罗海波, 马苓, 段伟, 等. 高温胁迫对‘赤霞珠’葡萄光合作用的影响[J]. 中国农业科学, 2010, 43(13): 2744–2750. Luo H B, Ma L, Duan W, et al. Influence of heat stress on photosynthesis in Vitis vinifera L. cv. cabernet sauvignon[J]. Scientia Agricultura Sinica, 2010, 43(13): 2744–2750. DOI: 10.3864/j.issn.0578-1752.2010.13.014

    Luo H B, Ma L, Duan W, et al. Influence of heat stress on photosynthesis in Vitis vinifera L. cv. cabernet sauvignon[J]. Scientia Agricultura Sinica, 2010, 43(13): 2744-2750. DOI: 10.3864/j.issn.0578-1752.2010.13.014
    [32]
    赵龙飞, 李潮海, 刘天学, 等. 花期前后高温对不同基因型玉米光合特性及产量和品质的影响[J]. 中国农业科学, 2012, 45(23): 4947–4958. Zhao L F, Li C H, Liu T X, et al. Effect of high temperature during flowering on photosynthetic characteristics and grain yield and quality of different genotypes of maize (Zea mays L. )[J]. Scientia Agricultura Sinica, 2012, 45(23): 4947–4958. DOI: 10.3864/j.issn.0578-1752.2012.23.023

    Zhao L F, Li C H, Liu T X, et al. Effect of high temperature during flowering on photosynthetic characteristics and grain yield and quality of different genotypes of maize (Zea mays L. )[J]. Scientia Agricultura Sinica, 2012, 45(23): 4947-4958. DOI: 10.3864/j.issn.0578-1752.2012.23.023
    [33]
    Wu W M, Li J C, Chen H J, et al. Effects of nitrogen fertilization on chlorophyll fluorescence change in maize (Zea mays L. ) under waterlogging at seedling stage[J]. Journal of Food Agriculture & Environment, 2013, 11(1): 545–552.
    [34]
    黄磊, 姜国斌, 朱玉, 等. 高温对北高丛蓝莓叶片气体交换及叶绿素荧光参数的影响[J]. 生态学杂志, 2016, 35(4): 871–879. Huang L, Jiang G B, Zhu Y, et al. Effects of high temperature on leaf gas exchange and chlorophyll fluorescence parameters of the north highbush blueberry[J]. Chinese Journal of Ecology, 2016, 35(4): 871–879.

    Huang L, Jiang G B, Zhu Y, et al. Effects of high temperature on leaf gas exchange and chlorophyll fluorescence parameters of the north highbush blueberry[J]. Chinese Journal of Ecology, 2016, 35(4): 871-879.
    [35]
    李中勇, 张媛, 韩龙慧, 等. 氮钙互作对设施栽培油桃叶片光合特性及叶绿素荧光参数的影响[J]. 植物营养与肥料学报, 2013, 19(4): 893–900. Li Z Y, Zhang Y, Han L H, et al. The interactive effects of nitrogen and calcium on photosynthetic characteristics and chlorophyll fluorescence parameters of nectarine under protected culture[J]. Journal of Plant Nutrition and Fertilizers, 2013, 19(4): 893–900. DOI: 10.11674/zwyf.2013.0415

    Li Z Y, Zhang Y, Han L H, et al. The interactive effects of nitrogen and calcium on photosynthetic characteristics and chlorophyll fluorescence parameters of nectarine under protected culture[J]. Journal of Plant Nutrition and Fertilizers, 2013, 19(4): 893-900. DOI: 10.11674/zwyf.2013.0415
    [36]
    坚天才, 吴宏亮, 康建宏, 等. 氮素缓解春小麦花后高温早衰的荧光特性研究[J]. 中国农业科学, 2021, 54(15): 3355–3368. Jian T C, Wu H L, Kang J H, et al. Fluorescence characteristics study of nitrogen in alleviating premature senescence of spring wheat at high temperature after anthesis[J]. Scientia Agricultura Sinica, 2021, 54(15): 3355–3368. DOI: 10.3864/j.issn.0578-1752.2021.15.018

    Jian T C, Wu H L, Kang J H, et al. Fluorescence characteristics study of nitrogen in alleviating premature senescence of spring wheat at high temperature after anthesis[J]. Scientia Agricultura Sinica, 2021, 54(15): 3355-3368. DOI: 10.3864/j.issn.0578-1752.2021.15.018
    [37]
    吴奇. 干旱胁迫及氮素对高粱根系形态、生理特性及产量形成的影响[D]. 沈阳: 沈阳农业大学硕士学位论文, 2017.

    Wu Q. Effects of drought stress and nitrogen on root morphology, physiological characteristics and yield formation of sorghum[D]. Shenyang: MS Thesis of Shenyang Agricultural University, 2017.
    [38]
    Karim M A, Fracheboud Y, Stamp P. Photosynthetic activity of developing leaves of Zea mays is less affected by heat stress than that of developed leaves[J]. Physiologia Plantarum, 1999, 105(4): 685–693. DOI: 10.1034/j.1399-3054.1999.105413.x
    [39]
    Stamp P, Geisler G, Thiraporn R. Adaptation to suboptimal and supraoptimal temperatures of inbred maize lines differing in origin with regard to seedling development and photosynthetic traits[J]. Physiolgia Plantarum, 1983, 58(1): 62–68. DOI: 10.1111/j.1399-3054.1983.tb04144.x
    [40]
    Sharkey T D, Zhang R. High temperature effects on electron and proton circuits of photosynthesis[J]. Journal of Integrative Plant Biology, 2010, 52(8): 712–722. DOI: 10.1111/j.1744-7909.2010.00975.x
    [41]
    Suwa R, Hakata H, Hara H, et al. High temperature effects on photosynthate partitioning and sugar metabolism during ear expansion in maize (Zea mays L. ) genotypes[J]. Plant Physiology and Biochemistry, 2010, 48(2–3): 124–130. DOI: 10.1016/j.plaphy.2009.12.010
    [42]
    Yan P, Tao Z Q, Chen Y Q, et al. Spring maize kernel number and assimilate supply responses to high-temperature stress under field conditions[J]. Agronomy Journal, 2017, 109(4): 1433–1442. DOI: 10.2134/agronj2016.11.0662
  • Cited by

    Periodical cited type(10)

    1. 苏明,李翻过,洪自强,周甜,柳强娟,班文慧,吴宏亮,康建宏. 施氮缓解旱地马铃薯花后高温早衰的抗氧化特性研究. 中国农业科学. 2025(04): 660-675 .
    2. 苏明,康建宏,吴宏亮,周甜,洪自强,李翻过,张正珍. 旱地马铃薯花后高温胁迫下施氮对干物质积累、氮素利用及产量的影响. 农业资源与环境学报. 2025(03): 716-729 .
    3. 曾涛,潘虹,魏心元,陆秀娟,石明,龙声卫,李刚,李祥栋. 施氮水平对不同品种薏苡干物质积累及氮素利用特征的影响. 山东农业科学. 2025(05): 119-125 .
    4. 徐田军,吕天放,张勇,刘宏伟,刘月娥,蔡万涛,张如养,宋伟,邢锦丰,赵久然,王荣焕. 高温胁迫对玉米杂交种及其亲本自交系光合特性、保护酶活性和产量的影响. 中国生态农业学报(中英文). 2024(09): 1470-1480 .
    5. 聂峥睿,坚天才,张战胜,康建宏,吴宏亮. 施氮量对花后高温春小麦源库特征及关系的影响. 核农学报. 2024(12): 2421-2431 .
    6. 张思琪,马春红,田玉,宋丽华,杨晴,赵璞. 玉米自交系花期耐热性分析. 江苏农业科学. 2024(18): 113-120 .
    7. 郭娅,任昊,王洪章,张吉旺,赵斌,任佰朝,刘鹏. 高温干旱复合胁迫抑制夏玉米光系统Ⅱ性能降低籽粒产量. 中国农业科学. 2024(21): 4205-4220 .
    8. 钟苑宁,王慧丽,高碧玮,乔匀周,马玉诏,李永鹏,董宝娣. 玉米高温胁迫研究热点及前沿探究. 中国生态农业学报(中英文). 2024(11): 1891-1902 .
    9. 邓子越,杨彪,王烁,马光恕,廉华. 谷氨酸对芹菜生理特性和产量形成的影响. 现代化农业. 2023(02): 38-40 .
    10. 王雅坤,李鸿萍,徐真真,刘天学. 高温干旱复合胁迫对玉米光合生理的影响. 河南农业科学. 2023(05): 17-23 .

    Other cited types(19)

Catalog

    Article views (1651) PDF downloads (93) Cited by(29)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return