• ISSN 1008-505X
  • CN 11-3996/S
SHEN Zhe, HAN Tian-fu, HUANG Jing, QU Xiao-lin, MA Chang-bao, LIU Kai-lou, WANG Hui-ying, LIU Li-sheng, LI Dong-chu, LI Ya-zhen, WANG Qiu-ju, ZHANG Hui-min. Spatio-temporal variation of relative yield gap of rice and its response to nitrogen fertilizer in China[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(5): 789-801. DOI: 10.11674/zwyf.2022480
Citation: SHEN Zhe, HAN Tian-fu, HUANG Jing, QU Xiao-lin, MA Chang-bao, LIU Kai-lou, WANG Hui-ying, LIU Li-sheng, LI Dong-chu, LI Ya-zhen, WANG Qiu-ju, ZHANG Hui-min. Spatio-temporal variation of relative yield gap of rice and its response to nitrogen fertilizer in China[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(5): 789-801. DOI: 10.11674/zwyf.2022480

Spatio-temporal variation of relative yield gap of rice and its response to nitrogen fertilizer in China

More Information
  • Received Date: September 06, 2022
  • Accepted Date: December 31, 2022
  • Available Online: May 07, 2023
  • Objectives 

    We explored the spatial-temporal variation characteristics and driving factors of relative yield gap of rice across China in 15 years (2004−2019) and the response of relative yield gap to nitrogen application rate under different soil productivity levels, so as to provide theoretical basis for rational application of nitrogen fertilizer in rice.

    Methods 

    The data were collected from 408 monitoring sites set up by the Center of Arable Land Quality Monitoring and Protection, Ministry of Agriculture and Rural Affairs from 2004 to 2019 in major rice regions of China, including 24 in northeast China, 110 in the Yangtze River Delta, 138 in the middle reaches of the Yangtze River, 56 in southwest China and 80 in south China. Based on the long-term monitoring database of Farmland Fertility, the Ministry of Agriculture and Rural Affairs of China, the difference of rice yield between fertilized and non-fertilized plot was defined as relative yield (RY), the highest relative yield (HRY), the average relative yield (ARY) and the relative yield gap (GRY) were obtained by using the statistical method of high-yielding households, and the effects of fertilization and soil factors on the relative yield gap were determined using the random forest model, and soil productivity level was divided according to the yield of non-fertilized area. The relationship between the relative yield gap of rice and nitrogen application rate under different soil productivity levels was quantified.

    Results 

    Within the 15 years of observation, the HRY of rice in China was 4.98−6.86 t/hm2, ARY was 3.06−3.47 t/hm2, and GRY was 1.92−3.41 t/hm2. In terms of different regions, HRY and GRY trends were in order of southwest China (rice−other crop)>Yangtze River Delta (rice−other crop)>south China (early rice)>northeast China (single rice)>middle of the Yangtze River (rice−other crop)>south China (late rice)>middle of the Yangtze River (early rice)>middle of the Yangtze River (late rice). In low and medium soil productivity levels, the GRY decreased and then stabilized with increasing nitrogen fertilizer application rate, but it did not change significantly in high productivity soils. Except the low and medium productivity soils in the southwest China and the low productivity soils in the northeast China, the inflection points of nitrogen application rate appeared in the low and medium productivity soils in other regions. For low and medium productivity soils, the inflection points of nitrogen application rate for early and late rice in the middle of the Yangtze River were 187.5, 165.0 kg/hm2 and 183.5, 152.5 kg/hm2, respectively; early and late rice in south China were 195.0, 153.0 kg/hm2 and 169.0, 157.0 kg/hm2, respectively; rice-other crop rotation system in the middle of Yangtze River and Yangtze River Delta were 199.5 kg/hm2, 184.5 kg/hm2 and 202.0 kg/hm2, 171.0 kg/hm2, respectively; and 146.5 kg/hm2 for the medium productivity soil in northeast China. Nitrogen application rate (NF), soil organic matter (SOM) and total nitrogen (TN) were relatively important factors affecting GRY in low and medium productivity soils. In high productivity soils, SOM and TN had significant effects on GRY, and potassium application (KF) significantly affected GRY of early rice in the middle of the Yangtze River and south China.

    Conclusions 

    The relative yield gap of rice in southwest China (rice-other crop) was the highest, and that of late rice in middle reaches of Yangtze River was the lowest. Nitrogen application rate, soil organic matter and total nitrogen are important factors affecting the relative yield of rice. Nitrogen fertilizer should be reduced appropriately in high productivity soil as nitrogen application rate has no significant effect on relative yield gap. For low and medium productivity soils, increasing nitrogen application could significantly reduce the relative yield gap and increase yield potential within the inflection point (146.50−202.00 kg/hm2). Potassium fertilizer application requires more attention at high soil productivity in middle of Yangtze River and south China.

  • [1]
    中华人民共和国国家统计局. 中国统计年鉴—2021[M]. 北京: 中国统计出版社, 2021.

    National Bureau of Statistics of the People's Republic of China. China statistical yearbook-2021[M]. Beijing: China Statistics Press, 2021.
    [2]
    Zhang M, Yao Y, Tian Y, et al. Increasing yield and N use efficiency with organic fertilizer in Chinese intensive rice cropping systems[J]. Field Crops Research, 2018, 227: 102–109. DOI: 10.1016/j.fcr.2018.08.010
    [3]
    杨晓光, 刘志娟. 作物产量差研究进展[J]. 中国农业科学, 2014, 47(14): 2731–2741. Yang X G, Liu Z J. Advances in research on crop yield gaps[J]. Scientia Agricultura Sinica, 2014, 47(14): 2731–2741.

    Yang X G, Liu Z J. Advances in research on crop yield gaps[J]. Scientia Agricultura Sinica, 2014, 47(14): 2731–2741.
    [4]
    张建平, 刘宗元, 何永坤, 等. 西南地区水稻干旱时空分布特征[J]. 应用生态学报, 2015, 26(10): 3103–3110.

    Zhang J P, Liu Z Y, He Y K, et al. Temporal and spatial distribution of rice drought in Southwest China[J]. Chinese Journal of Applied Ecology, 2015, 26(10): 3103–3110.
    [5]
    Xu X, He P, Zhao S, et al. Quantification of yield gap and nutrient use efficiency of irrigated rice in China[J]. Field Crops Research, 2016, 186: 58–65. DOI: 10.1016/j.fcr.2015.11.011
    [6]
    刘保花, 陈新平, 崔振岭, 等. 三大粮食作物产量潜力与产量差研究进展[J]. 中国生态农业学报, 2015, 23(5): 525–534. Liu B H, Chen X P, Cui Z L, et al. Research advance in yield potential and yield gap of three major cereal crops[J]. Chinese Journal of Eco-Agriculture, 2015, 23(5): 525–534.

    Liu B H, Chen X P, Cui Z L, et al. Research advance in yield potential and yield gap of three major cereal crops[J]. Chinese Journal of Eco-Agriculture, 2015, 23(5): 525–534.
    [7]
    Zhao X X, Wang W S, Xie Z Y, et al. Comparative analysis of metabolite changes in two contrasting rice genotypes in response to low-nitrogen stress[J]. The Crop Journal, 2018, 6(5): 24–34.
    [8]
    闫湘, 金继运, 梁鸣早. 我国主要粮食作物化肥增产效应与肥料利用效率[J]. 土壤, 2017, 49(6): 1067–1077. Yan X, Jin J Y, Liang M Z. Fertilizer use efficiencies and yield-increasing rates of grain crops in China[J]. Soils, 2017, 49(6): 1067–1077.

    Yan X, Jin J Y, Liang M Z. Fertilizer use efficiencies and yield-increasing rates of grain crops in China[J]. Soil, 2017, 49(6): 1067-1077.
    [9]
    叶英聪, 孙波, 刘绍贵, 等. 中国水稻土酸化时空变化特征及其对氮素盈余的响应[J]. 农业机械学报, 2021, 52(2): 246–256. Ye Y C, Sun B, Liu S G, et al. Spatio-temporal variation of paddy soil acidification and its response to nitrogen surplus in China[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(2): 246–256.

    Ye Y C, Sun B, Liu S G, et al. Spatio-temporal variation of paddy soil acidification and its response to nitrogen surplus in China[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(2): 246–256.
    [10]
    张维理, 武淑霞, 冀宏杰, 等. 中国农业面源污染形势估计及控制对策[J]. 中国农业科学, 2004, 37(7): 1008–1017. Zhang W L, Wu S X, Ji H J, et al. Estimation of agricultural non-point source pollution in China and the alleviating strategies[J]. Scientia agricultura sinica, 2004, 37(7): 1008–1017.

    Zhang W L, Wu S X, Ji H J, et al. Estimation of agricultural non-point source pollution in China and the Alleviating Strategies[J]. Scientia Agricultura Sinica, 2004, 37(7): 1008–1017.
    [11]
    Wang D, Huang J, Nie L, et al. Integrated crop management practices for maximizing grain yield of double-season rice crop[J]. Scientific Reports, 2017, 7: 38982. DOI: 10.1038/srep38982
    [12]
    石全红, 刘建刚, 王兆华, 等. 南方稻区水稻产量差的变化及其气候影响因素[J]. 作物学报, 2012, 38(5): 896–903. Shi Q H, Liu J G, Wang Z H, et al. Change of rice yield gaps and influential climatic factors in Southern China[J]. Acta Agronomica Sinica, 2012, 38(5): 896–903.

    Shi Q H, Liu J G, Wang Z H, et al. Change of rice yield gaps and influential climatic factors in Southern China[J]. Acta Agronomica Sinica, 2012, 38(5): 896–903.
    [13]
    Liu L, Zhu Y, Tang L, et al. Impacts of climate changes, soil nutrients, variety types and management practices on rice yield in East China: A case study in the Taihu region[J]. Field Crops Research, 2013, 149: 40–48. DOI: 10.1016/j.fcr.2013.04.022
    [14]
    曾希柏, 陈同斌, 胡清秀, 等. 中国粮食生产潜力和化肥增产效率的区域分异[J]. 地理学报, 2002, 57(5): 539–546. Zeng X B, Chen T B, Hu Q X, et al. Grain productivity and its potential as related to fertilizer consumption among different counties of China[J]. Acta Geographica Sinica, 2002, 57(5): 539–546. DOI: 10.11821/xb200205005

    Zeng X B, Chen T B, Hu Q X, et al. Grain productivity and its potential as related to fertilizer consumption among different counties of China[J]. Acta Geographica Sinica, 2002, 57(5): 539-539. DOI: 10.11821/xb200205005
    [15]
    韩天富, 马常宝, 黄晶, 等. 基于Meta分析中国水稻产量对施肥的响应特征[J]. 中国农业科学, 2019, 52(11): 1918–1929. Han T F, Ma C B, Huang J, et al. Variation in rice yield response to fertilization in China: Meta-analysis[J]. Scientia Agricultura Sinica, 2019, 52(11): 1918–1929.

    Han T F, Ma C B, Huang J, et al. Variation in rice yield response to fertilization in China: Meta-analysis[J]. Scientia Agricultura Sinica, 2019, 52(11): 1918–1929.
    [16]
    梁涛, 陈轩敬, 赵亚南, 等. 四川盆地水稻产量对基础地力与施肥的响应[J]. 中国农业科学, 2015, 48(23): 4759–4768. Liang T, Chen X J, Zhao Y N, et al. Response of rice yield to inherent soil productivity of paddies and fertilization in Sichuan Basin[J]. Scientia Agricultura Sinica, 2015, 48(23): 4759–4768. DOI: 10.3864/j.issn.0578-1752.2015.23.017

    Liang T, Chen J X, Zhao Y N, et al. Response of rice yield to inherent soil productivity of paddies and fertilization in Sichuan Basin [J]. Scientia Agricultura Sinica, 2015, 48(23): 4759-4768. DOI: 10.3864/j.issn.0578-1752.2015.23.017
    [17]
    黄琦. 基于“3414”田间试验的吉林省水稻施肥效果分析[D]. 长春吉林: 吉林农业大学硕士学位论文, 2016.

    Huang Q. Effect analysis of fertilization on rice in Jilin Province based on “3414” field experiment[D]. Jilin, Changchun: MS Thesis of Jilin Agricultural University, 2016.
    [18]
    王姣琳, 徐新朋, 杨兰芳, 等. 长江流域中稻产量、肥料增产效应及利用率特征[J]. 植物营养与肥料学报, 2021, 27(6): 919–928. Wang J L, Xu X P, Yang L F, et al. Characteristics of middle-season rice yield, fertilizer increase yield effect and use efficiency in the Yangtze Valley[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(6): 919–928. DOI: 10.11674/zwyf.20564

    Wang J L, Xu X P, Yang L F, et al. Characteristics of middle-season rice yield, fertilizer increase yield effect and use efficiency in the Yangtze Valley[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(6): 919–928. DOI: 10.11674/zwyf.20564
    [19]
    徐霞, 赵亚南, 黄玉芳, 等. 河南省玉米施肥效应对基础地力的响应[J]. 植物营养与肥料学报, 2019, 25(6): 991–1001. Xu X, Zhao Y N, Huang Y F, et al. Response of fertilization effect of maize to inherent soil productivity in Henan Province[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(6): 991–1001.

    Xu X, Zhao Y N, Huang Y F, et al. Response of fertilization effect of maize to inherent soil productivity in Henan Province[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(6): 991-1001.
    [20]
    Yang X L, Lu Y L, Ding Y, et al. Optimising nitrogen fertilisation: A key to improving nitrogen-use efficiency and minimising nitrate leaching losses in an intensive wheat/maize rotation (2008–2014)[J]. Field Crops Research, 2017, 206: 1–10. DOI: 10.1016/j.fcr.2017.02.016
    [21]
    Lobell D B, Cassman K G, Field C B. Crop yield gaps: Their importance, magnitudes and causes[J]. Annual Review of Environment and Resources, 2009, 34: 179–204. DOI: 10.1146/annurev.environ.041008.093740
    [22]
    韩天富, 李亚贞, 曲潇林, 等. 中国农田小麦和玉米产量时空演变及驱动因素[J]. 农业工程学报, 2022, 38(1): 100–108. Han T F, Li Y Z, Qu X L, et al. Spatio-temporal evolutions and driving factors of wheat and maize yields in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(1): 100–108.

    Han T F, Li Y Z, Qu X L, et al. Spatio-temporal evolutions and driving factors of wheat and maize yields in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(1): 100–108.
    [23]
    都江雪, 韩天富, 曲潇林, 等. 中国主要粮食作物磷肥偏生产力时空演变特征及驱动因素[J]. 植物营养与肥料学报, 2022, 28(2): 191–204. Du J X, Han T F, Qu X L, et al. Spatial-temporal evolution characteristics and driving factors of partial phosphorus productivity in major grain crops in China[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(2): 191–204. DOI: 10.11674/zwyf.2021398

    Du J X, Han T F, Qu X L, et al. Spatial-temporal evolution characteristics and driving factors of partial phosphorus productivity in major grain crops in China[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(2): 191–204. DOI: 10.11674/zwyf.2021398
    [24]
    Tittonell P, Vanlauwe B, Corbeels M, et al. Yield gaps, nutrient use efficiencies and responses to fertilisers by maize across heterogeneous smallholder farms in Western Kenya[J]. Plant and Soil, 2008, 313(1/2): 19–37.
    [25]
    曾祥明, 韩宝吉, 徐芳森, 等. 不同基础地力土壤优化施肥对水稻产量和氮肥利用率的影响[J]. 中国农业科学, 2012, 45(14): 2886–2894. Zeng X M, Han B J, Xu F S, et al. Effect of optimized fertilization on grain yield of rice and nitrogen use efficiency in paddy fields with different basic soil fertilities[J]. Scientia Agricultura Sinica, 2012, 45(14): 2886–2894. DOI: 10.3864/j.issn.0578-1752.2012.14.011

    Zeng X M, Han B J, Xu F S, et al. Effect of optimized fertilization on grain yield of rice and nitrogen use efficiency in paddy fields with different basic soil fertilities[J]. Scientia Agricultura Sinica, 2012, 45(14): 2886-2894. DOI: 10.3864/j.issn.0578-1752.2012.14.011
    [26]
    侯萌瑶, 张丽, 王知文, 等. 中国主要农作物化肥用量估算[J]. 农业资源与环境学报, 2017, 34(4): 360–367. Hou M Y, Zhang L, Wang Z W, et al. Estimation of fertilizer usage from main crops in China[J]. Journal of Agricultural Resources and Environment, 2017, 34(4): 360–367.

    Hou M Y, Zhang L, Wang Z W, et al. Estimation of fertilizer usage from main crops in China [J]. Journal of Agricultural Resources and Environment, 2017, 34(4): 360–367.
    [27]
    全国农业技术推广服务中心. 土壤分析技术规范(第2版)[M]. 北京: 中国农业出版社, 2006.

    National Agricultural Technology Extension and Service Center. Technical specification for soil analysis(2nd edition)[M]. Beijing: China Agriculture Press, 2006.
    [28]
    Chen Y, Wang P, Zhang Z, et al. Rice yield development and the shrinking yield gaps in China, 1981–2008[J]. Regional Environmental Change, 2017, 4: 1–12.
    [29]
    Zhang T, Yang X, Wang H, et al. Climatic and technological ceilings for Chinese rice stagnation based on yield gaps and yield trend pattern analysis[J]. Global Change Biology, 2014, 20(1): 1289–1298.
    [30]
    王伟妮, 鲁剑巍, 鲁明星, 等. 湖北省早、中、晚稻施氮增产效应及氮肥利用率研究[J]. 植物营养与肥料学报, 2011, 17(3): 545–553.

    Wang W N, Lu J W, Lu M X, et al. Effect of nitrogen fertilizer application and nitrogen use efficiency of early, middle and late rice in Hubei Province[J]. Journal of Plant Nutrition and Fertilizers, 2011, 17(3): 545–553.
    [31]
    张智, 王伟妮, 李昆, 等. 四川省不同区域水稻氮肥施用效果研究[J]. 土壤学报, 2015, 52(1): 234–241. Zhang Z, Wang W N, Li K, et al. Effects of nitrogen fertilization on rice in different regions of Sichuan Province[J]. Acta Pedologica Sinica, 2015, 52(1): 234–241.

    Zhang Z, Wang W N, Li K, et al. Effects of nitrogen fertilization on rice in differentregions of Sichuan Province[J]. Acta Pedologica Sinica, 2015, 52(1): 234–241.
    [32]
    武良. 基于总量控制的中国农业氮肥需求及温室气体减排潜力研究[D]. 北京: 中国农业大学博士学位论文, 2014.

    Wu L. Nitrogen fertilizer demand and greenhouse gas mitigation potential under nitrogen limiting conditions for Chinese agriculture production[D]. Beijing: PhD Dissertation of China Agricultural University, 2014.
    [33]
    黄晶, 刘立生, 马常宝, 等. 近30年中国稻区氮素平衡及氮肥偏生产力的时空变化[J]. 植物营养与肥料学报, 2020, 26(6): 987–998. Huang J, Liu L S, Ma C B, et al. Spatial-temporal variation of nitrogen balance and partial factor productivity of nitrogen in rice region of China over the past 30 years[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(6): 987–998.

    Huang J, Liu L S, Ma C B, et al. Spatial-temporal variation of nitrogen balance and partial factor productivity of nitrogen in rice region of China over the past 30 years[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(6): 987–998.
    [34]
    Larson B A, Frisvold G B. Fertilizers to support agricultural development in sub-Saharan Africa: What is needed and why[J]. Food Policy, 1996, 21(6): 509–525. DOI: 10.1016/0306-9192(96)00021-8
    [35]
    Mueller N D, Gerber J S, Johnston M, et al. Closing yield gaps through nutrient and water management[J]. Nature, 2012, 490: 254–257. DOI: 10.1038/nature11420
    [36]
    彭少兵, 黄见良, 钟旭华, 等. 提高中国稻田氮肥利用率的研究策略[J]. 中国农业科学, 2002, 35(9): 1095–1103. Peng S B, Huang J L, Zhong X H, et al. Research strategy in improving fertilizer-nitrogen use efficiency of irrigated rice in China[J]. Scientia Agricultura Sinica, 2002, 35(9): 1095–1103. DOI: 10.3321/j.issn:0578-1752.2002.09.012

    Peng S B, Huang J L, Zhong X H, et al. Research strategy in improving fertilizer-nitrogen use efficiency of irrigated rice in China[J]. Scientia Agricultura Sinica, 2002, 35(9): 1095–1103. DOI: 10.3321/j.issn:0578-1752.2002.09.012
    [37]
    Ren K Y, Xu M G, Li R, et al. Optimizing nitrogen fertilizer use for more grain and less pollution[J]. Journal of Cleaner Production, 2022, 360: 132180. DOI: 10.1016/j.jclepro.2022.132180
    [38]
    都江雪, 柳开楼, 黄晶, 等. 中国稻田土壤有效磷时空演变特征及其对磷平衡的响应[J]. 土壤学报, 2021, 58(2): 476–486. Du J X, Liu K L, Huang J, et al. Spatio-temporal evolution characteristics of soil available phosphorus and its response to phosphorus balance in paddy soil in China[J]. Acta Pedologica Sinica, 2021, 58(2): 476–486.

    Du J X, Liu K L, Huang J, et al. Spatio-temporal evolution characteristics of soil available phosphorus and its response to phosphorus balance in paddy soil in China[J]. Acta Pedologica Sinica, 2021, 58(2): 476–486.
    [39]
    李鹏, 张敬智, 魏亚, 等. 配方施肥及磷肥后移对单季稻磷素利用效率、产量和经济效益的影响[J]. 中国水稻科学, 2016, 30(1): 85–92. Li P, Zhang J Z, Wei Y, et al. Effect of formulated fertilization and postponed application of phosphorus fertilizer on phosphorus utilization efficiency, grain yield and economic benefit of single-cropping rice[J]. Chinese Journal of Rice Science, 2016, 30(1): 85–92.

    Li P, Zhang J Z, Wei Y, et al. Effect of formulated fertilization and postponed application of phosphorus fertilizer on phosphorus utilization efficiency, grain yield and economic benefit of single-cropping rice[J]. Chinese Journal of Rice Science, 2016, 30(1): 85–92.
    [40]
    曹娜, 陈小荣, 贺浩华, 等. 幼穗分化期喷施磷钾肥对早稻抵御低温及产量和生理特性的影响[J]. 应用生态学报, 2017, 28(11): 3562–3570. Cao N, Chen X R, He H H, et al. Effects of spraying P and K fertilizers during panicle primordium differentiation stage on cold resistance, yield and physiological characteristics of early rice[J]. Chinese Journal of Applied Ecology, 2017, 28(11): 3562–3570.

    Cao N, Chen X R, He H H, et al. Effects of spraying P and K fertilizers during panicle primordium differentiation stage on cold resistance, yield and physiological characteristics of early rice[J]. Chinese Journal of Applied Ecology, 2017, 28(11): 3562–3570.
    [41]
    Peng S, Buresh R J, Huang J, et al. Improving nitrogen fertilization in rice by site specific N management. A review[J]. Agronomy for Sustainable Development, 2010, 30(1): 649–656.
    [42]
    张福锁, 王激清, 张卫峰, 等. 中国主要粮食作物肥料利用率现状与提高途径[J]. 土壤学报, 2008, 45(5): 915–924. Zhang F S, Wang J Q, Zhang W F, et al. Nutrient use efficies of major cereal crops in China and measures for improvement[J]. Acta Pedologica Sinica, 2008, 45(5): 915–924.

    Zhang F S, Wang J Q, Zhang W F, et al. Nutrient use efficies of major cereal crops in China and measures for improvement[J]. Acta Pedologica Sinica, 2008, 45(5): 915–924.
    [43]
    柳开楼, 胡志华, 马常宝, 等. 基于红壤稻田肥力与相对产量关系的水稻生产力评估[J]. 植物营养与肥料学报, 2018, 24(6): 1425–1434. Liu K L, Hu Z H, Ma C B, et al. Assessment of productivity of red paddy soil based on soil fertility and relative yield[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(6): 1425–1434.

    Liu K L, Hu Z H, Ma C B, et al. Assessment of productivity of red paddy soil based on soil fertility and relative yield[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(6): 1425–14.
  • Related Articles

    [1]XIAO Da-kang, DING Zi-juan, HU Ren, YANG Shuo, NIE Xi-bin, HUANG Fei, LIU Ruo-wei, HOU Jun, ZHANG Wei-feng, ZHAO Shuai-xiang. A suitable replacement ratio of organic nitrogen for high rice yield and quality under different soil fertility levels and nitrogen application rates[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(10): 1804-1815. DOI: 10.11674/zwyf.2022025
    [2]MENG Fan-hao, GAO Ju-lin, YU Xiao-fang, WANG Zhi-gang, HU Shu-ping, QING Ge-er, SUN Ji-ying, QU Jia-wei. Inprovent of biochemical property of surface soil by combined application of biochar with nitrogen fertilizer[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(5): 1214-1226. DOI: 10.11674/zwyf.18154
    [3]ZHUANG Zhen-dong, LI Xu-hua. Effects of humic acid nitrogen fertilization on corn yield, nitrogen utilization and nitrogen loss[J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(5): 1232-1239. DOI: 10.11674/zwyf.15512
    [4]JIANG Yuan-hua, ZHAO Ke, XU Jun-wei, SUN Jian-jun, ZHANG Hong-cheng, DAI Qi-gen, XU Ke, HUO Zhong-yang, WEI Hai-yan, GUO Bao-wei, GAO Hui. Effect of nitrogen fertilizer application rate on the eating characteristic and textural properties of japonica softer rice[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(2): 288-295. DOI: 10.11674/zwyf.2015.0202
    [5]ZHOU Jiang-ming, ZHAO Lin, DONG Yue-yong, XU Jin, BIAN Wu-ying, MAO Yang-cang, ZHANG Xiu-fu. Nitrogen and transplanting density interactions on the rice yield and N use rate[J]. Journal of Plant Nutrition and Fertilizers, 2010, 16(2): 274-281. DOI: 10.11674/zwyf.2010.0203
    [6]Zhang Jian-xin, LI Qiang, Xue Li-hua, Gan Yu-zhu. Effects of nitrogen fertilization on fibrous root distribution and activity in high yield sugar beet[J]. Journal of Plant Nutrition and Fertilizers, 2009, 15(4): 904-909. DOI: 10.11674/zwyf.2009.0425
    [7]YANG En-qiong, HUANG Jian-guo, HE Teng-bing, YUAN Ling. Effect of nitrogen fertilization on yield and nutritional qualities of food maize[J]. Journal of Plant Nutrition and Fertilizers, 2009, 15(3): 509-513. DOI: 10.11674/zwyf.2009.0303
    [8]ZHU Zhao-liang. On the methodology of recommendation for the application rate of chemical fertilizer nitrogen to crops[J]. Journal of Plant Nutrition and Fertilizers, 2006, 12(1): 1-4. DOI: 10.11674/zwyf.2006.0101
    [9]WANG Xiao-li, ZHOU Jian-bin, ZHENG Xian-feng, LI Sheng-xiu    . Nutrient releasing characteristics of controlled-release nitrogen fertilizer and its rational application[J]. Journal of Plant Nutrition and Fertilizers, 2003, 9(4): 390-395. DOI: 10.11674/zwyf.2003.0402
    [10]XIONG You sheng, CHEN Ming liang, YU Yong xi, DENG Bo er. The fate of nitrogen forms of nitrogen fertilizers under alternate leaching and drying conditions[J]. Journal of Plant Nutrition and Fertilizers, 2001, 7(2): 153-158. DOI: 10.11674/zwyf.2001.0206

Catalog

    Article views (985) PDF downloads (127) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return