Citation: | LIU Yan, WANG Hai-fei, ZHU Gao-di, WEI Huan-huan, HE Yan-fang, GAO Bing, SU Fang, JU Xiao-tang. Dynamics of gaseous production after addition of carbon and nitrogen in paddy and vegetable soils[J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(2): 326-336. DOI: 10.11674/zwyf.14567 |
[null] |
[1] Robertson G P, Paul E A, Harwood R R. Greenhouse gases in intensive agriculture: contributions of individual gases to the radiative forcing of the atmosphere[J]. Science, 2000, 289(5486): 1922-1925.
[2] Chhabrn A. Carbon and other biogeochemical cyeles[A]. Stocker T F, Qin D, Plattner G K, et al. Climate change 2013[C] UK: Cambodge University Press, 2013. 465-570. [3] Blackmer A M, Bremner J M. Inhibitory effect of nitrate on reduction of N2O to N2 by soil microorganisms[J]. Soil Biology and Biochemistry, 1978, 10(3): 187-191. [4] Smith K A, Arah J R M. Losses of nitrogen by denitrification and emissions of nitrogen oxides from soils[C].Proceedings of the Fertiliser Society, 1990, 299. 1-34. [5] Poth M, Focht D D. 15N kinetic analysis of N2O production by Nitrosomonas europaea: an examination of nitrifier denitrification[J]. Applied and Environmental Microbiology, 1985, 49(5): 1134-1141. [6] Wrage N, Van Groenigen J W, Oenema O, Baggs E M. A novel dual-isotope labelling method for distinguishing between soil sources of N2O[J]. Rapid Communications in Mass Spectrometry, 2005, 19(22): 3298-3306. [7] 王朝辉,宗志强,李生秀,陈宝明.蔬菜的硝态氮累积及菜地土壤的硝态氮残留[J].环境科学, 2002, 23(3): 79-83. Wang Z H, Zong Z Q, Li S X, Chen B M. Nitrate accumulation in vegetables and its residual in vegetable fields[J]. Environmental Science, 2002, 23(3): 79-83. [8] Lin X G, Yin R, Zhang H Y, et al. Changes of soil microbiological properties caused by land use changing from rice-wheat rotation to vegetable cultivation[J]. Environmental Geochemistry and Health, 2004, 26(2): 119-128. [9] 王朝辉, 宗志强, 李生秀. 菜地和一般农田土壤主要养分累积的差异[J]. 应用生态学报, 2002, 13(9): 1091-1094. Wang Z H, Zong Z Q, Li S X. Difference of several major nutrients accumulation in vegetable and cereal crop soils[J]. Chinese Journal of Applied Ecology, 2002, 13(9): 1091-1094. [10] 丁洪, 王跃思, 项虹艳, 李卫华. 菜田氮素反硝化损失与N2O 排放的定量评价[J]. 园艺学报, 2004, 31(6): 762-766. Ding H, Wang Y S, Xiang H Y, Li W H.Denitrification loss and N2O emission from nitrogen fertilizer applied to vegetable field[J]. Acta Horticulturae Sinica, 2004, 31(6): 762-766. [11] Guang X X, Xiao Y Y. Analysis and estimation of N2O emissions from croplands in China and its mitigation options[J]. Rural Eco-Environment, 2000, 16(4): 1-6. [12] Huang S, Pant H K, Lu J. Effects of water regimes on nitrous oxide emission from soils[J]. Ecological Engineering, 2007, 31(1): 9-15. [13] Yuan W L, Cao C G, Cheng J P, Xie N N. CH4 and N2O emissions and their GWPs assessment in intermittent irrigation rice paddy field[J]. Scientia Agricultura Sinica, 2008, 41(12): 4294-4300. [14] 李香兰, 徐华, 蔡祖聪. 稻田CH4和N2O排放消长关系及其减排措施[J]. 农业环境科学学报, 2008, 27(6): 2123-2130. Li X L, Xu H, Cai Z C. Trade-off relationship and mitigation options of methane and nitrous oxide emissions from rice paddy field[J]. Journal of Agro-Environment Science, 2008, 27(6): 2123-2130. [15] Zou J W, Huang Y, Zong L G, et al. Carbon dioxide, methane, and nitrous oxide emissions from a rice-wheat rotation as affected by crop residue incorporation and temperature[J]. Advances in Atmospheric Sciences, 2004, 21(5): 691-698. [16] Molstad L, Drsch P, Bakken L R. Robotized incubation system for monitoring gases (O2, NO, N2O, N2) in denitrifying cultures[J]. Journal of Microbiological Methods, 2007, 71(3): 202-211. [17] imek M, Cooper J E. The influence of soil pH on denitrification: progress towards the understanding of this interaction over the last 50 years[J]. European Journal of Soil Science, 2002, 53(3): 345-354. [18] 王小治, 孙伟, 尹微琴, 封克. pH升高对红壤硝化过程产生N2O的影响[J]. 土壤, 2009, 41(6): 962-967. Wang X Z, Sun W, Yin W Q, Feng K. Effects of pH on N2O emission from nitrification in acid soil[J]. Soils, 2009, 41(6): 962-967. [19] 邹建文, 黄耀, 宗良纲, 等. 稻田CO2、 CH4和N2O排放及其影响因素[J]. 环境科学学报, 2003, 23(6): 758-764. Zou J W, Huang Y, Zong L G, et al. A field study on CO2, CH4 and N2O emissions from rice paddy and impact factors[J]. Acta Scientiae Circumstantiae, 2003, 23(6): 758-764. [20] 阎宏亮, 张璇, 谢立勇, 等. 菜地土壤施用铵态氮肥后N2O排放来源及其动态[J]. 中国农业气象, 2014, 35(2): 141-148. Yan H L, Zhang X, Xie L Y, et al. Study on the pathway and dynamics of N2O emissions from the vegetable soil fertilized with ammonium nitrogen[J]. Chinese Journal of Agrometeorology, 2014, 35(2): 141-148. [21] Ju X, Lu X, Gao Z, et al. Processes and factors controlling N2O production in an intensively managed low carbon calcareous soil under sub-humid monsoon conditions[J]. Environmental Pollution, 2011, 159(4): 1007-1016. [22] 贾俊仙, 李忠佩, 车玉萍. 添加葡萄糖对不同肥力红壤性水稻土氮素转化的影响[J]. 中国农业科学, 2010, 43(8): 1617-1624. Jia J X, Li Z P, Che Y P. Effects of glucose addition on N transformations in paddy soils with a gradient of organic C content in subtropical China[J]. Scientia Agricultura Sinica, 2010, 43(8): 1617-1624. [23] 王海飞, 贾兴永, 高兵, 等. 不同土地利用方式土壤温室气体排放对碳氮添加的响应[J]. 土壤学报, 2013, 50(6): 1172-1182. Wang H F, Jia X Y, Gao B, et al. Response of greenhouse gas emission to application of carbon and nitrogen in soils different in land use[J]. Acta Pedologica Sinica, 2013, 50(6): 1172-1182. [24] 宋贺, 徐新超, 王敬国, 等. 设施菜田土壤剖面中的反硝化特征[J]. 植物营养与肥料学报, 2012,18(4): 860-867. Song H, Xu X C, Wang J G, et al. Characteristics of denitrification in different soil layers in a greenhouse vegetable cropping system[J]. Plant Nutrition and Fertilizer Science, 2012, 18(4): 860-867. [25] Mrkved P T, Drsch P, Bakken L R. The N2O product ratio of nitrification and its dependence on long-term changes in soil pH[J]. Soil Biology and Biochemistry, 2007, 39(8): 2048-2057. [26] 赵维, 蔡祖聪. 氮肥品种对亚热带土壤N2O排放的影响[J]. 土壤学报, 2009, 46(2): 248-254. Zhao W, Cai Z C. Effects of fertilizers on N2O emissions from subtropical soils in China[J]. Acta Pedologica Sinica, 2009, 46(2): 248-254. [27] Zumft W G. Cell biology and molecular basis of denitrification[J]. Microbiology and Molecular Biology Reviews, 1997, 61(4): 533-616. [28] Schreiber K, Krieger R, Benkert B, et al. The anaerobic regulatory network required for Pseudomonas aeruginosa nitrate respiration[J]. Journal of Bacteriology, 2007, 189(11): 4310-4314. [29] Gillam K M, Zebarth B J, Burton D L. Nitrous oxide emissions from denitrification and the partitioning of gaseous losses as affected by nitrate and carbon addition and soil aeration[J]. Canadian Journal of Soil Science, 2008, 88(2): 133-143. [30] 李贵桐, 赵紫娟, 黄元仿, 李保国. 秸秆还田对土壤氮素转化的影响[J]. 植物营养与肥料学报, 2002, 8(2): 162-167. Li G T, Zhao Z J, Huang Y F, Li B G. Effect of straw returning on soil nitrogen transformation[J]. Plant Nutrition and Fertilizer Science, 2002, 8(2): 162-167. [31] Philippot L, Andert J, Jones C M, et al. Importance of denitrifiers lacking the genes encoding the nitrous oxide reductase for N2O emissions from soil[J]. Global Change Biology, 2011, 17(3): 1497-1504. [32] 陈诺, 廖婷婷, 王睿, 等. 碳底物含量对厌氧条件下水稻土N2、 N2O、 NO、 CO2和CH4排放的影响[J]. 环境科学, 2014, 35(9): 3595-3604. Chen N, Liao T T, Wang R, et al. Effect of carbon substrate concentration on N2, N2O, NO, CO2 and CH4 emissions from a paddy soil in anareobic condition[J]. Environment Science, 2014, 35(9): 3595-3604. [33] Senbayram M, Chen R, Budai A, et al. N2O emission and the N2O/(N2O+N2) product ratio of denitrification as controlled by available carbon substrates and nitrate concentrations[J]. Agriculture, Ecosystems & Environment, 2012, 147: 4-12. |
1. |
吴英英. 水稻化肥减量增效施用技术试验研究. 种子科技. 2023(08): 4-6 .
![]() | |
2. |
徐新朋,丁文成,何萍,周卫. 基于产量反应和农学效率的水稻智能化推荐施肥方法研究. 植物营养与肥料学报. 2023(05): 802-812 .
![]() | |
3. |
乔子源,卢宗亮,黄紫欣,李俊毅,陈欣,孔庆鹏. 基于QCA的城镇近郊农地利用低碳意识形成特征研究. 农村经济与科技. 2022(14): 38-42 .
![]() | |
4. |
董春雨,王凯,邓琪,任利娟,李嘉琦,张昌琦,张乃明,包立. 钙镁磷肥可以减少复合污染农田不同品种玉米Cd、As吸收. 中国土壤与肥料. 2022(11): 45-50 .
![]() | |
5. |
石子建,徐建祥,李韵,汪寿根,陈润兴,余文慧,雷俊,邵晓伟,许竹溦. 油菜秸秆还田和化肥配施对水稻产量、养分吸收及土壤肥力的影响. 江苏农业科学. 2022(22): 100-106 .
![]() |