• ISSN 1008-505X
  • CN 11-3996/S
LI Peng-cheng, ZHENG Cang-song, SUN Miao, LIU Shao-dong, ZHANG Si-ping, WANG Guo-ping, LI Ya-bing, CHEN Jing, ZHAO Xin-hua, DONG He-lin. Using 15N tracing technique to study the yield and environmental effect of decreasing N fertilization on cotton in different fertility fields[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(5): 1199-1206. DOI: 10.11674/zwyf.16365
Citation: LI Peng-cheng, ZHENG Cang-song, SUN Miao, LIU Shao-dong, ZHANG Si-ping, WANG Guo-ping, LI Ya-bing, CHEN Jing, ZHAO Xin-hua, DONG He-lin. Using 15N tracing technique to study the yield and environmental effect of decreasing N fertilization on cotton in different fertility fields[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(5): 1199-1206. DOI: 10.11674/zwyf.16365

Using 15N tracing technique to study the yield and environmental effect of decreasing N fertilization on cotton in different fertility fields

More Information
  • Received Date: September 25, 2016
  • Available Online: July 04, 2019
  • ObjectivesIn the medium fertility field of cotton area in the Yellow River catchments, the North China Plain, the economic optimum nitrogen (N) rate for cotton is 300 kg/hm2, and the result was derived from cotton yield response to N fertilizer rate in field trials for many years, but the N application rate did not fully consider residual N in the soil of cotton field. This paper was to explore effects of different N application rates and ratios on seed cotton yield and N use efficiency under low fertility soil, and effects of the same N application rate under low, medium and high fertility soils in field conditions aimed to provide a theoretical basis for N fertilization management of cotton.
    MethodsField trials of nitrogen fertilizer management were carried out using 15N tracer technique and cotton was used as tested material. Fields with soil total N content of 0.83, 0.74 and 0.60 g/kg were taken as high (S1), media (S2) and low (S3) fertility fields for the experiment. Three N application rates were set up for the low fertility field: 113 kg/hm2(N1), 225 kg/hm2(N2) and 338 kg/hm2(N3). The N fertilizer was divided into equal two parts and topdressed at the seedling and flowering stages. A treatment of twice N topdressing in ratio of 1∶2 was also setup in the low fertility field with low N rate. Cotton and soil (0–60 cm) were sampled at 70% boll opening stage, the contribution of N absorbed from fertilizer and soil were determined using 15N tracer technique. The seed cotton yield, and 15N recovery rate of cotton plants were investigated.
    ResultsFor the low N rate, the soil fertility had no significant effect on seed cotton yields, the plant N uptake proportion deprived from fertilizer was declined with the increase of soil fertility, while the N uptake proportion deprived from soil nitrogen was increased. The 15N recovery rate of cotton plants was decreased significantly with the increase of N application rate, and declined with increase of the soil fertility. There were no significant differences between the low soil fertility and medium soil fertility for 15N recovery rate of cotton plant, but the recovery rate under the low soil fertility was significantly higher than that of the high fertility soil. The 15N residual rate of high fertility soil was higher than those of the low fertility soil and the medium fertility soil. The 15N loss rate was increased significantly with the increase of N application rate and soil fertility. Seed cotton yield for the low N rate at the ratio of 1∶2 was higher than that at the ratio of 1∶1. Under the condition of low fertility soil, seed cotton yield for N 225 kg/hm2 was relatively higher than those for N 113 kg/hm2 and N 338 kg/hm2 because of more 15N uptake by cotton plants.
    ConclusionsUnder the condition of lower soil fertility, the seed cotton yield and 15N recovery rate for the moderate N rate (225 kg/hm2) were higher than those for high N rate (338 kg/hm2), and the N fertilizer loss rate was less, which demonstrated that it was feasible for improvement of both N use efficiency and seed cotton yield by decreasing input of N fertilizer. Low N input under the condition of high fertility soil could decrease N fertilizer loss.
  • [1]
    Yang, G Z, Chu K, Tang H Y, et al. Fertilizer 15N accumulation, recovery and distribution in cotton plant as affected by N rate and split[J]. Journal of Integrative Agriculture, 2013, 12: 999–1007.
    [2]
    Yang G Z, Tang H Y, Nie Y C, et al. Responses of cotton growth, yield, and biomass to nitrogen split application ratio[J]. European Journal of Agronomy, 2011, 35: 164–170.
    [3]
    Navarro-Ainza J A C. Fertilizer nitrogen recovery and 15N and bromide distribution in the soil profile as affected by the time of application on an irrigated upland cotton (Gossypium hirsutum L.) [D]. Tucson: PhD Dissertation, University of Arizona, USA, 2007.
    [4]
    Constable G A, Rochester I J. Nitrogen application to cotton on clay soil: timing and soil testing[J]. Agronomy Journal, 1988, 80: 498–502.
    [5]
    巨晓棠. 氮肥有效率的概念及意义—兼论对传统氮肥利用率的理解误区[J]. 土壤学报, 2014, 51(5): 921–933. Ju X T. The concept and meanings of nitrogen fertilizer availability ratio─Discussing misunderstanding of traditional nitrogen use efficiency[J]. Acta Pedologica Sinica, 2014, 51(5): 921–933.
    [6]
    王火焰, 周健民. 肥料养分真实利用率计算与施肥策略[J]. 土壤学报, 2014, 51(2): 216–225. Wang H Y, Zhou J M. Calculation of real fertilizer use efficiency and discussion on fertilization strategies[J]. Acta Pedologica Sinica, 2014, 51(2): 216–225.
    [7]
    王西娜, 王朝辉. 旱地土壤中残留肥料氮的动向及作物有效性[J]. 土壤学报, 2016, 53(5): 1202–1212. Wang X N, Wang Z H. Dynamics and availability to crops of residual fertilizer nitrogen in upland soil[J]. Acta Pedologica Sinica, 2016, 53(5): 1202–1212.
    [8]
    李鹏程, 董合林, 刘爱忠, 等. 种植密度氮肥互作对棉花产量及氮素利用效率的影响[J]. 农业工程学报, 2015, 31(23): 122–130. Li P C, Dong H L, Liu A Z, et al. Effects of planting density and nitrogen fertilizer interaction on yield and nitrogen use efficiency of cotton[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(23): 122–130.
    [9]
    李鹏程, 董合林, 刘爱忠, 等. 施氮量对棉花功能叶片生理特性、氮素利用效率及产量的影响[J]. 植物营养与肥料学报, 2015, 21(1): 81–91. Li P C, Dong H L, Liu A Z, et al. Effects of nitrogen application rates on physiological characteristics of functional leaves, nitrogen use efficiency and yield of cotton[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(1): 81–91.
    [10]
    马宗斌, 严根土, 刘桂珍, 等. 施氮量对黄河滩区棉花叶片生理特性、干物质积累及产量的影响[J]. 植物营养与肥料学报, 2013, 19(4): 849–857. Ma Z B, Yan G T, Liu G Z, et al. Effects of nitrogen application rates on main physiological characteristics of leaves, dry matter accumulation and yield of cotton cultivated in the Yellow River bottomlands[J]. Journal of Plant Nutrition and Fertilizer, 2013, 19(4): 849–857.
    [11]
    闵伟, 侯振安, 冶军, 等. 灌溉水盐度和施氮量对棉花产量和水氮利用的影响[J]. 植物营养与肥料学报, 2013, 19(4): 858–867. Min W, Hou Z A, Ye J, et al. Effects of water salinity and nitrogen rate on yield, WUE and NUE of cotton under drip irrigation with saline water conditions[J]. Journal of Plant Nutrition and Fertilizer, 2013, 19(4): 858–867.
    [12]
    Dong H Z, Kong X Q, Li W J, et al. Effects of plant density and nitrogen and potassium fertilization on cotton yield and uptake of major nutrients in two fields with varying fertility[J]. Field Crops Research, 2010, 119(6): 106–113.
    [13]
    罗新宁, 陈冰, 张巨松, 等. 氮肥对不同质地土壤棉花生物量与氮素积累的影响[J]. 西北农业学报, 2009, 18(4): 160–166. Luo X N, Chen B, Zhang J S, et al. Effect of nitrogen applied levels on the dynamics of biomass, nitrogen accumulation of cotton plant on different soil textures[J]. Acta Agriculture Boreali-occidentalies Sinica, 2009, 18(4): 160–166.
    [14]
    侯振安, 王炜, 郭琛, 等. 不同土壤肥力棉田氮肥适宜用量研究[J]. 新疆农业科学, 2004, 41(S1): 121–124. Hou Z A, Wang W, Guo C, et al. Study on suitable nitrogen applied rate of cotton in different soil fertility conditions[J]. Xinjiang Agricultural Sciences, 2004, 41(S1): 121–124.
    [15]
    王富林, 周乐, 李洪娜, 等. 不同氮磷配比对富士苹果幼树生长及15N-尿素吸收、分配与利用的影响[J]. 植物营养与肥料学报, 2013, 19(5): 1102–1108. Wang F L, Zhou L, Li H N, et al. Effect of N, P ratios on the growth and absorption, distribution and utilization of 15N-urea of Fuji apple saplings[J]. Journal of Plant Nutrition and Fertilizer, 2013, 19(5): 1102–1108.
    [16]
    林涛, 郭仁松, 崔建平, 等. 施氮对南疆荒漠绿洲滴灌棉田产量及棉纤维品质的影响[J]. 西北农业学报, 2013, 22(11): 47–53. Lin T, Guo R S, Cui J P, et al. Effects of nitrogen application on cotton yield and fiber quality under drip irrigation condition in oasis of South Xinjiang[J]. Acta Agriculture Boreali-occidentalies Sinica, 2013, 22(11): 47–53.
    [17]
    Seneviratne G. Two-thirds law of nitrogen mineralization under undisturbed soil conditions: A new theory[J]. Pedosphere, 2008, 18(2): 149–153.
    [18]
    Hou Z A, Chen W P, Li X, et al. Effects of salinity and fertigation practice on cotton yield and 15N recovery[J]. Agricultural Water Management, 2009, 96(10): 1483–1489.
    [19]
    Fritschi F B, Roberts B A, Rains D W, et al. Fate of nitrogen-15 applied to irrigated acala and pima cotton[J]. Agronomy Journal, 2004, 96(3): 646–655.
    [20]
    马宗斌, 刘桂珍, 严根土, 等. 施氮方式对转基因棉花 Bt 蛋白含量及产量的影响[J]. 生态学报, 2013, 33(23): 7601–7609. Ma Z B, Liu G Z, Yan G T, et al. Effects of nitrogen fertilizer methods on the content of Bacillus thuringiensis insecticidal protein and yield of transgenic cotton[J]. Acta Ecologica Sinica, 2013, 33(23): 7601–7609.
    [21]
    李鹏程, 董合林, 刘爱忠, 等. 应用15N 研究氮肥运筹对棉花氮素吸收利用及产量的影响[J]. 植物营养与肥料学报, 2015, 21(3): 590–599. Li P C, Dong H L, Liu A Z, et al. Effects of nitrogen fertilizer application strategy on N uptake, utilization and yield of cotton using a 15N trace technique[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(3): 590–599.
  • Related Articles

    [1]MENG Ling-yi, TANG Jiang-hua, XU Wen-xiu, LOU Shan-wei, SU Li-li, WANG Chen, ZHANG Jun-yao, WANG Jia-yong. Response of soil nutrients and cotton yield to nitrogen reduction rate in continuous cropping cotton field[J]. Journal of Plant Nutrition and Fertilizers, 2024, 30(6): 1234-1242. DOI: 10.11674/zwyf.2024013
    [2]LIU Wei, YUAN Fang-fang, LI Zhi-kun, MA Zong-bin. Mechanism of suitable nitrogen and mepiquat chloride combination rate on increasing the yield of cotton in the cotton-growing region of Yellow River valley[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(9): 1738-1750. DOI: 10.11674/zwyf.2023052
    [3]FENG Wei-na, ZHENG Cang-song, LI Xiao-fei, SUN Miao, SHAO Jing-jing, LI Peng-cheng, DONG He-lin. Optimum nitrogen application rate improves the accumulation of nitrogen, phosphorous and potassium and lint yield of cotton[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(12): 2263-2273. DOI: 10.11674/zwyf.2022132
    [4]LI Peng-cheng, DONG He-lin, LIU Ai-zhong, LIU Jing-ran, LI Ru-yi, SUN Miao, LI Ya-bing, MAO Shu-chun. Effects of nitrogen fertilizer application strategy on N uptake, utilization and yield of cotton using 15N trace technique[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(3): 590-599. DOI: 10.11674/zwyf.2015.0305
    [5]LI Peng-cheng, DONG He-lin, LIU Ai-zhong, LIU Jing-ran, LI Ru-yi, SUN Miao, LI Ya-bing, MAO Shu-chun. Effects of nitrogen application rates on physiological characteristics of functional leaves, nitrogen use efficiency and yield of cotton[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(1): 81-91. DOI: 10.11674/zwyf.2015.0109
    [6]Aliyan·Rouzi, GUO Ren-song, DU Qiang, WU Hui, ZHANG Ju-song. Effects of nitrogen fertilization rate in jujube-cotton intercropping on dry matter accumulation and yield and quality of cotton[J]. Journal of Plant Nutrition and Fertilizers, 2014, 20(3): 761-767. DOI: 10.11674/zwyf.2014.0330
    [7]MA Zong-bin, YAN Gen-tu, LIU Gui-zhen, HUANG Qun, LI Ling-li, ZHU Wei, . Effects of nitrogen application rates on main physiological characteristics of leaves, dry matter accumulation and yield of cotton cultivated in the Yellow River bottomlands[J]. Journal of Plant Nutrition and Fertilizers, 2013, 19(4): 849-857. DOI: 10.11674/zwyf.2013.0410
    [8]LI Zongtai, CHEN Erying, SONG Xianliang, ZHANG Meiling, ZHAO Qinglong, XU Xiaolong, JI Hong, SUN Xuezhen. Effects of rate and time of potassium application on yield and fiber quality of cotton (Gossyium hirsutum L.) at different fruit positions[J]. Journal of Plant Nutrition and Fertilizers, 2012, 18(1): 123-131. DOI: 10.11674/zwyf.2012.11266
    [9]YANG Rong, SU Yong-zhong. Responses of net photosynthetic rate in flowering and boll-forming stages, cotton yield to irrigation and nitrogen fertilizer application[J]. Journal of Plant Nutrition and Fertilizers, 2011, 17(2): 404-410. DOI: 10.11674/zwyf.2011.0319
    [10]HUANG shao-min, BAO De-jun, HUANGFU Xiang-rong, ZHANG Hang-cheng, ZHAO Bing-qiang, ZHANG Fu-dao, SHI Xiao-hong. 长期施肥对潮土作物产量及肥料对产量贡献的影响[J]. Journal of Plant Nutrition and Fertilizers, 2002, 8(S1): 141-145.
  • Cited by

    Periodical cited type(62)

    1. 余俊杰,刘洋,罗文浩,赵婧,周丹丹,王霞,朱丽花. 稻田共作模式中重金属的污染特征及有效性控制研究. 中国生态农业学报(中英文). 2025(02): 374-386 .
    2. 唐乐斌,刘新彩,宋波,马丽钧,黄凤艳. 基于大田试验的土壤-水稻镉对不同调理剂的响应. 环境科学. 2024(01): 429-438 .
    3. 董爱琴,陈院华,杨涛,徐昌旭,程丽群,谢杰. 紫云英和石灰配施对水稻镉吸收的影响. 浙江农业学报. 2024(03): 600-612 .
    4. 张明富,王松,李佳原,王雪彬,李蒙,牙丰硕,黄丹妮,何冰,顾明华,王学礼,韦燕燕. 乙烯和水分管理对水稻Cd积累和健康风险指数的影响. 热带作物学报. 2024(05): 1072-1083 .
    5. 阳路芳,陈春秀,田丽,邓仕槐,胡文,雷建容. 外源铁对花叶冷水花根表铁膜及磷吸收的影响. 西南大学学报(自然科学版). 2024(11): 165-174 .
    6. 刘青,丁园,习莉,胡正水,王小艳,刘敏. 水分管理协同钝化剂对土壤-水稻镉砷的钝化. 江西化工. 2024(06): 87-91 .
    7. 陆汉唐,向焱赟,张玉盛,敖和军. 氮肥运筹对水稻镉吸收转运影响的研究进展. 作物研究. 2023(01): 93-98 .
    8. 袁国飞,张玉盛,敖和军. 氮肥追施时间对水稻根表铁膜形成及稻米镉含量的影响. 中南农业科技. 2023(04): 7-10+14 .
    9. 徐军辉,宋慧娟,陈丽妮,梁君依,邓潇,彭亮. 磷钙基肥对水稻根表铁膜及稻米中Cd含量的影响. 作物研究. 2023(04): 322-327 .
    10. 高金涛,王晓玥,周兴,鲁艳红,廖育林,聂军,孙波. 调理剂配合紫云英还田降低水稻土镉的生物有效性. 植物营养与肥料学报. 2022(10): 1828-1839 . 本站查看
    11. 陈佳,赵秀兰. 水分管理与施硅对水稻根表铁膜及砷镉吸收的影响. 环境科学. 2021(03): 1535-1544 .
    12. 张玉盛,周亮,肖欢,匡瑜,敖和军,田伟,肖峰,向焱赟,张小毅. 氮肥对双季稻根表铁膜形成及双季稻镉积累的影响. 农业环境科学学报. 2021(02): 260-268 .
    13. 张雨婷,田应兵,黄道友,张泉,许超,朱捍华,朱奇宏. 典型污染稻田水分管理对水稻镉累积的影响. 环境科学. 2021(05): 2512-2521 .
    14. 张燕,江建锋,黄奇娜,邵国胜,王宏航. 水分管理调控水稻镉污染的研究与应用进展. 中国稻米. 2021(03): 10-16 .
    15. 丁艳,邢媛,任蒙莲. 低磷水稻根表铁膜形成对养分吸收的影响. 安徽科技学院学报. 2021(05): 47-52 .
    16. 祝清锋,王瑞芳,王磊,刘金文,张趁玲,王金方,李海平. 黄淮地区沙薄地节水莲藕品种抗锈性表现及锈斑防除技术研究. 农业科技通讯. 2020(01): 147-151 .
    17. 黄臣臣,张翅鹏,段明宇,吴攀. 施用牛粪对As污染稻田水稻As吸收的影响. 地球与环境. 2020(01): 24-29 .
    18. 谷建诚,郭彬,林义成,傅庆林,刘琛,丁能飞,李华,李凝玉. 根表铁膜对水稻镉吸收的影响. 浙江农业学报. 2020(06): 963-970 .
    19. 刘雅,辜娇峰,周航,邓鹏辉,霍洋,黄芳,张竞颐,廖柏寒. 谷壳灰对稻田土壤镉、砷生物有效性及糙米镉、砷累积的影响. 环境科学学报. 2020(07): 2581-2588 .
    20. 杨文蕾,沈亚婷. 水稻对砷吸收的机理及控制砷吸收的农艺途径研究进展. 岩矿测试. 2020(04): 475-492 .
    21. 杨文弢,廖柏寒,周航,辜娇峰,吴攀,张佳. 有机肥施用下水稻不同生育期土壤水稻系统中微量元素与Cd的关系. 安全与环境学报. 2020(05): 1932-1941 .
    22. 陈晓雪,钟瀚涛,王琦,彭春雷,颜松林,秦青. 湖南省耕地重金属污染“VIP+n”修复措施应用与研究进展. 现代农业科技. 2019(06): 149-150+152 .
    23. 狄霖,刘玲玲,钟志仁,黄顾林,盛海君,王娟娟,朱友理. 水稻田铁氧化菌的丰度及微生物群落结构组成. 江苏农业科学. 2019(10): 296-300 .
    24. 李英,朱司航,商建英,黄益宗. 土壤镉和砷污染钝化修复材料及科学计量研究. 农业环境科学学报. 2019(09): 2011-2022 .
    25. 陈仕淼,辛子兵,陆覃昱,郑富海,何冰. Zn对水稻吸收转运Cd的影响. 农业环境科学学报. 2019(10): 2270-2277 .
    26. 魏祥东,邹慧玲,方雅瑜,尹晓辉,杨登,陈楠,张昊. 氧化亚铁硫杆菌QBS-01和赤泥对水稻中镉含量及分布规律的影响. 中国稻米. 2018(01): 68-72+79 .
    27. 方皓. 水分管理对水稻根表铁膜及POD酶活的影响. 广东化工. 2018(15): 121-123 .
    28. 徐继敏,张平,廖柏寒,耿勤,李倩,彭佩钦. 生物质炭对湘南矿区轻度Pb污染土壤性质及Pb的累积转运影响. 农业环境科学学报. 2018(02): 259-267 .
    29. 任杰,唐璐,陈菊培,但建国. 水合氧化铁提前施用对持续淹水条件下水稻甲烷的减排效应. 热带作物学报. 2018(04): 635-640 .
    30. 方至萍,廖敏,张楠,吕婷,黄小辉. 施用海泡石对铅、镉在土壤-水稻系统中迁移与再分配的影响. 环境科学. 2017(07): 3028-3035 .
    31. 董明芳,郭军康,冯人伟,王瑞刚,丁永祯,徐应明,范稚莲. Fe~(2+)和Mn~(2+)对水稻根表铁膜及镉吸收转运的影响. 环境污染与防治. 2017(03): 249-253 .
    32. 邢承华,黄文方,蒋红英. 缺磷对水稻根表铁膜形成的影响. 江西农业学报. 2017(09): 66-68+74 .
    33. 钟顺清,仇广乐,孟博. 万山汞矿区水稻吸收无机汞及甲基汞影响因素探讨. 农业环境科学学报. 2017(10): 1946-1952 .
    34. 冯莲莲,郭京霞,黄梓璨,王果. 水稻土中7个水稻品种对土壤Cd、Pb的富集与转运:田间研究. 生态环境学报. 2017(12): 2146-2153 .
    35. 傅友强,于晓莉,杨旭健,沈宏. 干湿交替诱导水稻根表铁膜形成的基因表达谱分析. 中国水稻科学. 2017(02): 133-148 .
    36. 傅友强,沈宏,杨旭健. 适度干湿交替促进水稻根表红棕色铁膜形成的根层诱导机制. 植物生理学报. 2017(12): 2167-2180 .
    37. 陶秀珍,唐常源,吴攀,张翅鹏,王志康. 贵州煤矿区成熟期水稻中重金属的分布特征及风险评价. 生态环境学报. 2017(07): 1216-1220 .
    38. 唐伟,肖应辉. 水稻镉积累的生理学和分子生物学机理研究进展. 安徽农业科学. 2016(27): 4-9 .
    39. 贺前锋,桂娟,刘代欢,李学钊,李鹏祥,权胜祥. 淹水稻田中土壤性质的变化及其对土壤镉活性影响的研究进展. 农业环境科学学报. 2016(12): 2260-2268 .
    40. 刘雯,张建桃,周遗品,陈平,雷泽湘,刘晖,吴启堂. 植物-生物膜氧化沟中不同形态铁及根表铁膜与除磷的关系. 农业工程学报. 2016(05): 228-232 .
    41. 黄天元,邓泓. 汞胁迫下氮磷减施及铁膜形成对水稻幼苗根系生长的影响. 生态学杂志. 2016(09): 2417-2421 .
    42. 王怡璇,刘杰,唐云舒,伍婵翠,周树林,姚诗音. 硅对水稻镉转运的抑制效应研究. 生态环境学报. 2016(11): 1822-1827 .
    43. 陈喆,张淼,叶长城,毛懿德,周细红,雷鸣,魏祥东,铁柏清. 富硅肥料和水分管理对稻米镉污染阻控效果研究. 环境科学学报. 2015(12): 4003-4011 .
    44. 黄科文,廖明安,林立金. 2种生态型三叶鬼针草的不同株数混种比例对其镉累积的影响. 生态与农村环境学报. 2015(05): 753-759 .
    45. 王秋霞,孙海,张亚玉. 人参、西洋参红皮病发生机制和防治措施研究进展. 特产研究. 2015(04): 69-74 .
    46. 郑芸芸,李忠意,李九玉,徐仁扣. 铁膜对水稻根表面电化学性质和氮磷钾短期吸收的影响. 土壤学报. 2015(03): 690-696 .
    47. 孙雨辰,于浩,郑寨生,张尚法,丁林贤,蔡妙珍. 藕莲根状茎表面的铁膜特性和成分分析. 植物科学学报. 2015(02): 244-250 .
    48. 马微,鲍艳宇. 根表铁氧化物胶膜对水稻吸收诺氟沙星的影响. 环境科学. 2015(06): 2259-2265 .
    49. 于浩,郑寨生,张尚法,孙雨辰,赵甘戬,吕程敏,蒋海玲,蔡妙珍. 除锈剂对莲藕铁膜的去除效果研究. 广东微量元素科学. 2014(07): 20-24 .
    50. 沈宏,杨旭健,傅友强. 一个水稻铁转运基因(OsFRDL1)参与缺氧诱导根系铁膜形成的调节过程. 科学通报. 2014(09): 787-795 .
    51. 刘春英,陈春丽,弓晓峰,周文斌,杨菊云. 湿地植物根表铁膜研究进展. 生态学报. 2014(10): 2470-2480 .
    52. 傅友强,杨旭健,吴道铭,沈宏. 磷素对水稻根表红棕色铁膜的影响及营养效应. 中国农业科学. 2014(06): 1072-1085 .
    53. 李云云,赵甲亭,高愈希,李玉锋,李柏,赵宇亮,柴之芳. 根表铁膜的形成和添加硒对水稻吸收转运无机汞和甲基汞的影响. 生态毒理学报. 2014(05): 972-977 .
    54. 杨旭健,傅友强,沈宏,甘海华. 水稻根表铁膜及其形成的形态、生理及分子机理综述. 生态学杂志. 2014(08): 2235-2244 .
    55. 李腾懿,孙海,张丽娜,张亚玉. 不同树种土壤酶活性、养分特征及其与林下参红皮病发病指数的关系. 吉林农业大学学报. 2013(06): 688-693+715 .
    56. 胡莹,黄益宗,黄艳超,刘云霞. 根表铁锰膜对不同生育期水稻吸收和转运As的影响. 生态毒理学报. 2013(02): 163-171 .
    57. 刘丹青,陈雪,杨亚洲,王淑,李玉姣,胡浩,张春华,葛滢. pH值和Fe、Cd处理对水稻根际及根表Fe、Cd吸附行为的影响. 生态学报. 2013(14): 4306-4314 .
    58. 傅友强,吴道铭,申守营,李玥,沈宏. 一种定量测定水稻根系氧化力的新方法. 土壤. 2013(06): 1133-1136 .
    59. 张淼,赵书岗,耿丽平,霍红,刘文菊. 缺磷对不同作物根系形态及体内养分浓度的影响. 植物营养与肥料学报. 2013(03): 577-585 . 本站查看
    60. 胡莹,黄益宗,黄艳超,刘云霞. 不同生育期水稻根表铁膜的形成及其对水稻吸收和转运Cd的影响. 农业环境科学学报. 2013(03): 432-437 .
    61. 高定,郑国砥,陈同斌,刘洪涛,杨军,杨苏才,高伟. 城市污泥土地利用的重金属污染风险. 中国给水排水. 2012(15): 102-105 .
    62. 傅友强,梁建平,于智卫,吴道铭,蔡昆争,沈宏. 不同铁形态对水稻根表铁膜及铁吸收的影响. 植物营养与肥料学报. 2011(05): 1050-1057 . 本站查看

    Other cited types(85)

Catalog

    Article views (2101) PDF downloads (361) Cited by(147)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return