• ISSN 1008-505X
  • CN 11-3996/S
JIANG Bai-yang, BAI Wen-bin. Physiological and metabolic responses of sorghum seedlings to drought stress revealed by transcriptomic analysis[J]. Journal of Plant Nutrition and Fertilizers, 2024, 30(10): 1934-1951. DOI: 10.11674/zwyf.2024142
Citation: JIANG Bai-yang, BAI Wen-bin. Physiological and metabolic responses of sorghum seedlings to drought stress revealed by transcriptomic analysis[J]. Journal of Plant Nutrition and Fertilizers, 2024, 30(10): 1934-1951. DOI: 10.11674/zwyf.2024142

Physiological and metabolic responses of sorghum seedlings to drought stress revealed by transcriptomic analysis

More Information
  • Received Date: March 25, 2024
  • Accepted Date: September 10, 2024
  • Available Online: September 23, 2024
  • Objectives 

    This study investigated the physiological metabolisms and gene expression patterns of sorghum seedlings under different durations of drought stress, aiming to identify drought-resistant genes in sorghum, and exploring the molecular response mechanisms of sorghum to drought stress.

    Methods 

    Using seedlings of the drought-tolerant variety Tx625B as the experimental material, we simulated drought stress during the seedling stage by applying 25% PEG-6000, measured the physiological indices and nutrient content of the leaves at 0 h, 12 h, and 24 h after the treatment. Subsequently, we utilized transcriptome sequencing and bioinformatics techniques to analyze the gene expression profiles of the leaves, aiming to uncover the biological functions and major metabolic pathways of differentially expressed genes (DEGs). This process facilitated the screening of DEGs associated with drought resistance.

    Results 

    Under different durations of drought stress, drought-resistant materials consistently maintain high peroxidase and catalase activities, as well as strong free radical scavenging capabilities. This effectively eliminates excess reactive oxygen species and hydrogen peroxide within the plant, thereby reducing the damage caused by external stress. Drought stress induces changes in the nitrogen, phosphorus, and potassium content of drought-resistant materials, with a more pronounced effect on nitrogen content. A total of 17396 drought responsive genes were detected through sequencing and alignment of three comparison groups: 0 h vs 12 h, 0 h vs 24 h, and 12 h vs 24 h, including 8253 upregulated genes and 9143 downregulated genes. After analyzing the functions of the common differentially expressed genes, we identified several categories of genes that play crucial roles in the drought response during the seedling stage of sorghum: peroxidase, chlorophyll a-b binding proteins, photosystem proteins, and other chloroplast-related enzymes and protein-coding genes. Through enrichment analysis of differentially expressed genes GO and KEGG, it was found that drought stress has a significant impact on amino acid metabolism, secondary metabolite biosynthesis, carbohydrate and lipid metabolism, and plant signal transduction in sorghum seedlings. Differentially expressed genes are significantly enriched in metabolic pathways such as photosynthesis, dark response in photosynthetic organisms, and carbohydrate metabolism.

    Conclusions 

    The drought resistance regulation process of sorghum involves the coordinated interaction of multiple biological processes, which improves drought resistance by regulating photosynthetic rate and soluble sugar accumulation. The enrichment of differentially expressed genes in the amino acid metabolism pathway, photosynthesis pathway, and sugar metabolism pathway is an important reason for the strong drought resistance regulation ability of sorghum drought resistant varieties.

  • [1]
    Ahmad Z, Waraich E A, Akhtar S, et al. Physiological responses of wheat to drought stress and its mitigation approaches[J]. Acta Physiologiae Plantarum, 2018, 40(4): 80. DOI: 10.1007/s11738-018-2651-6
    [2]
    Langridge P, Reynolds M. Breeding for drought and heat tolerance in wheat[J]. Theoretical and Applied Genetics, 2021, 134(6): 1−17.
    [3]
    洪江涛, 吴建波, 王小丹. 全球气候变化对陆地植物碳氮磷生态化学计量学特征的影响[J]. 应用生态学报, 2013, 24(9): 2658−2665.

    Hong J T, Wu J B, Wang X D. Effects of global climate change on the C, N, and P stoichiometry of terrestrial plants[J]. Chinese Journal of Applied Ecology, 2013, 24(9): 2658−2665.
    [4]
    王玉斌, 牛皓, 吕鑫, 等. 旱敏感型与耐旱型高粱材料对干旱胁迫反应的转录组差异分析[J]. 分子植物育种, 2022, 20(20): 6656−6667.

    Wang Y B, Niu H, Lü X, et al. Analysis of transcriptome differences of drought-sensitive and drought tolerant sorghum materials to drought stress[J]. Molecular Plant Breeding, 2022, 20(20): 6656−6667.
    [5]
    吕金印, 山仑, 高俊凤, 等. 干旱对小麦灌浆期旗叶光合等生理特性的影响[J]. 干旱地区农业研究, 2003, 21(2): 77−81.

    Lü J Y, Shan L, Gao J F, et al. Effect of drought stresson photosynthesis and some other physiological charaeteristies in flag leaf during grian filling of wheat[J]. Agricultural Resecrch in the Arid Areas, 2003, 21(2): 77−81.
    [6]
    张笑笑, 潘映红, 任富莉, 等. 基于多重表型分析的准确评价高粱抗旱性方法的建立[J]. 作物学报, 2019, 45(11): 1735−1745.

    Zhang X X, Pan Y H, Ren F L, et al. Establishment of an accurate evaluation method for drought resistance based on multilevel phenotype analysis in sorghum[J]. Acta Agronnmica Sinica, 2019, 45(11): 1735−1745.
    [7]
    李博, 田晓莉, 王刚卫, 等. 苗期水分胁迫对玉米根系生长杂种优势的影响[J]. 作物学报, 2008, 34(4): 662−668.

    Li B, Tian X L, Wang G W, et al. Heterosis of root growth in maize (Zea mays L.) seedling under water stress[J]. Acta Agronnmica Sinica, 2008, 34(4): 662−668.
    [8]
    吴奇, 周宇飞, 高悦, 等. 不同高粱品种萌发期抗旱性筛选与鉴定[J]. 作物学报, 2016, 42(8): 1233−1246. DOI: 10.3724/SP.J.1006.2016.01233

    Wu Q, Zhou Y F, Gao Y, et al. Screening and identification for drought resistance during germination in sorghum cultivars[J]. Acta Agronomica Sinica, 2016, 42(8): 1233−1246. DOI: 10.3724/SP.J.1006.2016.01233
    [9]
    张木清, 陈如凯. 作物抗旱分子生理与遗传改良[M]. 北京: 科学出版社, 2005.

    Zhang M Q, Chen R K. Molecular physiology and genetic improvement of drought resistance in crops[D]. Beijing: Science Press, 2005.
    [10]
    江佰阳, 白文斌, 张建华, 等. 高粱抗旱性鉴定方法及分子生物学研究进展[J]. 生物技术通报, 2021, 37(4): 260−272.

    Jiang B Y, Bai W B, Zhang J H, et al. Advances in studies on identification methods and molecular biology of drought resistance in sorghum[J]. Biontechnology Bulletin, 2021, 37(4): 260−272.
    [11]
    Min H W, Chen C X, Wei S W, et al. Identification of drought tolerant mechanisms in maize seedlings based on transcriptome analysis of recombination inbred lines[J]. Frontiers in Plant Science, 2016, 7: 1080.
    [12]
    Zenda T, Liu S T, Wang X, et al. Key maize drought-responsive genes and pathways revealed by comparative transcriptome and physiological analyses of contrasting inbred lines[J]. International Journal of Molecular Sciences, 2019, 20(6): 1268. DOI: 10.3390/ijms20061268
    [13]
    Chaichi M, Sanjarian F, Razavi K, et al. Analysis of transcriptional responses in root tissue of bread wheat landrace (Triticum aestivum L.)reveals drought avoidance mechanisms under water scarcity[J]. PLoS ONE, 2019, 14(3): 21−26.
    [14]
    Krugman T, Chaguev, Peleg Z, et al. Multilevel regulation and signalling processes associated with adaptation to terminaldrought in wild emmer wheat[J]. Functional & Integrative Genomics, 2010, 10(2): 167−186.
    [15]
    曾倩倩, 刘岩, 朱墨, 邱宗波. 基于转录组测序挖掘小麦叶片抗旱相关基因[J]. 广东农业科学, 2022, 49(2): 1−8.

    Zeng Q Q, Liu Y, Zhu M, Qiu Z B. Screening of candidate genes resistant to drought stress in wheat leaves based on transcriptome sequencing[J]. Guangdong Agricultural Sciences, 2022, 49(2): 1−8.
    [16]
    Zhang L, Xiao S S, Li W Q, et al. Overexpression of a harpin-encoding gene hrf1 in rice enhances drought tolerance[J]. Journal of Experimental Botany, 2011, 62(12): 4229−4238. DOI: 10.1093/jxb/err131
    [17]
    Uga Y, Sugimoto K, Ogawa S, et al. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions[J]. Nature Genetics, 2013, 45(9): 1097−1102. DOI: 10.1038/ng.2725
    [18]
    Zhou Y, Yang P, Cui F L, et al. Transcriptome analysis of salt stress responsiveness in the seedlings of Dongxiang wild rice (Oryza rufipogon Griff. )[J]. PLoS ONE, 2016, 11(1): e0146242. DOI: 10.1371/journal.pone.0146242
    [19]
    Xu W Y, Tang W S, Wang C X, et al. SiMYB56 confers drought stress tolerance in transgenic rice by regulating lignin biosynthesis and ABA signaling pathway[J]. Frontiers in Plant Science, 2020, 11: 785.
    [20]
    Qi X, Xie S J, Liu Y W, Yi F. Genome-wide annotation of genes and noncoding RNAs of foxtail millet in response to simulated drought stress by deep sequencing[J]. Plant Molecular Biology, 2013, 83(4/5): 459−473.
    [21]
    Yadav A, Khan Y, Prasad M. Dehydration-responsive miRNAs in foxtail millet: Genome-wide identification, characterization and expression profiling[J]. Planta, 2016, 243(3): 749−766. DOI: 10.1007/s00425-015-2437-7
    [22]
    Wang Y Q, Li L, Tang S, et al. Combined small RNA and degradome sequencing to identify miRNAs and their targets in response to drought in foxtail millet[J]. BMC Genet, 2016, 17: 57.
    [23]
    Tang S, Li L, Wang Y Q, et al. Genotype-specific physiological and transcriptomic responses to drought stress in Setaria italica (an emerging model for Panicoideae grasses)[J]. Scientific Reports, 2017, 7(1): 10009. DOI: 10.1038/s41598-017-08854-6
    [24]
    于国红, 刘朋程, 郝洪波,等. 不同基因型谷子对干旱胁迫的调控机制[J]. 植物营养与肥料学报, 2022, 28(1): 157−167.

    Wang Q G, Li Z, Guan Y A, et al. Regulation mechanism of drought resistance in different genotypes of foxtail millet[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(1): 157−167.
    [25]
    郝陆洋. 基于玉米根系转录组测序的耐旱基因挖掘及 Zmhdz6 的功能分析[J]. 北京: 中国农业科学院硕士学位论文, 2018.

    Hao L Y. Discovery of drought tolerance genes based on rna-sequencing of maize roots and functional analysis of Zmhdz6[D]. Beijing: MS Thesis of Chinese Academy of Agricultural Sciences, 2018.
    [26]
    赵志军, 刘延波, 李海登, 等. PEG胁迫下玉米转录组差异性分析[J]. 种子, 39(2) : 17−21.

    Zhao Z J, Liu Y B, Li H D, et al. Difference analysis of maize transcriptome under PEG stress[J]. Seed, 2020, 39(2): 17−21.
    [27]
    李珊. 基于转录组和共表达网络分析的谷子抗旱关键基因鉴定[D]. 山西太原: 山西农业大学硕士学位论文, 2022.

    Li S. Identification of drought resistant key genes in Setaria italica based on transcriptome and coexpression network analysis[D]. Taiyuan, Shanxi: MS Thesis of Shanxi Agricultural University, 2022.
    [28]
    翟南鑫. 山栏稻抗旱相关基因转录组分析[D]. 海南海口: 海南大学硕士学位论文, 2020.

    Zhai N X. Transcriptome analysis of drought resistance related genes in Shanlan upland rice[D]. Haikou, Hainan: MS Thesis of Hainan University, 2020.
    [29]
    杨阳, 申双和, 马绎皓, 等. 干旱对作物生长的影响机制及抗旱技术的研究进展[J]. 科技通报, 2020, 36(1): 8−15.

    Yang Y, Shen S H, Ma Y H, et al. Advances in the effects of drought on crop growth and research on drought resistance techniques[J]. Bulletin of Science and Technology, 2020, 36(1): 8−15.
    [30]
    Abdelghany S E, Ullah F, Ben-hur A, Reddy A S N. Transcriptome analysis of drought-resistant and drought-sensitive sorghum (Sorghum bicolor) genotypes in response to PEG-induced drought stress[J]. International Journal of Molecular Sciences, 21(3): 772.
    [31]
    何欢. 干旱胁迫下高粱根和叶的表观基因组学分析[D]. 湖北宜昌: 三峡大学硕士学位论文, 2023.

    He H. Epigenome analysis of sorghum root and leaf under drought stress[D]. Yichang, Hubei: MS Thesis of China Three Gorges University, 2023.
    [32]
    邵丹阳. 干旱胁迫下甜高粱(辽甜一)转录组分析[D]. 河南郑州: 河南大学硕士学位论文, 2018.

    Shao D Y. Transcriptome analysis of Sorghum dochna (LT-1) under water stress[D]. Zhengzhou, Henan: MS Thesis of Henan University, 2018.
    [33]
    王志恒, 魏玉清, 赵延蓉, 王悦娟. 基于转录组学比较研究甜高粱幼苗响应干旱和盐胁迫的生理特征[J]. 草业学报, 2022, 31(3): 71−84.

    Wang Z H, Wei Y Q, Zhao Y R , Wang Y J. A transcriptomic study of physiological responses to drought and salt stress in sweet sorghum seedlings[J]. Acta Prataculturae Sinica, 2022, 31(3): 71−84.
    [34]
    Zhang C M, Shi S, Liu Z, et al. Drought tolerance in alfalfa (Medicago sativa L.) varieties is asociated with enhanced antioxidative protection and declined lipid peroxidation[J]. Journal of Plant Physiology, 2019, 232: 226-240.
    [35]
    黄瑞冬, 孙璐, 肖木辑, 等. 持绿型高梁B35灌浆期对干旱的生理生化响应[J]. 作物学报, 2009, 36(3): 560−565.

    Huang R D, Sun L , Xiao M J, et al. Physiological and biochemical responses to drought during filling stage in stay green sorghum B35[J]. Acta Agronomica Sinica, 2009, 36(3): 560−565.
    [36]
    张玉霞, 李珍, 朱爱民, 郭园. 不同饲用高粱品种苗期抗旱生理特性研究[J]. 内蒙古民族大学学报(自然科学版), 2020, 35(1): 69−73.

    Zhang Y X, Li Z, Zhu A M, Guo Y. Physiological characteristics of drought resistance in seedling stage of feed Sorghum varieties[J]. Journal of Inner Mongolia Minzu University (Natural Sciences Edition), 2020, 35(1): 69−73.
    [37]
    Hacke U G, Plavcová L, Almeida-Rodriguez A, et al. Influence of nitrogen fertilization on xylem traits and aquaporin expression in stems of hybrid poplar[J]. Tree Physiology, 30(8): 1016−1025.
    [38]
    Veneklaas E J, Lambers H, Bragg J, et al. Opportunities for improving phosphorus-use efficiency incrop plants[J]. New Phytologist, 2012, 195(2): 306−320. DOI: 10.1111/j.1469-8137.2012.04190.x
    [39]
    张立新. 氮、钾、甜菜碱提高作物抗旱性的效果及生理机制[D]. 陕西杨凌: 西北农林科技大学博士学位论文, 2006.

    Zhang L X. Effects of N、K and glycinebetaineon raising crop resistance to drought and the physiological mechanism[D]. Yanglin, Shaanxi: PhD Dissertation of Northwest A&F University, 2006.
    [40]
    Aigerim S, Sudhakar S, Assylay K, et al. Early senescence in older leaves of low nitrate-grown Atxdh1 uncovers a role for purine catabolism in N supply[J]. Plant Physiology, 178(3): 1027−1044.
    [41]
    Krapp A. Plant nitrogen assimilation and its regulation: A complex puzzle with missing pieces[J]. Current Opinion in Plant Biology, 2015, 25: 115−122. DOI: 10.1016/j.pbi.2015.05.010
    [42]
    王嘉文, 吴刚, 徐云敏. 谷氨酰胺合成酶在植物氮同化及再利用中的研究进展[J]. 分子植物育种, 2019, 17(4): 1373−1377.

    Wang J W, Wu G, Xu Y M. Research progress of glutamine synthetase in plant nitrogen assimilation and recycling[J]. Molecular Plant Breeding, 2019, 17(4): 1373−1377.
    [43]
    解芳, 翟国伟, 邹桂花, 陶跃之. 干旱胁迫对高粱苗期抗旱生理特性的影响[J]. 浙江农业学报, 2012, 24(5): 753−757. DOI: 10.3969/j.issn.1004-1524.2012.05.001

    Xie F, Zhai G W, Zou G H, Tao Y Z. Effect of drought stress on physiological characteristics of sorghum at seedling stage[J]. Acta Agriculturae Zhejiangensis, 2012, 24(5): 753−757. DOI: 10.3969/j.issn.1004-1524.2012.05.001
    [44]
    Less H, Galili G. Principal transcriptional programs regulating plant amino acid metabolism in response to abiotic stresses[J]. Plant Physiology, 2008, 147(1): 316−330. DOI: 10.1104/pp.108.115733
    [45]
    李文巧, 徐根娣, 吴玉环, 等. 水分胁迫对长序榆幼苗脂质过氧化及抗氧化系统的影响[J]. 水土保持学报, 2012, 26(4): 261−266.

    Li W Q, Xu G D, Wu Y H, et al. Effects of water stress on lipid peroxidation and antioxidant system in leaves of Ulmus elongata[J]. Journal of Soil and Water Conservation, 2012, 26(4): 261−266.
    [46]
    师进霖, 陈恩波, 姜跃丽. PEG-6000渗透胁迫对甜瓜幼苗叶片渗透调节物质及膜脂过氧化的影响[J]. 西北农业学报, 2010, 19(1): 186−189.

    Shi J L, Chen E B, Jiang Y L. Effect of osmotic stress with PEG6000 on smolytes and lipid peroxidation in muskmelon seedling leaves[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2010, 19(1): 186–189.
    [47]
    秦嗣军, 赵德英, 吕德国, 等. 水分胁迫对寒富苹果叶片碳氮代谢的影响[J]. 吉林农业大学学报, 2010, 32(4): 402−406, 412.

    Qin S J, Zhao D Y, Lü D G, et al. Effects of water stress on carbon and nitrogen metabolism of Hanfu apple leaves[J]. Journal of Jilin Agricultural University, 2010, 32(4): 402−406, 412.

Catalog

    Article views (190) PDF downloads (50) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return