• ISSN 1008-505X
  • CN 11-3996/S
WEI Xian-wei, PAN Xin-ya, WANG Peng-fei, LIU Jia-xi, LI Jun-bao, WANG Zhi. Responses of chlorophyll fluorescence of alfalfa with various phosphorus utilization efficiencies to phosphorus deficiency[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(4): 690-703. DOI: 10.11674/zwyf.2022208
Citation: WEI Xian-wei, PAN Xin-ya, WANG Peng-fei, LIU Jia-xi, LI Jun-bao, WANG Zhi. Responses of chlorophyll fluorescence of alfalfa with various phosphorus utilization efficiencies to phosphorus deficiency[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(4): 690-703. DOI: 10.11674/zwyf.2022208

Responses of chlorophyll fluorescence of alfalfa with various phosphorus utilization efficiencies to phosphorus deficiency

More Information
  • Received Date: April 20, 2022
  • Accepted Date: March 28, 2023
  • Available Online: March 30, 2023
  • Objective 

    This study was aimed to identify the effects of P deficiency on photosynthetic performance of alfalfa (Medicago sativa L.) and reveal the differences in light energy conversion and utilization among different varieties.

    Methods 

    Sand culture method was used, two high-P-efficient varieties, Gannon 6 (G6), and Aurora (JG); and two low-P-efficient alfalfa varieties, Bara 310SC (B310) and Gannon 4 (G4) were selected as test materials. On the basis of 1/4 Hoagland solution, normal P control (0.5 mmol/L) and low P stress (0.05 mmol/L) solution were prepared. At the 30 days of culture, the chlorophyll fluorescence parameters of alfalfa leaves were measured, then the whole seedlings were harvested for the determination of biomass and P content.

    Results 

    Compared with the control group, P deficiency decreased the biomass and P utilization efficiency of four alfalfa varieties, increased fluorescence intensity at points J and I of the relative variable fluorescence induction curve, increased the maximum rate of QA reduction (Mo) significantly, parameters such as receptor pool capacity (Sm) decreased and impaired the PSII receptor side; the number of active reaction centers (RC/CSo) decreased, light energy absorption (ABS/RC, ABS/CSo), capture (TRo/RC, TRo/CSo), transfer (ETo/RC) and dissipation (DIo/RC, DIo/CSo) increased significantly, performance index (PIabs and PItotal) decreased, photosynthetic electron transfer was hindered, and the overall performance of PSⅠ and PSⅡ decreased. In terms of the differences among varieties, the high-P-efficient varieties G6 and JG showed less variation in these parameters than the low-P-efficient varieties B310 and G4, and had higher biomass and P utilization efficiency under the same P treatment.

    Conclusion 

    P deficiency mainly inhibits the performance of the electron transport chain on the acceptor side and reaction center of alfalfa leaves, which decreases the activity of PSⅠ and PSⅡ and hinders photosynthetic electron transport. These responses result in a reduction of biomass and P utilization efficiency. Compared to P-inefficient varieties, P-efficient varieties have higher photosynthetic electron transfer activity and more stable photosynthetic system. Among rapid chlorophyll fluorescence parameters, PIabs is more sensitive to P deficiency, and shows a significant correlation with P utilization efficiency, which could effectively reflect the status of PSII light energy conversion efficiency, active reaction center and receptor side. All these indicate that PIabs is an effective indicator for evaluating alfalfa photosynthetic performance under P deficiency.

  • [1]
    罗珠珠, 牛伊宁, 李玲玲, 等. 陇中黄土高原不同种植年限苜蓿草地土壤水分及产量响应[J]. 草业学报, 2015, 24(1): 31–38. DOI: 10.11686/cyxb20150105

    Luo Z Z, Niu Y N, Li L L, et al. Soil moisture and alfalfa productivity response from different years of growth on the Loess Plateau of central Gansu[J]. Acta Prataculturae Sinica, 2015, 24(1): 31–38. DOI: 10.11686/cyxb20150105
    [2]
    李向林, 何峰. 苜蓿营养与施肥[M]. 北京: 中国农业出版社, 2013, 118–120.

    Li X L, He F. Nutrition and fertilization of alfalfa[M]. Beijing: China Agriculture Press, 2013, 118–120.
    [3]
    Cornish P S. Research directions: Improving plant uptake of soil phosphorus, and reducing dependency on input of phosphorus fertilizer[J]. Crop & Pasture Science, 2009, 60(2): 190–196.
    [4]
    张文学, 王少先, 刘增兵, 等. 基于土壤肥力质量综合指数评价化肥与有机肥配施对红壤稻田肥力的提升作用[J]. 植物营养与肥料学报, 2021, 27(5): 777–790. DOI: 10.11674/zwyf.20469

    Zhang W X, Wang S X, Liu Z B, et al. Evaluating soil fertility improvement effects of chemical fertilizer combined with organic fertilizers in a red paddy soil using the soil fertility index[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(5): 777–790. DOI: 10.11674/zwyf.20469
    [5]
    王园园, 张红香, 金成吉, 等. 磷肥对紫花苜蓿生产力影响的研究概述[J]. 中国农学通报, 2020, 36(35): 72–77. DOI: 10.11924/j.issn.1000-6850.casb20191200951

    Wang Y Y, Zhang H X, Jin C J, et al. Effects of phosphorus fertilizer on alfalfa productivity: A review[J]. Chinese Agricultural Science Bulletin, 2020, 36(35): 72–77. DOI: 10.11924/j.issn.1000-6850.casb20191200951
    [6]
    李振松, 栗振义, 张绮芯, 等. 敖汉和维多利亚紫花苜蓿对低磷环境应激机制的比较[J]. 草业学报, 2019, 28(1): 50–59.

    Li Z S, Li Z Y, Zhang Q X, et al. Comparison of response mechanisms to low inorganic phosphate stress between alfalfa varieties Aohan and Victoria[J]. Acta Prataculturae Sinica, 2019, 28(1): 50–59.
    [7]
    马红, 黎力乙, 李宁. 不同供磷水平对苜蓿生理特征和磷素营养的影响[J]. 中国草地学报, 2021, 43(8): 34–41.

    Ma H, Li L Y, Li N. Impacts of phosphorus application rates on physiological characteristics and phosphorus accumulation of alfalfa[J]. Chinese Journal of Grassland, 2021, 43(8): 34–41.
    [8]
    马红, 孟捷, 李宁. 不同品种紫花苜蓿根系形态及生理特征对磷水平的响应[J]. 草业科学, 2021, 38(2): 231–238. DOI: 10.11829/j.issn.1001-0629.2020-0383

    Ma H, Meng J, Li N. Responses of root morphological and physiological characteristics of different alfalfa genotypes to phosphorus levels[J]. Pratacultural Science, 2021, 38(2): 231–238. DOI: 10.11829/j.issn.1001-0629.2020-0383
    [9]
    唐伟, 玉永雄. 豆科植物低磷胁迫的适应机制[J]. 草业科学, 2014, 31(8): 1538–1548. DOI: 10.11829/j.issn.1001-0629.2013-0478

    Tang W, Yu Y X. Adaptation mechanisms of legume to phosphorus deficiency[J]. Pratacultural Science, 2014, 31(8): 1538–1548. DOI: 10.11829/j.issn.1001-0629.2013-0478
    [10]
    Dai H, Wei S, Pogrzeba M, et al. Exogenous jasmonic acid decreased Cu accumulation by alfalfa and improved its photosynthetic pigments and antioxidant system[J]. Ecotoxicology and Environmental Safety, 2020, 190: 110176. DOI: 10.1016/j.ecoenv.2020.110176
    [11]
    Moukhtari A E, Lamsaadi N, Farssi O, et al. Silicon- and phosphate-solubilizing pseudomonas alkylphenolica PF9 alleviate low phosphorus availability stress in alfalfa (Medicago sativa L.)[J]. Frontiers in Agronomy, 2022, 4(2): 823396.
    [12]
    Ceppi M G, Oukarroum A, Çiçek N, et al. The IP amplitude of the fluorescence rise OJIP is sensitive to changes in the photosystem I content of leaves: A study on plants exposed to magnesium and sulfate deficiencies, drought stress and salt stress[J]. Physiologia Plantarum, 2012, 144(3): 277–288. DOI: 10.1111/j.1399-3054.2011.01549.x
    [13]
    Kalaji H M, Račková L, Paganová V, et al. Can chlorophyl Ⅱ-a fluorescence parameters be used as bio-indicators to distinguish between drought and salinity stress in Tilia cordata Mill?[J]. Environmental and Experimental Botany, 2018, 152: 149–157. DOI: 10.1016/j.envexpbot.2017.11.001
    [14]
    Sharma D K, Andersen S B, Ottosen C O, et al. Wheat cultivars selected for high Fv/Fm under heat stress maintain high photosynthesis, total chlorophyll, stomatal conductance, transpiration and dry matter[J]. Physiologia Plantarum, 2015, 153(2): 284–98. DOI: 10.1111/ppl.12245
    [15]
    Kalaji H M, Oukarroum A, Alexandrov V, et al. Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyⅡ a fluorescence measurements[J]. Plant Physiology and Biochemistry, 2014, 81: 16–25. DOI: 10.1016/j.plaphy.2014.03.029
    [16]
    Mihaljević I, Lepeduš H, Šimić D, et al. Photochemical efficiency of photosystem II in two apple cultivars affected by elevated temperature and excess light in vivo[J]. South African Journal of Botany, 2020, 130(C): 316–326.
    [17]
    陈世茹, 于林清, 易津, 等. 低温胁迫对紫花苜蓿叶片叶绿素荧光特性的影响[J]. 草地学报, 2011, 19(4): 596–600.

    Chen S R, Yu L Q, Yi J, et al. Influence of chlorophyll fluorescence characteristics on alfalfa seedlings under cryogenic stress[J]. Acta Prataculturae Sinica, 2011, 19(4): 596–600.
    [18]
    王运涛, 于林清, 王富贵, 等. 低温胁迫对返青期苜蓿叶片荧光参数的影响[J]. 中国草地学报, 2013, 35(1): 29–34. DOI: 10.3969/j.issn.1673-5021.2013.01.005

    Wang Y T, Yu L Q, Wang F G, et al. Effects of low-temperature stress on fluorescence parameters of alfalfa leaves in returning green period[J]. Chinese Journal of Grassland, 2013, 35(1): 29–34. DOI: 10.3969/j.issn.1673-5021.2013.01.005
    [19]
    梁欢, 韦宝, 陈静, 等. 基于叶绿素荧光参数的紫花苜蓿种质苗期抗旱性评价[J]. 草地学报, 2020, 28(1): 45–55.

    Liang H, Wei B, Chen J, et al. Evaluation of the drought resistance in alfalfa germplasm by chlorophyll fluorescence parameters at seedling stage[J]. Acta Agrestia Sinica, 2020, 28(1): 45–55.
    [20]
    Mouradi M, Bouizgaren A, Farissi M, et al. Seed osmopriming improves plant growth, nodulation, chlorophyll fluorescence and nutrient uptake in alfalfa (Medicago sativa L.) – rhizobia symbiosis under drought stress[J]. Scientia Horticulturae, 2016, 213: 232–242. DOI: 10.1016/j.scienta.2016.11.002
    [21]
    任立飞, 张文浩, 李衍素. 低磷胁迫对黄花苜蓿生理特性的影响[J]. 草业学报, 2012, 21(3): 242–249. DOI: 10.11686/cyxb20120331

    Ren L F, Zhang W H, Li Y S. Effects of l phosphorus deficiency on physiological properties of Medicago falcata[J]. Acta Prataculturae Sinica, 2012, 21(3): 242–249. DOI: 10.11686/cyxb20120331
    [22]
    栗振义, 张绮芯, 仝宗永, 等. 不同紫花苜蓿品种对低磷环境的形态与生理响应分析[J]. 中国农业科学, 2017, 50(20): 3898–3907. DOI: 10.3864/j.issn.0578-1752.2017.20.006

    Li Z Y, Zhang Q X, Tong Z Y, et al. Analysis of morphological and physiological responses to low Pi stress in different alfalfas[J]. Scientia Agricultura Sinica, 2017, 50(20): 3898–3907. DOI: 10.3864/j.issn.0578-1752.2017.20.006
    [23]
    袁世力, 刘星辰, 樊娜娜, 等. 镁对铝胁迫紫花苜蓿幼苗生长和光合系统的影响[J]. 中国草地学报, 2018, 40(5): 29–35.

    Yuan S L, Liu X C, Fan N N, et al. Effects of magnesium on growth and photosynthetic system of alfalfa (Medicago sativa L.) under aluminum stress[J]. Chinese Journal of Grassland, 2018, 40(5): 29–35.
    [24]
    李鹏民, 高辉远. 快速叶绿素荧光诱导动力学分析在光合作用研究中的应用[J]. 植物生理与分子生物学学报, 2005, 31(6): 559–566.

    Li P M, Gao H Y. Application of the fast chlorophyll fluorescence induction dynamics analysis in photosynthesis study[J]. Journal of Plant Physiology and Molecular Biology, 2005, 31(6): 559–566.
    [25]
    Strasser R J, Tsimilli-Michael M, Sheng Q, et al. Simultaneous in vivo recording of prompt and delayed fluorescence and 820 nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis[J]. Biochim Biophys Acta, 2010, 1797(6–7): 1313–1326. DOI: 10.1016/j.bbabio.2010.03.008
    [26]
    乔振江, 蔡昆争, 骆世明. 低磷和干旱胁迫对大豆植株干物质积累及磷效率的影响[J]. 生态学报, 2011, 31(19): 5578–5587.

    Qiao Z J, Cai K Z, Luo S M. Interactive effects of low phosphorus and drought stress on dry matter accumulation and phosphorus efficiency of soybean plants[J]. Acta Ecologica Sinica, 2011, 31(19): 5578–5587.
    [27]
    连慧达, 裴红宾, 张永清, 等. 施磷量对不同品种红小豆形态和生理特性的影响[J]. 植物营养与肥料学报, 2015, 21(3): 792–799. DOI: 10.11674/zwyf.2015.0327

    Lian H D, Pei H B, Zhang Y Q, et al. Effect of phosphorus fertilization on morphological and physiological characteristics of adzuki beans[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(3): 792–799. DOI: 10.11674/zwyf.2015.0327
    [28]
    Fan J W, Du Y L, Turner N C, et al. Changes in root morphology and physiology to limited phosphorus P and moisture in a locally-selected cultivar and an introduced cultivar of Medicago sativa L. growing in alkaline soil[J]. Plant and Soil, 2015, 392(1–2): 215–226. DOI: 10.1007/s11104-015-2454-0
    [29]
    张丽梅, 郭再华, 张琳, 等. 缺磷对不同耐低磷玉米基因型酸性磷酸酶活性的影响[J]. 植物营养与肥料学报, 2015, 21(4): 898–910. DOI: 10.11674/zwyf.2015.0408

    Zhang L M, Guo Z H, Zhang L, et al. Effects of phosphate deficiency on acid phosphatase activities of different maize genotypes tolerant to low-P stress[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(4): 898–910. DOI: 10.11674/zwyf.2015.0408
    [30]
    Han S, Tang N, Jiang H X, et al. CO2 assimilation, photosystem II photochemistry, carbohydrate metabolism and antiox idant system of citrus leaves in response to boron stress[J]. Plant Science, 2009, 176(1): 143–153. DOI: 10.1016/j.plantsci.2008.10.004
    [31]
    寇江涛, 师尚礼, 胡桂馨, 等. 紫花苜蓿对牛角花齿蓟马为害的光合生理响应[J]. 生态学报, 2014, 34(20): 5782–5792.

    Kou J T, Shi S L, Hu G X, et al. Photosynthetic physiological response of Medicago sativa to odontoth rips loti damage[J]. Acta Ecologica Sinica, 2014, 34(20): 5782–5792.
    [32]
    何丹, 张锡洲, 李廷轩, 等. 稻种资源的磷利用效率差异及其分类评价[J]. 中国土壤与肥料, 2012, (3): 70–76. DOI: 10.3969/j.issn.1673-6257.2012.03.015

    He D, Zhang X Z, Li T X, et al. Classification and evaluation of phosphorus utilization efficiency for different rice germplasms[J]. Soil and Fertilizer Sciences in China, 2012, (3): 70–76. DOI: 10.3969/j.issn.1673-6257.2012.03.015
    [33]
    沈启维, 李艳春, 张健. 提高植物磷高效利用能力方法的研究进展[J]. 绿色科技, 2021, 23(11): 157–160. DOI: 10.3969/j.issn.1674-9944.2021.11.053

    Shen Q W, Li Y C, Zhang J. Research progress on methods to improve phosphorus efficient utilization capacity of plants[J]. Journal of Green Science and Technology, 2021, 23(11): 157–160. DOI: 10.3969/j.issn.1674-9944.2021.11.053
    [34]
    徐静, 张锡洲, 李廷轩, 等. 野生大麦对土壤磷吸收及其酸性磷酸酶活性的基因型差异[J]. 草业学报, 2015, 24(1): 88–98. DOI: 10.11686/cyxb20150112

    Xu J, Zhang X Z, Li T X, et al. Phosphorus absorption and acid phosphatase activity in wild barley genotypes with different phosphorus use efficiencies[J]. Acta Prataculturae Sinica, 2015, 24(1): 88–98. DOI: 10.11686/cyxb20150112
    [35]
    李绍长, 胡昌浩, 龚江, 等. 低磷胁迫对磷不同利用效率玉米叶绿素荧光参数的影响[J]. 作物学报, 2004, 30(4): 365–370.

    Li S C, Hu C H, Gong J, et al. Effects of low phosphorus stress on the chlorophyll fluorescence of different phosphorus use efficient maize (Zea mays L)[J]. Acta Agronomica Sinica, 2004, 30(4): 365–370.
    [36]
    王菲, 曹翠玲. 磷水平对不同磷效率小麦叶绿素荧光参数的影响[J]. 植物营养与肥料学报, 2010, 16(3): 758–762. DOI: 10.11674/zwyf.2010.0335

    Wang F, Cao C L. Effects of phosphorus levels on chlorophyll fluorescence parameters of wheat (Triticum aestivum L.) with different phosphorus efficiencies[J]. Journal of Plant Nutrition and Fertilizers, 2010, 16(3): 758–762. DOI: 10.11674/zwyf.2010.0335
    [37]
    赵娜, 秦都林, 聂军军, 等. 钾肥对不同抗虫棉品种叶片光系统Ⅱ性能的影响[J]. 植物营养与肥料学报, 2019, 25(1): 106–114.

    Zhao N, Qin D L, Nie J J, et al. Effects of potassium application on performance of photosystem Ⅱ of various Bt cotton genotypes[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(1): 106–114.
    [38]
    徐爱东, 邱念伟, 娄苑颖, 等. 判断玉米幼苗缺氮程度的叶绿素荧光动力学指标[J]. 植物营养与肥料学报, 2010, 16(2): 498–503.

    Xu A D, Qiu N W, Lou Y Y, et al. Using chlorophyll fluorescence indices to estimate nitrogen deficiency of maize seedlings[J]. Journal of Plant Nutrition and Fertilizers, 2010, 16(2): 498–503.
    [39]
    金立桥, 车兴凯, 张子山, 等. 高温、强光下黄瓜叶片PSⅡ供体侧和受体侧的伤害程度与快速荧光参数Wk变化的关系[J]. 植物生理学报, 2015, 51(6): 969–976.

    Jin L Q, Che X K, Zhang Z S, et al. The relationship between the changes in Wk and different damage degree of PSⅡ donor side and acceptor side under high temperature with high light in cucumber[J]. Plant Physiology Journal, 2015, 51(6): 969–976.
    [40]
    辛建攀, 李文明, 祁茜, 等. 镉对梭鱼草叶片保护酶活性、光合及荧光特性的影响[J]. 草业学报, 2018, 27(10): 23–34. DOI: 10.11686/cyxb2017463

    Xin J P, Li W M, Qi X, et al. Effects of Cd on antixoidant enzyme activities, and leaf photosynthetic and fluorescence characteristics in Pontederia cordata[J]. Acta Prataculturae Sinica, 2018, 27(10): 23–34. DOI: 10.11686/cyxb2017463

Catalog

    Article views (1122) PDF downloads (65) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return