• ISSN 1008-505X
  • CN 11-3996/S
ZHOU Bi-qing, CHEN Cheng-rong, YANG Wen-hao, ZHANG Li-ming, XING Shi-he. Uptake and transport characteristics of soluble organic and inorganic nitrogen by tea plant[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(1): 189-195. DOI: 10.11674/zwyf.16067
Citation: ZHOU Bi-qing, CHEN Cheng-rong, YANG Wen-hao, ZHANG Li-ming, XING Shi-he. Uptake and transport characteristics of soluble organic and inorganic nitrogen by tea plant[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(1): 189-195. DOI: 10.11674/zwyf.16067

Uptake and transport characteristics of soluble organic and inorganic nitrogen by tea plant

More Information
  • Received Date: February 17, 2016
  • Accepted Date: August 17, 2016
  • Objectives Whether tea plants in subtropics could directly take up soluble molecular organic nitrogen from soil or not does not have agreeable conclusions. Studying the transport charecteristics of soluble organic and inorganic nitrogen in tea plants will help the deep understanding of the problem.
    Methods The isotope tracing method was used in a pot experiment using tea seedlings (Huangjingui) as tested material. The isotope tracers were 2-13C-15N-glycine, (15NH4)2SO4and 15N-KNO3, which were injected into soil at the bottom of tea seedlings. Aboundance of 13C and 15N in shoots and roots were measured by isotope ratio mass spectrometer with a Eurovector Elemental Analyser.
    Results The ratios of 13C to 15N excess in roots and whole seedlings of Huangjingui were much close to 1:1, the theroretical ratio of 13C to 15N aboundance, at 2 h and 6 h after the 2-13C-15N-glycine application in soil. The 13C excess was not detected in Huangjingui shoots at 2 h and 6 h,while it reached 0.284 μmol/(g, DW) in shoots at 72 h after the 2-13C-15N-glycine application. The 15N excesses of roots, shoots and whole seedlings of Huangjingui at 2 h, 6 h and 72 h after the (15NH4)2SO4application were significantly higher than those after the 15N-KNO3and 2-13C-15N-glycine application in soil. The shoot/root ratio in 15N excess at 6 h after the (15NH4)2SO4application was 34.7% and 65.0% higher than those after the 15N-KNO3and 2-13C-15N-glycine application, while the ratio at 72 h after the (15NH4)2SO4application was 88.6% and 133.0% higher than those after the 15N-KNO3and 2-13C-15N-glycine application, respectively, and the differences of the ratios between the (15NH4)2SO4and 15N-KNO3or 2-13C-15N-glycine treatments reached the 1% level.
    Conclusions Tea plants of Huangjingui could directly take up intact glycine molecule from the soil, but preferred to uptake ammonium-N and nitrate-N. The glycine molecule taken up by Huangjingui could be transported from roots to shoots. The transport ability of different forms of nitrogen in Huangjingui plants showed following order:ammonium-N>nitrate-N>glycine-N. These results provided further evidence that uptake of soluble organic N by plants is a widespread adaptation strategy in terrestrial ecosystems.
  • [1]
    Chapin F S, Moilanen L, Kielland K. Preferential use of organic nitrogen for growth by a non-mycorrhizal arctic sedge[J]. Nature, 1993, 361:150-153. DOI: 10.1038/361150a0
    [2]
    Fisk M C, Schmidt S K. Nitrogen mineralization and microbial biomass nitrogen dynamics in three alpine tundra communities[J]. Soil Science Society of America Journal, 1995, 59:1036-1043. DOI: 10.2136/sssaj1995.03615995005900040012x
    [3]
    张夫道, 孙羲. 氨基酸对水稻营养作用的研究[J]. 中国农业科学, 1984, 5:61-66. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK198405010.htm

    Sun F D, Sun X. Function of amino acid on rice nutrition[J]. Scientia Agricultra Sinica, 1984, 5:61-66. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK198405010.htm
    [4]
    许玉兰, 刘庆城. 用15N示踪方法研究氨基酸的肥效作用[J]. 氨基酸和生物资源, 1998, 20(2):20-23.

    Xu Y L, Liu Q C. Study on the fertilizer efficiency of amino acid by 15N tracer method[J]. Amino Acid and Bioresource, 1998, 20(2):20-23.
    [5]
    [6]
    徐兴良, 白洁冰, 欧阳华. 植物吸收土壤有机氮的研究进展[J]. 自然资源学报, 2011, 26(4):715-724. http://www.cnki.com.cn/Article/CJFDTOTAL-ZRZX201104018.htm

    Xu X L, Bai J B, Ouyang H. Advance in studies on organic N uptake by terrestrial plants[J]. Journal of Nature Resources, 2011, 26(4):715-724. http://www.cnki.com.cn/Article/CJFDTOTAL-ZRZX201104018.htm
    [7]
    Näsholm T, Ekblad A, Nordin A, et al. Boreal forest plants take up organic nitrogen[J]. Nature, 1998, 392:914-916. DOI: 10.1038/31921
    [8]
    Lipson D A, Monson R K. Plant-microbe competition for soil amino acids in the alpine tundra:effects of freeze-thaw and dry-rewet events[J]. Oecologia, 1998, 113:406-414. DOI: 10.1007/s004420050393
    [9]
    [10]
    Xu X L, Hua O Y, Kuzyakov Y, et al. Significance of organic nitrogen acquisition for dominant plant species in an alpine meadow on the Tibet plateau, China[J]. Plant and Soil, 2006, 285:221-231. DOI: 10.1007/s11104-006-9007-5
    [11]
    Bardgett R, Streeter T, Bol R. Soil microbes compete effectively with plants for organic-nitrogen inputs to temperate grasslands[J]. Ecology, 2003, 84:1277-1287. DOI: 10.1890/0012-9658(2003)084[1277:SMCEWP]2.0.CO;2
    [12]
    Weigelt A, Bol R, Bardgett R D. Preferential uptake of soil nitrogen forms by grassland plant species[J]. Oecologia, 2005,142:627-635. DOI: 10.1007/s00442-004-1765-2
    [13]
    Scott E E, Rothstein D E. Amino acid uptake by temperate tree species characteristic of low-and high-fertility habitats[J]. Oecologia, 2011, 167:547-57. DOI: 10.1007/s00442-011-2009-x
    [14]
    Jin V L, Evans R D. Elevated CO2 increases plant uptake of organic and inorganic N in the desert shrub Larrea tridentate[J].Oecologia, 2010, 163:257-266. DOI: 10.1007/s00442-010-1562-z
    [15]
    Kahmen A, Livesley S J, Arndt S K. High potential but low actual glycine uptake of dominant plant specis in three Australian land-use types with intermediate N availability[J]. Plant and Soil, 2009, 325:109-121. DOI: 10.1007/s11104-009-9960-x
    [16]
    Wei L L, Chen C R, Xu Z H, et al. Direct uptake and rapid decrease of organic nitrogen by Wollemia nobilis[J]. Biology and Fertility of Soils, 2013, 49:1247-1252. DOI: 10.1007/s00374-013-0818-2
    [17]
    Matsumoto S, Ae N, Yamagata M. Possible direct uptake of organic nitrogen from soil by chingensai (Brassica campestris L.) and carrot (Daucus carota L.)[J]. Soil Biology and Biochemistry, 2000, 32:1301-1310. DOI: 10.1016/S0038-0717(00)00048-1
    [18]
    葛体达. 番茄对有机氮的吸收及土壤可溶性有机氮行为特性研究[D]. 上海:上海交通大学博士学位论文, 2008:62-70.

    Ge T D. Study on the characteristic of absorption of organic nitrogen by tomato and behavior of soluble organic nitrogen in the soils[D]. Shanghai:PhD Dissertation of Shanghai Jiao Tong University, 2008. 62-70.
    [19]
    Näsholm T, Huss-Danell K, Högberg P. Uptake of glycine by field grown wheat[J]. New Phytologist, 2001, 150:59-63. DOI: 10.1046/j.1469-8137.2001.00072.x
    [20]
    Cao X C, Wu L H, Yuan L, et al. Uptake and uptake kinetics of nitrate, ammonium and glycine by pakchoi seedlings (Brassica Campestris L. ssp. Chinensis L. Makino)[J]. Scientia Horticulturae, 2015, 186:247-253. DOI: 10.1016/j.scienta.2015.02.010
    [21]
    穆兰. 茶园土壤可溶性有机氮及其主要影响因素研究[D]. 福州:福建农林大学硕士学位论文, 2011. 31-32.

    Mu L. Studies on soil soluble organic nitrogen and its key influencing factors in tea plantations[D]. Fuzhou:MS Thesis of Fujian Agriculture and Forestry University, 2011.31-32.
    [22]
    Taylor A F S, Gebauer G, Read D J. Uptake of nitrogen and carbon from double-labelled (15N and 13C) glycine by mycorrhizal pine seedlings[J]. New Phytologist, 2004, 164:383-388. DOI: 10.1111/nph.2004.164.issue-2
    [23]
    Jones D L, Healey J R, Willett V B, et al. Dissolved organic nitrogen uptake by plants-an important N uptake pathway?[J]. Soil Biology and Biochemistry, 2005, 37:413-423. DOI: 10.1016/j.soilbio.2004.08.008
    [24]
    Näsholm T, Persson J. Plant acquisition of organic nitrogen in boreal forests[J]. Physiologia Plantarum, 2001, 111:419-426. DOI: 10.1034/j.1399-3054.2001.1110401.x
    [25]
    张彦东, 白尚斌. 氮素形态对树木养分吸收和生长的影响[J]. 应用生态学报, 2003, 14(11):2044-2048. http://www.cnki.com.cn/Article/CJFDTOTAL-YYSB200311051.htm

    Zhang Y D, Bai S B. Effects of nitrogen forms on nutrient uptake and growth of tree[J]. Chinese Journal of Applied Ecology, 2003, 14(11):2044-2048. http://www.cnki.com.cn/Article/CJFDTOTAL-YYSB200311051.htm
    [26]
    黄意欢. 茶树营养生理与土壤管理[M]. 长沙:湖南科学技术出版社, 1992. 32-38.

    Huang Y H. Nutition physiology and soil management of tea plant[M]. Changsha:Science and Technology Press in Hunan, 1992. 32-38.
    [27]
    陆景陵. 植物营养学(上册)[M]. 北京:中国农业大学出版社, 2003. 23-35.

    Lu J L. Plant nutrition (Volume one)[M]. Beijing:Press of China Agriculture University, 2003. 23-35.
    [28]
    杜旭华. 氮素形态对茶树生长及氮素吸收利用的影响[D]. 南京:南京林业大学博士学位论文, 2009.

    Du X H. Effects of nitrogen forms on growth and nutrient uptake of tea plant[D]. Nanjing:PhD Dissertation of Nanjing Forestry University, 2009.
    [29]
    杜旭华, 彭方仁. 无机氮素形态对茶树氮素吸收动力学特性及个体生长的影响[J]. 作物学报, 2010, 36(2):327-334. http://www.cnki.com.cn/Article/CJFDTOTAL-XBZW201002022.htm

    Du X H, Peng F R. Effects of inorganic nitrogen forms on the dynamic characteristics of nitrogen uptake and individual growth of tea plant[J]. Acta Agromica Sinica, 2010, 36(2):327-334. http://www.cnki.com.cn/Article/CJFDTOTAL-XBZW201002022.htm
    [30]
    李宝珍, 范晓荣, 徐国华. 植物吸收利用铵态氮和硝态氮的分子调控[J]. 植物生理学通讯, 2009, 45(1):80-88. http://www.cnki.com.cn/Article/CJFDTOTAL-ZWSL200901025.htm

    Li B Z, Fan X R, Xu G H. Molecular regulation for uptake and utilization of ammonium and nitrate in plant[J]. Plant Physiology Communications, 2009, 45(1):80-88. http://www.cnki.com.cn/Article/CJFDTOTAL-ZWSL200901025.htm
    [31]
    袁伟, 董元华, 王辉. 植物对氨基酸态氮吸收和利用的研究进展[J]. 中国土壤与肥料, 2009, (4):4-9. http://www.cnki.com.cn/Article/CJFDTOTAL-TRFL200904003.htm

    Yuan W, Dong Y H, Wang H. Uptake and utilization of amino acid nitrogen by plants[J]. Soil and Fertilizer Science in China, 2009, (4):4-9. http://www.cnki.com.cn/Article/CJFDTOTAL-TRFL200904003.htm
    [32]
    Bush D R. Proton-coupled sugar and amino acid transporters in plants[J]. Annual Review of Plant Physiology and Molecular Biology, 1993, 44:513-542. DOI: 10.1146/annurev.pp.44.060193.002501
    [33]
    Tanner W, Caspari T. Membrane transport carriers[J]. Annual Review of Plant Physiology and Molecular Biology, 1996, 47:595-626. DOI: 10.1146/annurev.arplant.47.1.595
    [34]
    Fischer W F, Andre B, Rentsch D, et al. Amino acid transport in plant[J]. Trends in Plant Science, 1998, 3:188-195. DOI: 10.1016/S1360-1385(98)01231-X
    [35]
    Kinraide T B. Inter amino acid inhibition of transport in higher plants. Evidence for two transport channels with ascertainable affinities for amino acids[J]. Plant Physiology, 1981, 68:1327-1333. DOI: 10.1104/pp.68.6.1327
    [36]
    Datko A H, Mudd S H. Uptake of amino acids and other organic compounds by Lemna paucicostata Hegelm. 6746[J]. Plant Physiology, 1985, 77:770-778. DOI: 10.1104/pp.77.3.770
    [37]
    马林. 植物对氨基酸的吸收和利用[J]. 西南科技大学学报, 2004, 19(1):102-107. http://www.cnki.com.cn/Article/CJFDTOTAL-XNGX200401026.htm

    Ma L. Uptake and utilization of amino acid by plants[J]. Journal of Southwest University of Science and Technology, 2004, 19(1):102-107. http://www.cnki.com.cn/Article/CJFDTOTAL-XNGX200401026.htm
  • Cited by

    Periodical cited type(10)

    1. 张珊珊,张佳祺,李银水,代晶,顾炽明,杨璐,胡文诗,秦璐,廖星. 硝铵供应比对油菜光合作用的影响. 植物营养与肥料学报. 2024(05): 966-979 . 本站查看
    2. 张翼飞,祖庆学,聂忠扬,林松,饶陈,成志军. 谷氨酸对烤烟氮素营养贡献及生理特性研究. 作物杂志. 2023(02): 186-192 .
    3. 高佳蕊,方胜志,张玉玲,安晶,虞娜,邹洪涛. 东北黑土不同开垦年限稻田土壤有机氮矿化特征. 中国农业科学. 2022(08): 1579-1588 .
    4. 张文婧,林琳,孙威江. 茶树铵转运蛋白AMT研究进展. 分子植物育种. 2022(08): 2586-2596 .
    5. 李亚林,张旭博,任凤玲,孙楠,徐梦,徐明岗. 长期施肥对中国农田土壤溶解性有机碳氮含量影响的整合分析. 中国农业科学. 2020(06): 1224-1233 .
    6. 杨静,杨文浩,李思苇,周碧青,毛艳玲,邢世和. 生物炭基肥对反季节蔬菜地土壤可溶性氮动态的影响. 福建农林大学学报(自然科学版). 2020(04): 478-485 .
    7. 苏静静,阮丽,王丽鸳,韦康,吴立赟,白培贤,成浩. 茶树氮吸收效率的早期鉴定技术研究. 茶叶科学. 2020(05): 576-587 .
    8. 吴淑华,王佳新,张世柯,王俊,曾阳金,李远球,刘楠. 模拟氮沉降对常绿阔叶林6种植物氮同化的影响. 生态环境学报. 2019(02): 262-269 .
    9. 雷秀美,王飞,周碧青,杨文浩,聂三安,邢世和. 长期施肥对稻田土壤可溶性有机氮和游离氨基酸剖面分异的影响. 农业环境科学学报. 2019(07): 1550-1559 .
    10. 杨静,聂三安,杨文浩,陈成榕,张黎明,周碧青,邢世和. 不同施肥水稻土可溶性有机氮组分差异及影响因素. 土壤学报. 2018(04): 955-966 .

    Other cited types(17)

Catalog

    Article views (2075) PDF downloads (574) Cited by(27)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return