• ISSN 1008-505X
  • CN 11-3996/S
WANG Mei, DUAN Ya-nan, SUN Shen-yi, XIANG Li, WANG Gong-shuai, CHEN Xue-sen, SHEN Xiang, YIN Cheng-miao, MAO Zhi-quan. Effects of different nitrogen forms on the growth of replanted apple rootstock (Malus hupehensis Rehd.) seedlings and Fusarium oxysporum population in soil[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(4): 1014-1021. DOI: 10.11674/zwyf.16457
Citation: WANG Mei, DUAN Ya-nan, SUN Shen-yi, XIANG Li, WANG Gong-shuai, CHEN Xue-sen, SHEN Xiang, YIN Cheng-miao, MAO Zhi-quan. Effects of different nitrogen forms on the growth of replanted apple rootstock (Malus hupehensis Rehd.) seedlings and Fusarium oxysporum population in soil[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(4): 1014-1021. DOI: 10.11674/zwyf.16457

Effects of different nitrogen forms on the growth of replanted apple rootstock (Malus hupehensis Rehd.) seedlings and Fusarium oxysporum population in soil

More Information
  • Received Date: November 30, 2016
  • Available Online: July 04, 2019
  • ObjectivesTo provide a theoretical basis for reasonably applying fertilizers and alleviating the growth obstacles of replanted apple, a pot experiment was conducted to study effects of different nitrogen forms on growth of apple rootstock (Malus hupehensis Rehd.) seedlings and the replanted soil microorganisms.
    MethodsThe experiment was carried out in 2015. M. hupehensis Rehd. Seedling was used in this study, and the biomass, photosynthetic parameters and soil microorganisms were determined in August 2015. Three N fertilizer treatments were designed as follows: ammonium nitrogen (T1), nitrate nitrogen (T2) and amide nitrogen (T3) (N 180 mg/L), and took the apple replanted orchard soil (CK1) and methyl bromide fumigation (CK2) as the control. M. hupehensis Rehd. seedlings were planted in pots with different treatments.
    Results Compared with the replanted soil control (CK1), the biomass amounts of M. hupehensis Rehd. seedlings were significantly improved with the ammonium nitrogen (T1) and amide nitrogen (T3). The plant height, ground diameter, fresh weight and dry weight of the ammonium nitrogen (T1) were increased by 35.3%, 24.4%, 42.0%, 57.7%. Different nitrogen forms could increase the net photosynthesis stomatal conductance and root respiration rate. The net photosynthetic rate, stomatal conductance in leaves of the seedlings and root respiration rate of ammonium nitrogen of T1 were increased by 27.6%, 35.6% and 43.3% compared with CK1, respectively, but they did not reach the highest effect of the methyl bromide fumigation (CK2). Real-time quantitative PCR results showed that the ammonium nitrogen (T1) effectively reduced the gene copy number of Fusarium oxysporum, which was decreased by 41.3% compared with the replanted soil control (CK1). The copy numbers of the nitrate nitrogen (T2) and amide nitrogen (T3) had no significant differences with the soil control (CK1). T-RFLP results showed that soil fungal community structure was changed by the ammonium nitrogen (T1) and amide nitrogen (T3) greatly, the fungal community structure in the ammonium nitrogen (T1) was similar to that in the methyl bromide fumigation (CK2), and the structure of the nitrate nitrogen (T2) was similar to that in the soil control (CK1), while an independent fungal community was formed in the amide nitrogen (T3).
    ConclusionsAmmonium nitrogen greatly improved the biomass of M. hupehensis Rehd. seedlings, net photosynthetic rate and root respiration rate, reduced the gene copy number of Fusarium oxysporum, and changed the community structure of soil fungi. Therefore, the appropriate dosages of ammonium nitrogen could be used as a measure to reduce the apple replanted disease.
  • [1]
    Liu E T, Wang G S, Li Y Y, et al. Replanting affects the tree growth and fruit quality of gala apple[J]. Journal of Integrative Agriculture, 2014, 13(8): 1699–1706.
    [2]
    Mazzola M, Manici L M. Apple replant disease: role of microbial ecology in cause and control[J]. Annual Review of Phytopathology, 2012, 50: 45–65.
    [3]
    Tewoldemedhin T Y, Mazzola M, Mostert L, et al. Cylindrocarpon speces associated with apple tree roots in South Africa and their quantification using real-time PCR[J]. European Journal of Plant Paithology, 2011, 129(4): 637–651.
    [4]
    孙海兵, 毛志泉, 朱树华. 环渤海湾地区连作苹果园土壤中酚酸类物质变化[J]. 生态学报, 2011, 31(1): 90–97. Sun H B, Mao Z Q, Zhu S H. Changes of phenolic acids in the soil of replanted apple orchards surrounding Bohai Gulf[J]. Acta Ecologica Sinica, 2011, 31(1): 90–97.
    [5]
    Dullahide S R, Stirling G R, Nikulin A, et al. The role of nematodes, fungi, bacteria, and abiotic factors in the etiology of apple replant problems in the Granite Belt of Queensland[J]. Australian Journal of Experimental Agriculture, 1994, 34(8): 1177–1182.
    [6]
    Mazzola M. Elucidation of the microbial complex having a causal role in the development of apple replant disease in Washington[J]. Phytopathology, 1998, 88(9): 930–938.
    [7]
    Van Schoor L, Denman S, Cook N C. Characterisation of apple replant disease under South African conditions and biological management strategies[J]. Scientia Horticulturae, 2009, 19(2): 153–162.
    [8]
    相立, 徐少卓, 王功帅, 等. 微酸性电解水对苹果连作土壤环境的影响[J]. 园艺学报, 2016, 43(7): 1236–1244. Xiang L, Xu S Z, Wang G S, et al. Effects of slightly acid electrolyzed oxidizing water on apple replanted soil environment[J]. Acta Horticulturae Sinica, 2016, 43(7): 1236–1244.
    [9]
    Tewoldemedhin Y T, Mazzola M, Botha W J, et al. Characterization of fungi (Fusarium arrd Rhizoctonia) and oomycetes (Phytophthora and Pythium) associated with apple orchards in South Africa[J]. European Journal of Plant Pathology, 2011, 130(2): 215–229.
    [10]
    Cao Y, Zhang Z, Ling N, et al. Bacillus subtilis SQR 9 can control Fusarium wilt in cucumber by colonizing plant roots[J]. Biology and Fertility of Soils, 2011, 47(5): 495–506.
    [11]
    Zhao S, Du C M, Tian C Y. Suppression of Fusarium oxysporum and induced resistance of plants involved in the biocontrol of Cucumber Fusarium Wilt by Streptomyces bikiniensis HD-087[J]. World Journal of Microbiology and Biotechnology, 2012, 28(9): 2919–2927.
    [12]
    Qiu M, Zhang R, Xue C, et al. Application of bio-organic fertilizer can control Fusarium wilt of cucumber plants by regulating microbial community of rhizosphere soil[J]. Biology and Fertility of Soils, 2012, 48(7): 807–816.
    [13]
    曹坳程, 张文吉, 刘建华. 溴甲烷土壤消毒替代技术研究进展[J]. 植物保护, 2007, 33(1): 15–20. Cao A C, Zhang W J, Liu J H. Progress in the alternatives to methy1 bromide in soil disinfestation[J]. Plant Protection, 2007, 33(1): 15–20.
    [14]
    巨晓棠, 谷保静. 我国农田氮肥施用现状、问题及趋势[J]. 植物营养与肥料学报, 2014, 20(4): 783–795. Ju X T, Gu B J. Status-quo, problem and trend of nitrogen fertilization in China[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(4): 783–795.
    [15]
    Huber D M, Watson R D. Nitrogen form and plant disease[J]. Annual Review of Phytopathology, 1974, 12(1): 139–165.
    [16]
    Taylor R G, Jackson T L, Powelson R L, et al. Chloride, nitrogen form, lime, and planting date effects on take-all root rot of winter wheat[J]. Plant Disease, 1983, 67(10): 1116–1120.
    [17]
    王敏. 土传黄瓜枯萎病致病生理机制及其与氮素营养关系研究[D]. 南京: 南京农业大学博士论文, 2013.

    Wang M. Study on physiological mechanisms of soil-borne disease of cucumber Fusarium wilt and the relationships with nitrogen nutrition [D]. Nanjing: PhD Dissertation of Nanjing Agricultural University, 2013.
    [18]
    刘庆城, 许玉兰. 液氨施肥防治作物土传病害的研究[J]. 中国农业科学, 1986, 19(1): 29–32. Liu Q C, Xu Y L. Study on ammonia fertilizer control of soil-borne diseases of crops[J]. Scientia Agricultura Sinica, 1986, 19(1): 29–32.
    [19]
    Janvier C, Villenenve F, Alabouvette C, et al. Soil health through soil disease suppression which strategy from descriptors to indication[J]. Soil Biology and Biochemistry, 2007, 39(1): 1–23.
    [20]
    Snoeijers S S, Pérez-García A, Joosten M H A J, et al. The effect of nitrogen on disease development and gene expression in bacterial and fungal plant pathogens[J]. European Journal of Plant Pathology, 2000, 106(6): 493–506.
    [21]
    毛志泉, 王丽琴, 沈向, 等. 有机物料对平邑甜茶实生苗根系呼吸强度的影响[J]. 植物营养与肥料学报, 2004, 10(2): 171–175. Mao Z Q, Wang L Q, Shen X, et al. Effect of organic materials on respiration intensity of annual Malus.hupehensis Rehd. root system[J]. Plant Nutrition and Fertilizer Science, 2004, 10(2): 171–175.
    [22]
    李家家, 相 立, 潘凤兵, 等. 平邑甜茶幼苗与葱混作对苹果连作土壤环境的影响[J]. 园艺学报, 2016, 43(10): 1853–1862. Li J J, Xiang L, Pan F B, et al. Effects of Malus hupehensis seedlings and Allium fistulosum mixed cropping on replanted soil environment[J]. Acta Horticulturae Sinica, 2016, 43(10): 1853–1862.
    [23]
    尹承苗, 王功帅, 李园园, 等. 连作苹果园土壤真菌的T-RFLP分析[J]. 生态学报, 2014, 34(4): 837–846. Yin C M, Wang G S, Li Y Y, et al. Assessment of fungal diversity in apple replanted orchard soils by T-RFLP analysis[J]. Acta Ecologica Sinica, 2014, 34(4): 837–846.
    [24]
    顾曼如, 束怀瑞, 张若杼, 等. 苹果氮素营养研究初报-植株中氮素营养的变化特性[J]. 园艺学报, 1981, (4): 21–28. Gu M R, Shu H R, Zhang R Z, et al. A study on the nitrogen nutrition of apple tree - The variation of nitrogen nutrition within the plant in a year’s cycle[J]. Acta Horticulturae Sinica, 1981(4): 21–28.
    [25]
    尹承苗, 张先富, 胡艳丽, 等. 不同浓度有机物料发酵流体对连作苹果幼树叶片光合荧光参数和根系抗氧化酶活性的影响[J]. 中国农业科学, 2014, 47(9): 1847–1857. Yin C M, Zhang X F, Hu Y L, et al. Effect of different concentrations of organic matter fermentation fluid on the young apple tree leaf photosynthesis fluorescent parameters and root antioxidant activity under replant conditions[J]. Scientia Agricultura Sinica, 2014, 47(9): 1847–1857.
    [26]
    陈贵, 周毅, 郭世伟, 等. 水分胁迫条件下不同形态氮素营养对水稻叶片光合效率的调控机理研究[J]. 中国农业科学, 2007, 40(10): 2162–2168. Chen G, Zhou Y, Guo S W, et al. The regulatory mechanism of different nitrogen form on photosynthetic efficiency of rice plants under water stress[J]. Scientia Agricultura Sinica, 2007, 40(10): 2162–2168.
    [27]
    Guo S W, Zhou Y, Gao Y X, et al. New insights into the nitrogen form effect on photosynthesis and photorespiration[J]. Pedosphere, 2007, 17(5): 601–610.
    [28]
    李志霞, 秦嗣军, 吕德国, 等. 植物根系呼吸代谢及影响根系呼吸的环境因子研究进展[J]. 植物生理学报, 2011, 47(10): 957–966. Li Z X, Qin S J, Lü D G, et al. Research progress in root respiratory metabolism of plant and the environmental influencing factors[J]. Plant Physiology Journal, 2011, 47(10): 957–966.
    [29]
    Burton A J, Pregitzer K S, Ruess R W. Root respiration in North American forest: effects of nitrogen concentration and temperature across biomes[J]. Oecologia, 2002, 131(4): 559–568.
    [30]
    Desrochers A, Landhäusser S M, Lieffers V J. Coarse and fine root respiration in aspen (Papulus tremuloides)[J]. Tree Physiology, 2002, 22(10): 725–732.
    [31]
    Yim B, Smalla K, Winkelmann T. Evaluation of apple replant problems based on different soil disinfection treatments—links to soil microbial community structure[J]. Plant and Soil, 2013, 366(1–2): 617–631.
    [32]
    Zhang Y, Fan T, Jia W, et al. Identification and characterization of a Bacillus subtilis strain TS06 as bio-control agent of strawberry replant disease (Fusarium and Verticilium wilts)[J]. African Journal of Biotechnology, 2012, 11(3): 570–580.
    [33]
    徐文凤. 环渤海湾地区重茬苹果园土壤真菌群落多样性及生防真菌的筛选[D]. 泰安: 山东农业大学硕士论文, 2011.

    Xu W F. Diversity analysis of soil fungi from Bohai Bay apple replanted orchard and the screening of the antagonistic fungi [D]. Tai'an: MS Thesis of Shandong Agricultural University, 2011.
    [34]
    Ju R, Zhao Y, Li J, et al. Identification and evaluation of a potential biocontrol agent, Bacillus subtilis, against Fusarium sp. in apple seedlings[J]. Annals of Microbiology, 2014, 64(1): 377–383.
    [35]
    Marschner P, Kandeler E, Marschner B. Structure and function of the soil microbial community in a long-term fertilizer experiment[J]. Soil Biology and Biochemistry, 2003, 35(3): 453–461.
    [36]
    张茂星, 张明超, 陈鹏, 等. 硝/铵营养对香蕉生长及其枯萎病发生的影响[J]. 植物营养与肥料学报, 2013, 19(5): 1241–1247. Zhang M X, Zhang M C, Chen P, et al. Influence of nitrate/ammonium ratio on the plant growth of banana and related wilt disease development[J]. Journal of Plant Nutrition and Fertilizer, 2013, 19(5): 1241–1247.
    [37]
    林妃, 高剑, 曾会才, 等. 海南省香蕉枯萎病病原菌的分离鉴定及1号4号小种的生物学特性[J]. 基因组学与应用生物学, 2010, 29(2): 314–321. Lin F, Gao J, Zeng H C, et al. Isolation and identification of banana vasicular wilt in Hainan Province and determination of biological characteristics of strains Focr1 and Focr4[J]. Genomics and Applied Biology, 2010, 29(2): 314–321.
    [38]
    张茂星, 陈鹏, 张明超, 等. 硝/铵营养对香蕉枯萎病尖孢镰刀菌生长的影响[J]. 植物营养与肥料学报, 2013, 19(1): 232–238. Zhang M X, Chen P, Zhang M C, et al. Influence of nitrate/ammonium on Fusarium oxysporum f. sp. cubense of banana wilt disease[J]. Plant Nutrition and Fertilizer Science, 2013, 19(1): 232–238.
    [39]
    罗燕, 樊卫国. 不同施磷水平下4种柑橘砧木的根际土壤有机酸、微生物及酶活性[J]. 中国农业科学, 2014, 47(5): 955–967. Luo Y, Fan W G. Organic acid content, microbial quantity and enzyme activity in rhizosphere soil of four citrus rootstocks under different phosphorus levels[J]. Scientia Agricultura Sinica, 2014, 47(5): 955–967.
    [40]
    王富林, 周乐, 李洪娜, 等. 不同氮磷配比对富士苹果幼树生长及15N-尿素吸收、分配与利用的影响[J]. 植物营养与肥料学报, 2013, 19(5): 1102–1108. Wang F L, Zhou L, Li H N, et al. Effect of N, P ratios on the growth and absorption, distribution and utilization of 15N-urea of Fuji apple saplings[J]. Journal of Plant Nutrition and Fertilizer, 2013, 19(5): 1102–1108.
  • Cited by

    Periodical cited type(6)

    1. 尹晓宁,刘芬,马明,王文丽,牛军强,董铁,孙文泰,杨泽华. 苹果园重茬障碍防治研究进展. 寒旱农业科学. 2025(03): 197-209 .
    2. 乔鈜元,盛月凡,王海燕,沈向,陈学森,尹承苗,毛志泉. 生石灰与过磷酸钙混施对连作土壤的改良效果及平邑甜茶幼苗生长的影响. 中国果树. 2020(03): 16-22 .
    3. 王晓琪,姜伟涛,姚媛媛,尹承苗,陈学森,毛志泉. 苹果连作障碍土壤微生物的研究进展. 园艺学报. 2020(11): 2223-2237 .
    4. 盛月凡,王海燕,乔鈜元,王玫,陈学森,沈向,尹承苗,毛志泉. 不同土壤质地对平邑甜茶幼苗连作障碍程度的影响. 中国农业科学. 2019(04): 715-724 .
    5. 王义坤,孙琪然,段亚楠,王柯,陈学森,沈向,尹承苗,毛志泉. 三种菌肥对苹果连作土壤环境及平邑甜茶幼苗生长的影响. 植物营养与肥料学报. 2019(04): 630-638 . 本站查看
    6. 王海燕,盛月凡,李前进,王玫,潘凤兵,陈学森,沈向,尹承苗,毛志泉. 葱、芥菜和小麦轮作对老龄苹果园土壤环境的影响. 园艺学报. 2019(11): 2224-2238 .

    Other cited types(19)

Catalog

    Article views (3089) PDF downloads (528) Cited by(25)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return