• ISSN 1008-505X
  • CN 11-3996/S
LI Rui, HE Dai-wei, LIU Jie-cheng, WANG Zheng, JIANG Yu, WANG Wei, ZHANG Zhi, QIU Li-juan. Optimizing the combination of Ca and Mg and water levels in cherry tomato production using comprehensive evaluation model[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(2): 382-392. DOI: 10.11674/zwyf.2022262
Citation: LI Rui, HE Dai-wei, LIU Jie-cheng, WANG Zheng, JIANG Yu, WANG Wei, ZHANG Zhi, QIU Li-juan. Optimizing the combination of Ca and Mg and water levels in cherry tomato production using comprehensive evaluation model[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(2): 382-392. DOI: 10.11674/zwyf.2022262

Optimizing the combination of Ca and Mg and water levels in cherry tomato production using comprehensive evaluation model

More Information
  • Received Date: May 15, 2022
  • Accepted Date: October 17, 2022
  • Available Online: January 15, 2023
  • Objectives 

    The efficiency of Ca and Mg fertilizer is affected by application rate of fertilizer as well as the irrigation levels. We attempted using a comprehensive evaluation model to optimize the combination of multiple factors, including Ca and Mg, for high yield, quality, and profitability of cherry tomato.

    Methods 

    A microplot experiment of five-element quadratic orthogonal rotation combination design (1/2 implementation) was carried out in a greenhouse in Yangling City, Shaanxi Province, cherry tomato cultivar ‘Fenmei 1’ as test material. The five factors were irrigation, N, K, Ca, and Mg fertilizer, and each factor had levels of –2, –1, 0, +1, and +2, composing 36 combination treatments. Total of 21 indicators involved in growth, yield, quality, and water and fertilizer utilization of cherry tomato were investigated. 14 indicators were screened out according to their importance using Pearson correlation analysis, and the differences caused by the indictors were comprehensively evaluated using a combined evaluation method. Finally, the regulation model of water and fertilizer coupling of cherry tomato was developed.

    Results 

    The final weight of individual index was calculated using the combination weighting method, yield gained the largest weight (0.2324) and the net photosynthetic rate gained the smallest weight (0.0183), indicating the yield was the most sensitive indicator to the change of tested factors. The comprehensive score of cherry tomatoes, calculated using the overall difference combination method, showed a parabolic relationship with the increase in irrigation and N fertilizer level, and the change span among irrigation levels was significantly greater than that among N fertilizer rates; and the overall score showed a very gentle downward parabolic shape with the increase of Ca application, while no parabolic shape was formed with the increased in K and Mg fertilizer levels. We used dimensionality reduction analysis, when irrigation, N and K were at level 0 (appropriate level), the composite score of cherry tomato was highest when Ca and Mg were around 0. Considering the interaction of 5 factors together, the overall difference combination comprehensive evaluation value had the optimal range: irrigation 56.26−59.03 L/plant, N 6.05−7.03 g/plant, K2O 5.97−6.50 g/plant, CaO 2.92−3.30 g/plant, and MgO 0.58−0.64 g/plant.

    Conclusions 

    The comprehensive evaluation model can take into account the growth, yield, quality, and resource utilization, and propose the optimal combination scheme of water and fertilizer. The suitable fertilization interval of cherry tomato proposed in this experiment verifies the feasibility of this method.

  • [1]
    郑锦荣, 李艳红, 聂俊, 等. 设施樱桃番茄产业概况及研究进展[J]. 广东农业科学, 2020, 47(12): 212–220.

    Zheng J R, Li Y H, Nie J, et al. Overview and research progress of protected cherry tomato industry[J]. Guangdong Agricultural Sciences, 2020, 47(12): 212–220.
    [2]
    Denise T, Zhu G T, Marcio F J, et al. A chemical genetic roadmap to improved tomato flavor[J]. Science, 2017, 355: 391–394. DOI: 10.1126/science.aal1556
    [3]
    王超, Tankari M, 龚道枝, 等. 优质樱桃番茄高效水氮耦合管理[J]. 植物营养与肥料学报, 2020, 26(1): 120–130. DOI: 10.11674/zwyf.19068

    Wang C, Tankari M, Gong D Z, et al. Coupling management of high-efficiency water and nitrogen in high-quality cherry tomatoes[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(1): 120–130. DOI: 10.11674/zwyf.19068
    [4]
    史红平. 关中农田土壤钙素状况及其退化特征研究[D]. 陕西杨凌: 西北农林科技大学硕士学位论文, 2016.

    Shi H P. Degradation characteristics and effect of soil calcium in Guanzhong farmland[D]. Yangling, Shaanxi: MS Thesis of Northwest A&F University, 2016.
    [5]
    刘军丽, 包婕, 李建设, 等. 限根下不同施钙量对番茄品质、产量及养分的影响[J]. 西南农业学报, 2019, 32(10): 2403–2411.

    Liu J L, Bao J, Li J S, et al. Effects of different calcium application on tomato quality, yield and nutrients under roots restriction[J]. Southwest China Journal of Agricultural Sciences, 2019, 32(10): 2403–2411.
    [6]
    Yang L J, Qu H, Zhang Y L, et al. Effects of partial root-zone irrigation on physiology, fruit yield and quality and water use efficiency of tomato under different calcium levels[J]. Agricultural Water Management, 2012, 104(1): 89–94.
    [7]
    Cole J C, Smith M W, Penn C J, et al. Nitrogen, phosphorus, calcium, and magnesium applied individually or as a slow release or controlled release fertilizer increase growth and yield and affect macronutrient and micronutrient concentration and content of field-grown tomato plants[J]. Scientia Horticulture, 2016, 211: 420–430. DOI: 10.1016/j.scienta.2016.09.028
    [8]
    Tränkner M, Jamali Jaghdani S J. Minimum magnesium concentrations for photosynthetic efficiency in wheat and sunflower seedlings[J]. Plant Physiology and Biochemistry, 2019, 144: 234–243. DOI: 10.1016/j.plaphy.2019.09.040
    [9]
    古雁宾, 吴西琴. 氮磷钾及中微量元素对菜豆产量的影响[J]. 北京农业, 2014, (33): 153–154. DOI: 10.3969/j.issn.1000-6966.2014.33.118

    Gu Y B, Wu X Q. Effects of nitrogen, phosphorus, potassium and trace elements on Phaseolus vulgaris yield[J]. Beijing Agriculture, 2014, (33): 153–154. DOI: 10.3969/j.issn.1000-6966.2014.33.118
    [10]
    He Z H, Li M N, Cai Z L, et al. Optimal irrigation and fertilizer amounts based on multi-level fuzzy comprehensive evaluation of yield, growth and fruit quality on cherry tomato[J]. Agricultural Water Management, 2021, 243: 106360. DOI: 10.1016/j.agwat.2020.106360
    [11]
    朱常安, 和志豪, 蔡泽林, 等. 融合镁元素的水肥多因子耦合对黄瓜综合营养品质的调控[J]. 中国农业科学, 2019, 52(18): 3258–3270. DOI: 10.3864/j.issn.0578-1752.2019.18.017

    Zhu C A, He Z H, Cai Z L, et al. Regulation of comprehensive nutritional quality of cucumber by water and fertilizer coupling with magnesium[J]. Scientia Agricultura Sinica, 2019, 52(18): 3258–3270. DOI: 10.3864/j.issn.0578-1752.2019.18.017
    [12]
    王辉民, 靳小勇, 刘颖超, 等. 叶面喷施镁肥对缺镁番茄养分吸收和分配的影响[J]. 干旱地区农业研究, 2017, 35(3): 226–231.

    Wang H M, Jin X Y, Liu Y C, et al. Influence of foliar spraying magnesium on uptake and distribution of nutrients in magnesium deficient tomatoes grown under greenhouse[J]. Agricultural Research in the Arid Areas, 2017, 35(3): 226–231.
    [13]
    和志豪. 基于樱桃番茄综合生长的水肥多因子耦合调控[D]. 陕西杨凌: 西北农林科技大学硕士学位论文, 2020.

    He Z H. Multi-factor coupling regulation of water and fertilizer based on comprehensive growth of cherry tomato[D]. Yangling, Shaanxi: MS Thesis of Northwest A&F University, 2020.
    [14]
    姚勇哲. 温室番茄耗水模型的模拟与验证[D]. 陕西杨凌: 西北农林科技大学硕士学位论文, 2012.

    Yao Y Z. Simulation and validation of tomato water consumption model in greenhouse[D]. Yangling, Shaanxi: MS Thesis of Northwest A&F University, 2012.
    [15]
    付汝勇, 张明刚. 作物测土配方施肥配方的实用方法——目标产量法, 以玉米为例[J]. 农业科技与信息, 2015, (8): 37–38. DOI: 10.3969/j.issn.1003-6997.2015.08.017

    Fu R Y, Zhang M G. A practical method of soil testing and fertilization formula for crops target yield method, taking maize as an example[J]. Agricultural Science and Technology & Information, 2015, (8): 37–38. DOI: 10.3969/j.issn.1003-6997.2015.08.017
    [16]
    王晶英, 敖红, 张杰, 等. 植物生理生化实验技术与原理[M]. 哈尔滨: 东北林业大学出版社, 2003.

    Wang J Y, Ao H, Zhang J, et al. Experimental techniques and principles of plant physiology and biochemistry[M]. Harbin: Northeast Forestry University Press, 2003.
    [17]
    张德彬, 刘国东, 王亮, 等. 基于博弈论组合赋权的TOPSIS模型在地下水水质评价中的应用[J]. 长江科学院院报, 2018, 35(7): 46–50. DOI: 10.11988/ckyyb.20161231

    Zhang D B, Liu G D, Wang L, et al. Application of TOPSIS model based on game theory to groundwater quality evaluation[J]. Journal of Yangtze River Scientific Research Institute, 2018, 35(7): 46–50. DOI: 10.11988/ckyyb.20161231
    [18]
    洪霞, 胡田田, 刘杰, 等. 基于方法集的番茄营养品质组合评价模型构建及其对水肥供应的响应[J]. 干旱地区农业研究, 2019, 37(3): 129–138,148. DOI: 10.7606/j.issn.1000-7601.2019.03.17

    Hong X, Hu T T, Liu J, et al. Construction of comprehensive evaluation model for tomato nutrition quality based on method set and its response to water and fertilizer supply[J]. Agricultural Research in the Arid Areas, 2019, 37(3): 129–138,148. DOI: 10.7606/j.issn.1000-7601.2019.03.17
    [19]
    宁剑, 任怡睿, 林济铿, 等. 基于人工智能及信息融合的电力系统故障诊断方法[J]. 电网技术, 2021, 45(8): 2925–2936.

    Ning J, Ren Y R, Lin J K, et al. Power system fault diagnosis based on artificial intelligence and information fusion[J]. Power System Technology, 2021, 45(8): 2925–2936.
    [20]
    李欢欢. 温室番茄水氮互作效应与优化灌溉施氮模式研究[D]. 北京: 中国农业科学院博士学位论文, 2021.

    Li H H. Study on water-nitrogen interaction effects and the opti-malization management of irrigation and nitrogen in greenhouse tomato[D]. Beijing: PhD Dissertation of Chinese Academy of Agricultural Sciences, 2021.
    [21]
    杨雨薇, 王琳, 卢俊峰, 等. 应用隶属函数法评价10个紫花苜蓿品种的耐热性[J]. 草原与草坪, 2021, 41(4): 81–88.

    Yang Y W, Wang L, Lu J F, et al. Evaluation of membership function on heat tolerance of 10 alfalfa varieties[J]. Grassland and Turf, 2021, 41(4): 81–88.
    [22]
    郭亚军, 易平涛. 一种基于整体差异的客观组合评价法[J]. 中国管理科学, 2006, (3): 62–66.

    Guo Y J, Yi P T. Whole diversity-based reasoning for objective combined evaluation[J]. Chinese Journal of Management Science, 2006, (3): 62–66.
    [23]
    卫新东, 林良国, 罗平平, 等. 耕地多功能耦合协调发展时空格局与驱动力分析[J]. 农业工程学报, 2022, 38(4): 260–269.

    Wei X D, Lin L G, Luo P P, et al. Spatiotemporal pattern and driving force analysis of multi-functional coupling coordinated development of cultivated land[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(4): 260–269.
    [24]
    赵文举, 马锋, 曹伟, 等. 水肥耦合对基质栽培番茄产量及品质的影响[J]. 农业工程学报, 2022, 38(2): 95–101. DOI: 10.11975/j.issn.1002-6819.2022.02.011

    Zhao W J, Ma F, Cao W, et al. Effects of water and fertilizer coupling on the yield and quality of tomatoes[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(2): 95–101. DOI: 10.11975/j.issn.1002-6819.2022.02.011
    [25]
    Ma K, Wang Z H, Li H Q, et al. Effects of nitrogen application and brackish water irrigation on yield and quality of cotton[J]. Agricultural Water Management, 2022, 264: 107512. DOI: 10.1016/j.agwat.2022.107512
    [26]
    马乐乐, 高宁, 杨百良, 等. 全有机营养模式下番茄综合品质评价及其对有机肥水耦合的响应[J]. 西北农林科技大学学报(自然科学版), 2019, 47(6): 63–72.

    Ma L L, Gao N, Yang B L, et al. Construction of in targeted quality index of tomato with total organic nutrition and its response to organic fertilizer and water coupling[J]. Journal of Northwest A& F University (Natural Science Edition), 2019, 47(6): 63–72.
    [27]
    Zheng J L, Wang S J, Wang R M, et al. Ameliorative roles of biochar-based fertilizer on morpho-physiological traits, nutrient uptake and yield in peanut (Arachis hypogea L.) under water stress[J]. Agricultural Water Management, 2021, 257: 107129. DOI: 10.1016/j.agwat.2021.107129
    [28]
    Zhang J X, Wang Q Q, Xia G M, et al. Continuous regulated deficit irrigation enhances peanut water use efficiency and drought resistance[J]. Agricultural Water Management, 2021, 255: 106997. DOI: 10.1016/j.agwat.2021.106997
    [29]
    Li H H, Liu H, Gong X W, et al. Optimizing irrigation and nitrogen management strategy to trade off yield, crop water productivity, nitrogen use efficiency and fruit quality of greenhouse grown tomato[J]. Agricultural Water Management, 2021, 245: 106570. DOI: 10.1016/j.agwat.2020.106570
    [30]
    柳玉鹏, 李一军. 基于降维思想的客观组合评价模型[J]. 运筹与管理, 2009, 18(4): 38–43. DOI: 10.3969/j.issn.1007-3221.2009.04.007

    Liu Y P, Li Y J. Objective combined evaluation model based on dimension reduction[J]. Operations Research and Management Science, 2009, 18(4): 38–43. DOI: 10.3969/j.issn.1007-3221.2009.04.007
    [31]
    张智, 和志豪, 洪婷婷, 等. 基于多层次模糊评判的樱桃番茄综合生长水肥耦合调控[J]. 农业机械学报, 2019, 50(12): 278–287. DOI: 10.6041/j.issn.1000-1298.2019.12.032

    Zhang Z, He Z H, Hong T T, et al. Coupling regulation of water and fertilizer factors for comprehensive growth of cherry tomatoes based on multi-level fuzzy comprehensive evaluation[J]. Transactions of the Chinese Society Agricultural Machinery, 2019, 50(12): 278–287. DOI: 10.6041/j.issn.1000-1298.2019.12.032
    [32]
    夏广清, 王薇, 陈志刚. 钙镁肥不同用量对番茄幼苗生长发育的影响[J]. 北方园艺, 2007, (3): 26–27. DOI: 10.3969/j.issn.1001-0009.2007.03.009

    Xia G Q, Wang W, Chen Z G. The influence of Ca and Mg fertilizer on the growth and development of tomato seedlings[J]. Northern Horticulture, 2007, (3): 26–27. DOI: 10.3969/j.issn.1001-0009.2007.03.009
    [33]
    张丽, 王寅, 鲁剑巍, 等. 施钾对直播油菜产量及钾钙镁养分吸收的影响[J]. 中国油料作物学报, 2015, 37(3): 336–343. DOI: 10.7505/j.issn.1007-9084.2015.03.012

    Zhang L, Wang Y, Lu J W, et al. Effect of potassium application on absorption of potassium calcium and magnesium for direct-sowing winter rapeseed[J]. Chinese Journal of Oil Crop Sciences, 2015, 37(3): 336–343. DOI: 10.7505/j.issn.1007-9084.2015.03.012
    [34]
    Guan X L, Liu D Y, Liu B, et al. Critical leaf magnesium concentrations for adequate photosynthate production of soilless cultured cherry tomato—interaction with potassium[J]. Agronomy, 2020, 10(12): 1863. DOI: 10.3390/agronomy10121863

Catalog

    Article views (785) PDF downloads (80) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return