• ISSN 1008-505X
  • CN 11-3996/S
CHI Ke-yu, FAN Hong-li. Characteristics of Cd uptake and translocation in two cultivars of Amaranth (Amaranthus mangostanus L.)[J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(6): 1612-1619. DOI: 10.11674/zwyf.15456
Citation: CHI Ke-yu, FAN Hong-li. Characteristics of Cd uptake and translocation in two cultivars of Amaranth (Amaranthus mangostanus L.)[J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(6): 1612-1619. DOI: 10.11674/zwyf.15456

Characteristics of Cd uptake and translocation in two cultivars of Amaranth (Amaranthus mangostanus L.)

More Information
  • Received Date: November 10, 2015
  • Accepted Date: March 10, 2016
  • ObjectivesCharacteristics of absorption and translocation of Cd in amaranth (Amaranthus mangostanus L.) with different Cd accumulation abilities were compared under cadmium (Cd) stress.
    MethodsHydroponic experiments basing Hoagland nutrient solution were conducted with two amaranth cultivars, Zibeixian (ZBX, a low Cd accumulator) and Tianxingmi (TXM, a high Cd accumulator) as testing materials. Plant samples were collected after the exposure to Cd stress solution (30 μmol/L CdCl2) of 4 h, 8 h, 16 h, 1 d and 2 d. The Cd contents were determined using ICP-OES method, and the dynamic accumulation in roots was monitored using none-invasive micro-test technique (NMT). The responses of the two cultivars to metabolic inhibitor were also compared.
    ResultsAfter 1 d exposure, the total dry biomass of TXM is twice of ZBX, and reached to the maximum value of 5.90 g/plant. The cadmium contents in the roots, stems and leaves of TXM reached 609, 254 and 62.3 mg/kg, which were 1.4, 1.9 and 1.6 times of those of ZBX. The Cd accumulation amounts in the shoots and whole plants of TXM reached 602.0 and 1308 μg/plant. The bioaccumulation factor and translocation factor of TXM were 2.1 and 1.5 times of those of ZBX. All these results were significant difference between the two cultivars of amaranth (P < 0.05). The biggest net Cd2+influx difference in the screening test of roots was within 0-300 μm from the tips. The net Cd2+influx in roots of TXM was 3.75 times of that of ZBX, and the enrichment characteristic was consistent with the result of NMT. Metabolic inhibitor significantly reduced the Cd indexes of TXM (P < 0.05), but had little effect on Zibeixian.
    ConclusionsCompared with the cultivar ZBX, the cultivar TXM has stronger ability of Cd uptake and root-to-shoot translocation capacity, which is an active process, and has the symplastic pathway rather than the apoplastic bypass.
  • [1]
    Schwerdtle T, Ebert F, Thuy C, et al. Genotoxicity of soluble and particulate cadmium compounds:impact on oxidative DNA damage and nucleotide excision repair[J]. Chemical Research in Toxicology, 2010, 23(2):432-442. DOI: 10.1021/tx900444w
    [2]
    Thomsen M, Faber J H, Sorensen P B. Soil ecosystem health and services-Evaluation of ecological indicators susceptible to chemical stressors[J]. Ecological Indicators, 2012, 16(6):67-75. https://www.researchgate.net/profile/Marianne_Thomsen/publication/251678805_Soil_ecosystem_health_and_services__Evaluation_of_ecological_indicators_susceptible_to_chemical_stressors/links/0a85e532042aa5d57b000000.pdf
    [3]
    Mortel J E V D, Schat H, Moerland P D, et al. Expression differences for genes involved in lignin, glutathione and sulfate metabolism in response to cadmium in Arabidopsis thaliana and the related Zn/Cd-hyperaccumulator Thlaspi caerulescens.[J]. ResearchGate, 2008, 31(3):301-324. https://www.ncbi.nlm.nih.gov/pubmed/18088336
    [4]
    Ent A V D, Baker A J M, Reeves R D, et al. Hyperaccumulators of metal and metalloid trace elements:Facts and fiction[J]. Plant & Soil, 2013, 362(1-2):319-334. http://core.ac.uk/display/15477790
    [5]
    Suchkova N, Darakas E, Ganoulis J. Phytoremediation as a prospective method for rehabilitation of areas contaminated by long-term sewage sludge storage:A Ukrainian-Greek case study[J]. Ecological Engineering, 2010, 36(4):373-378. DOI: 10.1016/j.ecoleng.2009.11.002
    [6]
    龙新宪, 王艳红, 刘洪彦.不同生态型东南景天对土壤中Cd的生长反应及吸收积累的差异性[J].植物生态学报, 2008, (1):168-175. http://www.cnki.com.cn/Article/CJFDTOTAL-ZWSB200801018.htm

    Long X X, Wang Y H, Liu H Y, et al. Growth response and uptake differences between two ecotypes of Sedum alfredii. to soil Cd[J]. Journal of Plant Ecology, 2008, (1):168-175. http://www.cnki.com.cn/Article/CJFDTOTAL-ZWSB200801018.htm
    [7]
    Lu L L, Tian S K, Yang X E, et al. Enhanced root-to-shoot translocation of cadmium in the hyperaccumulating ecotype of Sedum alfredii.[J]. Journal of Experimental Botany, 2008, 59(11):3203-13. DOI: 10.1093/jxb/ern174
    [8]
    Tian S K, Lu L L, Yang X E, et al. Stem and leaf sequestration of zinc at the cellular level in the hyperaccumulator Sedum alfredii. New Phytol[J]. New Phytologist, 2009, 182. https://www.researchgate.net/publication/23976390_Stem_and_leaf_sequestration_of_zinc_at_the_cellular_level_in_the_hyperaccumulator_Sedum_alfredii
    [9]
    Yang X E, Long X X, Ye H B, et al. Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance)[J]. Plant & Soil, 2004, 259(1-2):181-189. http://www.docin.com/p-1469889029.html
    [10]
    Mori S, Uraguchi S, Ishikawa S, et al. Xylem loading process is a critical factor in determining Cd accumulation in the shoots of Solanum melongena and Solanum torvum [J]. Environmental & Experimental Botany, 2009, 67(1):127-132. https://www.researchgate.net/publication/223428900_Xylem_loading_process_is_a_critical_factor_in_determining_Cd_accumulation_in_the_shoots_of_Solanum_melongena_and_Solanum_torvum
    [11]
    Yamaguchi N, Mori S, Baba K, et al. Cadmium distribution in the root tissues of solanaceous plants with contrasting root-to-shoot Cd translocation efficiencies[J]. Environmental & Experimental Botany, 2011, 71(2):198-206. http://www.doc88.com/p-9304465546745.html
    [12]
    Martin M H, Marschner H. Mineral nutrition of higher plants[J]. Journal of Ecology, 1988, 76.
    [13]
    Rugh C L, Wilde H D, Stack N M, et al. Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial mer a gene[J]. Proceedings of the National Academy of Sciences, 1996, 93(8):3182-3187. DOI: 10.1073/pnas.93.8.3182
    [14]
    Pence N S, Larsen P B, Ebbs S D, et al. The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens.[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(9):4956-4960. DOI: 10.1073/pnas.97.9.4956
    [15]
    Lombi E, Zhao F J, Mcgrath S P, et al. Physiological evidence for a high-affinity cadmium transporter highly expressed in a Thlaspi caerulescens ecotype[J]. New Phytologist, 2008, 149(1):53-60. https://www.researchgate.net/publication/229467894_Physiological_evidence_for_a_high-affinity_cadmium_transporter_highly_expressed_in_a_Thlaspi_caerulescens_ecotype
    [16]
    Ueno D, Iwashita T, Zhao F J, et al. Characterization of Cd translocation and identification of the Cd form in xylem sap of the Cd-hyperaccumulator Arabidopsis halleri [J]. Plant & Cell Physiology, 2008, 49(4):540-548. https://www.researchgate.net/publication/5571478_Characterization_of_Cd_Translocation_and_Identification_of_the_Cd_Form_in_Xylem_Sap_of_the_Cd-Hyperaccumulator_Arabidopsis_halleri
    [17]
    范洪黎, 周卫.镉超富集苋菜品种(Amaranthus mangostanus L.)的筛选[J].中国农业科学, 2009, (04):1316-1324. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK200904024.htm

    Fan H L, Zhou W. Screening of amaranth cultivars (Amaranthus mangostanus L.) for cadmium hyperaccumulation[J]. Scientia Agricultura Sinica, 2009, (04):1316-1324. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK200904024.htm
    [18]
    Hoagland D R, Arnon D I. The water-culture method for growing plants without soil[J]. Circular California Agricultural Experiment Station, 1950, 347:357-359. https://www.researchgate.net/file.PostFileLoader.html?id=54aefd7ed4c118b6358b45db&assetKey=AS%3A273668901408776%401442259158553
    [19]
    Zhu Y G, Chen S B, Yang J C. Effects of soil amendments on lead uptake by two vegetable crops from a lead-contaminated soil from Anhui, China[J]. Environment International, 2004, 30(3):351-356. DOI: 10.1016/j.envint.2003.07.001
    [20]
    Yang X, Baligar V C, Martens D C, et al. Cadmium effects on influx and transport of mineral nutrients in plant species[J]. Journal of Plant Nutrition, 1996, 19(3):643-656. DOI: 10.1080/01904169609365148?scroll=top
    [21]
    Cohen C K, Fox T C, Garvin D F, et al. The role of iron-deficiency stress responses in stimulating heavy-metal transport in plants[J]. Plant Physiology, 1998, 116(3):1063-1072. DOI: 10.1104/pp.116.3.1063
    [22]
    Sun R L, Zhou Q X, Jin C X. Cadmium accumulation in relation to organic acids in leaves of Solanum nigrum L. as a newly found cadmium hyperaccumulator[J]. Plant & Soil, 2006, 285(1-2):125-134. https://www.researchgate.net/publication/225626177_Cadmium_accumulation_in_relation_to_organic_acids_in_leaves_of_Solanum_nigrum_L_as_a_newly_found_cadmium_hyperaccumulator
    [23]
    Pineros MAShaff J E, Kochian L V. Development, characterization, and application of a cadmium-selective microelectrode for the measurement of cadmium fluxes in roots of Thlaspi Species and Wheat[J]. Plant Physiology, 1998, 116(4):1393-1401. DOI: 10.1104/pp.116.4.1393
    [24]
    Ma W, Xu W, Xu H, et al. Nitric oxide modulates cadmium influx during cadmium-induced programmed cell death in tobacco BY-2 cells[J]. Planta, 2010, 232(2):325-335. DOI: 10.1007/s00425-010-1177-y
    [25]
    Xu J, Sun J, Du L, et al. Comparative transcriptome analysis of cadmium responses in Solanum nigrum and Solanum torvum [J]. New Phytologist, 2012, 196(1):110-124. DOI: 10.1111/j.1469-8137.2012.04235.x
    [26]
    Jin X, Yiyong Z, Qing G, et al. Comparative physiological responses of Solanum nigrum and Solanum torvum to cadmium stress[J]. New Phytologist, 2012, 196(1):125-138. DOI: 10.1111/j.1469-8137.2012.04236.x
    [27]
    Hart J J, Welch R M, Norvell W A, et al. Characterization of cadmium binding, uptake, and translocation in tntact seedlings of Bread and Durum wheat cultivars[J]. Plant Physiology, 1998, 116(4):1413-1420. DOI: 10.1104/pp.116.4.1413
    [28]
    Yamaguchi H, Fukuoka H, Arao T, et al. Gene expression analysis in cadmium-stressed roots of a low cadmium-accumulating solanaceous plant, Solanum torvum [J]. Journal of Experimental Botany, 2010, 61(2):423-37. DOI: 10.1093/jxb/erp313
    [29]
    Brundrett M C. Mycorrhizal associations and other means of nutrition of vascular plants:understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis[J]. Plant & Soil, 2009, 320(1-2):37-77.
    [30]
    Isaure M P, Fayard B, Sarret G, et al. Localization and chemical forms of cadmium in plant samples by combining analytical electron microscopy and X-ray spectromicroscopy[J]. Spectrochimica Acta Part B Atomic Spectroscopy, 2006, 61(12):1242-1252. DOI: 10.1016/j.sab.2006.10.009
    [31]
    Solís-Domínguez F A, González-Chávez M C, Carrillo-González R, et al. Accumulation and localization of cadmium in echinochloa polystachya grown within a hydroponic system[J]. Journal of Hazardous Materials, 2007, 141(3):630-636. DOI: 10.1016/j.jhazmat.2006.07.014
    [32]
    Tomohito A, Hiroyuki T, Eiji N. Reduction of cadmium translocation from roots to shoots in eggplant (Solanum melongena) by grafting onto Solanum torvum rootstock[J]. Soil Science & Plant Nutrition, 2008, 54(4):555-559. https://www.researchgate.net/publication/230005363_Reduction_of_cadmium_translocation_from_roots_to_shoots_in_eggplant_Solanum_melongena_by_grafting_onto_Solanum_torvum_rootstock
    [33]
    Shen Z G, Zhao F J, Mcgrath S P. Uptake and transport of zinc in the hyperaccumulator Thlaspi caerulescens and the non-hyperaccumulator Thlaspi ochroleucum [J]. Plant Cell & Environment, 2008, 20(7):898-906. https://www.researchgate.net/profile/Steve_Mcgrath/publication/229919278_Uptake_and_Transport_of_Zinc_in_the_Hyperaccumulator_Thlaspi_caerulescens_and_the_Non-Hyperaccumulator_Thlaspi_ochroleucum/links/5473b1f80cf29afed60f5951.pdf
    [34]
    Zhao F J, Jiang R F, Dunham S J, et al. Cadmium uptake, translocation and tolerance in the hyperaccumulator Arabidopsis halleri [J]. New Phytologist, 2006, 172(4):646-654. DOI: 10.1111/nph.2006.172.issue-4
    [35]
    Pettersson Sune. Passive uptake of K+ (86Rb+) in sunflower roots at low external K+ concentrations[J]. Physiologia Plantarum, 1981, 52(4):431-436. DOI: 10.1111/ppl.1981.52.issue-4
    [36]
    Xing J P, Jiang R F, Ueno D, et al. Variation in root-to-shoot translocation of cadmium and zinc among different accessions of the hyperaccumulators Thlaspi caerulescens and Thlaspi praecox. New Phytol[J]. New Phytologist, 2008, 178(2):315-325. DOI: 10.1111/j.1469-8137.2008.02376.x
    [37]
    Reid R J, Dunbar KR, McLaughlin M J. Cadmium loading into potato tubers:the roles of the periderm, xylem and phloem[J]. Plant Cell & Environment, 2003, 26(2):201-206. https://www.researchgate.net/publication/249447663_Cadmium_loading_into_potato_tubers_The_roles_of_the_periderm_xylem_and_phloem
  • Related Articles

    [1]ZHANG Wen-qi, HAN Zi-jing, MIAO Yu-qing, YUE Ning-yan, ZHANG Zhen-hua, CHEN Hai-fei. The mechanism by which nitrate nitrogen inhibits the upward transport of iron in rice and exacerbates low cadmium stress[J]. Journal of Plant Nutrition and Fertilizers, 2025, 31(4): 697-708. DOI: 10.11674/zwyf.2024464
    [2]LIU Tao, LU Qi-neng. Analysis of promoter activity of rice oligopeptide transport gene family in different organs[J]. Journal of Plant Nutrition and Fertilizers, 2024, 30(12): 2421-2430. DOI: 10.11674/zwyf.2024241
    [3]SHI Ya-man, ZENG Ji-xing, XUE Jin-jun, JIA Shu-gang, WANG Min, GUO Shi-wei. Effects of Candidatus Liberibacter asiaticus on assimilate accumulation and mineral nutrient transport in citrus leaves[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(5): 949-960. DOI: 10.11674/zwyf.2022528
    [4]XU Rui-shen, NIE Lan-chun, WANG Shan-shan, LI Pan, WANG Zheng, WANG Ruo-nan. Differences of celery cultivars in cadmium absorption and accumulation[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(5): 1321-1329. DOI: 10.11674/zwyf.17438
    [5]ZHANG Peng, ZHANG Ran-ran, DU Shao-ting. Research advances in nitrate uptake and transport in plants[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(3): 752-762. DOI: 10.11674/zwyf.2015.0323
    [6]LIU Mei, ZHENG Qing-song, LIU Zhao-pu, GUO Shi-wei. Effects of nitrogen forms on transport and accumulation of ions in canola (B. napus L.) and rice (Oryza sativa L.) under saline stress[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(1): 181-189. DOI: 10.11674/zwyf.2015.0120
    [7]WANG Hong, JIN Ji-yun. The physiological and molecular mechanisms of zinc uptake, transport, and hyperaccumulation in plants: A review[J]. Journal of Plant Nutrition and Fertilizers, 2009, 15(1): 225-235. DOI: 10.11674/zwyf.2009.0133
    [8]Deng Ruo-lei, Xu Hai-rong, Cao Yun-fei, Xiao Kai. The molecular basis of ammonium transporters in plants[J]. Journal of Plant Nutrition and Fertilizers, 2007, 13(3): 512-519. DOI: 10.11674/zwyf.2007.0325
    [9]Ma Beiyan Zhang Yiping, . ADVANCES IN MODELING OF ION EXCHANGE AND TRANSPORT[J]. Journal of Plant Nutrition and Fertilizers, 1998, 4(1): 84-91. DOI: 10.11674/zwyf.1998.0113
    [10]Chen Wei, Ma Guorui, Li ChunJiou. EFFECT OF PHYTOHORMONES ON THE ABSORPTION, TRANSPORTATION AND DISTRIBUTION OF IONS[J]. Journal of Plant Nutrition and Fertilizers, 1997, 3(3): 193-200. DOI: 10.11674/zwyf.1997.0301
  • Cited by

    Periodical cited type(28)

    1. 刘慢,刘文辉,刘凯强,贾志锋,梁国玲. 高寒区‘青引1号’燕麦种子产量对氮、磷、钾肥的响应. 草业科学. 2024(02): 345-355 .
    2. 起惠芳,刘文辉,刘凯强,贾志锋,梁国玲. 青藏高原氮磷钾肥施用对‘青引1号’燕麦生物量积累的影响. 西北农业学报. 2024(06): 1049-1060 .
    3. 董逸夕,叶婷,曹宇,李灿,杨大星. 火烧和垦殖对黔南喀斯特土壤跳虫的影响. 应用昆虫学报. 2024(02): 339-350 .
    4. 孙洪仁,王显国,张运龙,杜雪燕,李林霞. 我国籽实和饲草燕麦土壤钾素丰缺指标与推荐施钾量初步研究. 中国奶牛. 2024(06): 54-59 .
    5. 孙怡欣,侯春雨,周磊,魏雪,马金豪,薛娟,李小涵,吴鹏飞. 青藏高原盆栽一年生和多年生豆科牧草对土壤线虫群落的影响. 生物多样性. 2024(07): 70-84 .
    6. 王忠红,梁小龙,梁艳红,秦果,白玛色珍,关志华. 氮磷钾单施对青甘韭幼苗生长的影响. 农业工程技术. 2024(21): 32-36 .
    7. 毛丽萍,盛兵扬,张鸿博,阿依谢木,沈禹颖. 钾添加对燕麦生长及其钾积累和分配的影响. 草地学报. 2023(06): 1744-1753 .
    8. 魏雪,李雨,吴鹏飞. 青藏高原不同牧草人工草地对土壤线虫群落的影响. 生态学报. 2022(03): 1071-1087 .
    9. 唐仲霞,银敏华,齐广平,康燕霞,马彦麟,汪精海,贾琼,汪爱霞,姜渊博. 水氮耦合对无芒雀麦产量及氮磷钾化学计量特征的影响. 植物营养与肥料学报. 2022(03): 532-545 . 本站查看
    10. 秦基伟,彭君,杨素涛. 西藏青稞根系相关研究进展概述. 农业灾害研究. 2020(09): 11-12+15 .
    11. 周良,黄小燕,王炎,李振宙,吴兴慧,李振东,孔德章,陈庆富,黄凯丰. 钾肥对苦荞灌浆特性、根系形态及充实度的影响. 河南农业大学学报. 2019(02): 175-179+186 .
    12. 刘文辉,张永超,梁国玲,秦燕. 高寒区不同农艺措施对燕麦人工草地各生育期土壤碳氮储量与碳氮比的影响. 草地学报. 2019(03): 675-686 .
    13. 秦燕,关佑君,王有良,陈季贵,张永超,刘勇,魏小星,李小瑞,刘文辉. 高寒区饲用油菜混作效应研究. 草业科学. 2019(10): 2612-2621 .
    14. 纪亚君,陆家芬. 高寒地区氮磷钾肥配施对燕麦产量的影响. 青海畜牧兽医杂志. 2019(05): 6-9 .
    15. 焦美章,薛世明,罗鑫,蔡明,牟兰,黄梅芬,侯洁琼,张美艳. 钾肥对现蕾期海法白三叶光合特性及根系形态的影响. 云南农业大学学报(自然科学). 2019(06): 1084-1089 .
    16. 李雨,吴鹏飞,龙伟,马金豪. 高寒地区种植不同种类牧草对土壤节肢动物群落的影响. 生态学报. 2019(20): 7697-7708 .
    17. 王炎,李振宙,黄小燕,周良,吴兴慧,李振东,陈庆富,陈海兵,黄凯丰. 不同钾肥处理对苦荞根系及产量的影响. 分子植物育种. 2019(23): 7955-7961 .
    18. 梁国玲,秦燕,魏小星,刘迎春,刘勇,刘文辉. 青藏高原高寒区I-D燕麦品系饲草生产性能及品质评价. 草地学报. 2018(04): 917-927 .
    19. 刘文辉,张英俊,师尚礼,贺永娟,孙建,魏小星. 高寒区施肥和豆科混播水平对燕麦人工草地土壤酶活性的影响. 草业学报. 2017(01): 23-33 .
    20. 武俊英,赵宝平,刘景辉,杨进. 尾煤泥施用的重金属安全性及其对土壤结构和燕麦生长的影响. 麦类作物学报. 2017(03): 414-419 .
    21. 梁国玲,刘文辉,周青平. 高寒区燕麦I-D新品系与亲本光合特性和生产性能研究. 中国草地学报. 2017(04): 15-21+80 .
    22. 刘文辉. 播期对三种裸燕麦品种生长特性的影响. 草地学报. 2016(05): 1032-1040 .
    23. 陈军强,李小刚,张世挺,周振,丁路明. 甘南燕麦引种及其刈割期研究. 家畜生态学报. 2014(09): 55-60 .
    24. 王朋,周青平,纪亚君,颜红波,周改娥,李威,刘文辉,贾志锋. 施氮与刈割对青引1号燕麦产量的影响. 青海大学学报(自然科学版). 2013(03): 4-8 .
    25. 刘勇,周青平,顔红波,周改娥. 3种裸燕麦种子萌发期耐盐性的研究. 青海大学学报(自然科学版). 2013(05): 53-56 .
    26. 何玉龙,周青平,纪亚君,颜红波,雷生春,贾志锋,刘文辉,梁国玲. 施肥对青引1号燕麦产量及构成性状的影响. 草业科学. 2012(06): 968-972 .
    27. 王千,张淑香,依艳丽. 硝酸钾和硫酸钾对番茄幼苗生长、根系形态及钾素吸收和生理利用效率的影响. 核农学报. 2012(02): 391-395+402 .
    28. 王千,张淑香,依艳丽. 钾镁水平对番茄苗期生长、根系形态及钾素吸收和生理利用效率的影响. 中国土壤与肥料. 2012(02): 51-55+66 .

    Other cited types(22)

Catalog

    Article views (3038) PDF downloads (472) Cited by(50)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return