• ISSN 1008-505X
  • CN 11-3996/S
SUN Bo, WANG Xiao-yue, LÜ Xing-hua. The historical venation in research on microbial mechanisms of soil nutrient cycling in the past 60 years—Based on bibliometric analysis and big data visualization[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(6): 1590-1601. DOI: 10.11674/zwyf.17292
Citation: SUN Bo, WANG Xiao-yue, LÜ Xing-hua. The historical venation in research on microbial mechanisms of soil nutrient cycling in the past 60 years—Based on bibliometric analysis and big data visualization[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(6): 1590-1601. DOI: 10.11674/zwyf.17292

The historical venation in research on microbial mechanisms of soil nutrient cycling in the past 60 years—Based on bibliometric analysis and big data visualization

More Information
  • Received Date: July 28, 2017
  • Available Online: July 04, 2019
  • Objectives Nutrient cycling plays an essential role in soil fertility and plant growth, which is mainly driven by soil microorganisms. Exploiting the potentiality of microbe in regulating nutrient turnover in soil–plant systems has become an important tendency to increase nutrient use efficiency. Reviewing the historical advance in researches on nutrient cycling and soil microbial community, and figuring out our advantages and disadvantages in these fields on the world will be great helpful to find the key research fields and further promote the domestic research level.
    Methods In this study, bibliometrics and big data visualisation were used to quantitatively analyze the historical advances achieved in nutrient cycling and microbial community researches in the past 60 years. The similarities and differences in different periods were compared between domestic and international researches.
    Main advances The domestic studies could be classified into starting (1981–1990), developing (1991–2005) and maturing stages (2006–2016). At starting stage, the " hot spots” were scattered and researchers mainly focused on the fertility related function of specific microorganisms and enzyme activities in red soil, paddy soil and purple soil. During the developing stage, researchers were mainly focused on microbial biomass and enzyme activities that related to soil fertility and environmental functions, and the connecting among the research works was strengthened. After entering the maturing stage, the connections among research hot spots were more developed, and the interaction of microbial community structure and soil nutrient cycling became the dominant hot spots. Since the 1990s, the domestic researchers have followed the cutting-edge international research. This process could be categorized into initial (1990–2005) and rapid catch-up stages (2006–2016). During initial catch-up stage, domestic scholars followed the international trends and studied the interaction between microbial community and carbon and nitrogen cycling. However, the domestic networks were still immature, lacking of rhizosphere studies and merely concentrated on red soil. When coming to rapid catch-up stage, domestic scholars strengthened the studies on microbial mechanisms of nutrient dynamics in paddy soil and rhizosphere. In addition, the rising of research on soil microbial network structure and function conducted by domestic academia appeared at the same time as that by the international academia. However, the new findings on soil microbial network structure and functions need more solid proofs. Over all, domestic studies developed dramatically fast, although relatively later than international ones. Within the past 20 years, more and more researches have transferred from simply enzyme activities to the interaction of microbial co-occurring network and soil function. The domestic network are maturing, and showing the convergent tendency with international network. However, the studies are relatively weak on the driving mechanism of microbial community evolution applied to nutrient cycling.
    Conclusions and Prospectives In the future studies, efforts should be put on developing appropriate regional practices that are suitable for microbial regulation to improve nutrient use efficiency, and on developing the fundamental theories of the synergetic changes in microbial community structure and function as well.
  • [1]
    汤勇华, 黄耀. 中国大陆主要粮食作物地力贡献率和基础产量的空间分布特征[J]. 农业环境科学学报, 2009, 28(5): 1070–1078. Tang Y H, Huang Y. Spatial distribution characteristics of the percentage of soil fertility contribution and its associated basic crop yield in mainland China[J]. Journal of Agro-Environment Science, 2009, 28(5): 1070–1078.
    [2]
    郝锐敏. 农业部首度发布化肥农药利用率数据[N]. 农资导报, 2015-12-11.

    Hao R M. Fertilizer and pesticide use efficiency data was first issued by Ministry of Agriculture [N]. AgriGoods Herald, 2015-12-11.
    [3]
    宋长青. 土壤科学三十年: 从经典到前沿[M]. 北京: 商务印书馆, 2016.

    Song C Q. Development of soil science in the past 30 years: From classic to frontier [M]. Beijing: The Commercial Press, 2016.
    [4]
    孙华, 张桃林, 熊德祥. 退化砂姜黑土的有机磷特性及其活化研究[J]. 山东农业大学学报(自然科学版), 2003, 34(2): 214–216. Sun H, Zhang T L, Xiong D X. Studies on organic phosphorus and its activation of degraded Shajiang black soils[J]. Journal of Shandong Agricultural University (Natural Science), 2003, 34(2): 214–216.
    [5]
    李东坡, 武志杰, 陈利军, 等. 长期培肥黑土脲酶活性动态变化及其影响因素[J]. 应用生态学报, 2003, 14(12): 2208–2212. Li D P, Wu Z J, Chen L J, et al. Dynamics of urease activity in a long-term fertilized black soil and its affecting factors[J]. Chinese Journal of Applied Ecology, 2003, 14(12): 2208–2212.
    [6]
    孙波, 张桃林, 赵其国. 我国中亚热带缓丘区红粘土红壤肥力的演化Ⅱ.化学和生物学肥力的演化[J]. 土壤学报, 1999, 36(2): 203–217. Sun B, Zhang T L, Zhao Q G. Fertility evolution of red soil derived from quaternary red clay in low-hilly region in middle subtropics Ⅱ. Evolution of soil chemical and biological fertilities[J]. Acta Pedologica Sinica, 1999, 36(2): 203–217.
    [7]
    李忠佩, 唐永良, 石华, 张桃林. 不同轮作措施下瘠薄红壤中碳氮积累特征[J]. 中国农业科学, 2002, 35(10): 1236–1242. Li Z P, Tang Y L, Shi H, Zhang T L. Characteristics of C and N accumulation in infertile red soil under different rotation systems[J]. Scientia Agricultura Sinica, 2002, 35(10): 1236–1242.
    [8]
    关连珠, 张伯泉, 颜丽, 等. 有机肥料配施化肥对土壤有机质组分及生物活性影响的研究[J]. 土壤通报, 1990, 21(4): 180–184. Guan L Z, Zhang B Q, Yan L, et al. Research on effects of biological activity and organic matter for fertilizer combined with organic matter in soil[J]. Chinese Journal of Soil Science, 1990, 21(4): 180–184.
    [9]
    廖先苓, 徐银华, 朱兆良. 淹水种稻条件下化肥氮的硝化–反硝化损失的初步研究[J]. 土壤学报, 1982, 19(3): 257–263. Liao X L, Xu Y H, Zhu Z L. Investigation on nitrification-denitrification loss of fertilizer nitrogen in submerged paddy soil[J]. Acta Pedologica Sinica, 1982, 19(3): 257–263.
    [10]
    郑林用, 黄怀琼, 刘世全. 酸性紫色土中钼对花生–根瘤菌共生固氮的影响[J]. 四川农业大学学报, 1990, 8(2): 129–135. Zheng L Y, Huang H Q, Liu S Q. Effect of molybdenum on symbiotic nitrogen-fixation of rhizobium-peanut in acid purple soils[J]. Journal of Sichuan Agricultural University, 1990, 8(2): 129–135.
    [11]
    唐振尧, 张清华, 何首林. 菌根真菌在红壤中对柑桔吸收磷肥的研究[J]. 真菌学报, 1984, 3(3): 170–177. Tang Z Y, Zhang Q H, He S L. The effect of mycorrhizal fungus on phospohate uptake by Citrus in red earth[J]. Acta Mycologica Sinica, 1984, 3(3): 170–177.
    [12]
    杨明均, 江育璋. 半旱式耕作下紫色水稻土的脲酶活性与土壤肥力[J]. 西南农业大学学报, 1987, (增刊 2): 86–89.

    Yang M J, Jiang Y Z. A study on relation of urease activity with fertility in the purple soil with rice ridge culture [J]. Journal of Southwest Agricultural University, 1987, (Suppl. 2): 86–89.
    [13]
    陈吉棣, 刘建国, 陈松生, 等. 寄生双孢蘑菇的蛛网丝枝霉中国变种[J]. 真菌学报, 1984, 3(2): 96–101. Chen J L, Liu J G, Chen S S, et al. Studies on Aphanocladium Aranearum (petch) Gams var. Sinense var. nov. — A fungus parasitic to Agaricus bisporus (Lange) Sing. [J]. Acta Mycologica Sinica, 1984, 3(2): 96–101.
    [14]
    杨冬生, 王荣康, 万富寅, 乔光辉. 道孚棕色森林土火烧后主要酶系活性及理化性质的演变[J]. 四川林业科技, 1990, 11(2): 1–7. Yang D S, Wang R K, Wang F Y, Qiao G H. Effect of fire on enzyme activity and soil physical and chemical properties in brown forest soil in Daofu[J]. Journal of Sichuan Forestry Science and Technology, 1990, 11(2): 1–7.
    [15]
    孙瑞莲, 赵秉强, 朱鲁生, 等. 长期定位施肥对土壤酶活性的影响及其调控土壤肥力的作用[J]. 植物营养与肥料学报, 2003, 9(4): 406–410. Sun R L, Zhao B Q, Zhu L S, et al. Effect of long-term fertilization on soil enzyme activities and its role in adjusting-controlling soil fertility[J]. Plant Nutrition and Fertilizer Science, 2003, 9(4): 406–410.
    [16]
    陈国潮. 土壤微生物量测定方法现状及其在红壤上的应用[J]. 土壤通报, 1999, 30(6): 284–287. Chen G C. Situation of soil microbial biomass detection methods and its application in red soils[J]. Chinese Journal of Soil Science, 1999, 30(6): 284–287.
    [17]
    李东坡, 武志杰, 陈利军, 等. 长期培肥黑土微生物量碳动态变化及影响因素[J]. 应用生态学报, 2004, 15(8): 1334–1338. Li D P, Wu Z J, Chen L J, et al. Dynamics of microbial biomass C in a black soil under long-term fertilization and related affecting factors[J]. Chinese Journal of Applied Ecology, 2004, 15(8): 1334–1338.
    [18]
    李东坡, 武志杰, 陈利军, 等. 长期定位培肥黑土土壤蔗糖酶活性动态变化及其影响因素[J]. 中国生态农业学报, 2005, 13(2): 102–105. Li D P, Wu Z J, Chen L J, et al. Dynamics of invertase activity of black soil treated by a long-term located fertilization and its influence[J]. Chinese Journal of Eco-Agriculture, 2005, 13(2): 102–105.
    [19]
    王智平, 曾江海, 张玉铭. 农田土壤 N2O 排放的影响因素[J]. 农业环境保护, 1994, 13(1): 40–42. Wang Z P, Zeng J H, Zhang Y M. Factors impact flux of N2O emission from agricultural soils[J]. Agro-environmental Protection, 1994, 13(1): 40–42.
    [20]
    杨志新, 刘树庆. 重金属Cd、Zn、Pb复合污染对土壤酶活性的影响[J]. 环境科学学报, 2001, 21(1): 60–63. Yang Z X, Liu S Q. Effect of compound pollution of heavy metals on soil enzymes’ activities[J]. Acta Scientiae Circumstantiae, 2001, 21(1): 60–63.
    [21]
    陈法霖, 张凯, 郑华, 等. PCR-DGGE技术解析针叶和阔叶凋落物混合分解对土壤微生物群落结构的影响[J]. 应用与环境生物学报, 2011, 17(2): 145–151. Chen F L, Zhang K, Zheng H, et al. Analyzing the effect of mixed decomposition of conifer and broadleaf litters on soil microbial communities by using PCR-DGGE[J]. Chinese Journal of Applied & Environmental Biology, 2011, 17(2): 145–151.
    [22]
    刘定辉, 舒丽, 陈强, 等. 秸秆还田少免耕对冲积土微生物多样性及微生物碳氮的影响[J]. 应用与环境生物学报, 2011, 17(2): 158–162. Liu D H, Shu L, Chen Q, et al. Effects of straw mulching and little- or zero-tillage on microbial diversity and biomass C and N of alluvial soil in Chengdu Plain, China[J]. Chinese Journal of Applied & Environmental Biology, 2011, 17(2): 158–162.
    [23]
    李鑫, 张会慧, 岳冰冰, 等. 桑树–大豆间作对盐碱土碳代谢微生物多样性的影响[J]. 应用生态学报, 2012, 23(7): 1825–1831. Li X, Zhang H H, Yue B B, et al. Effects of mulberry–soybean intercropping on carbon-metabolic microbial diversity in saline-alkaline soil[J]. Chinese Journal of Applied Ecology, 2012, 23(7): 1825–1831.
    [24]
    刘若萱, 张丽梅, 白刃, 贺纪正. 模拟条件下土壤硝化作用及硝化微生物对不同水分梯度的响应[J]. 土壤学报, 2015, 52(2): 415–422. Liu R X, Zhang L M, Bai R, He J Z. Response of nitrification and nitrifier to change in soil moisture content under simulated conditions[J]. Acta Pedologica Sinica, 2015, 52(2): 415–422.
    [25]
    张坚超, 徐镱钦, 陆雅海. 陆地生态系统甲烷产生和氧化过程的微生物机理[J]. 生态学报, 2015, 35(20): 6592–6603. Zhang J C, Xu Y Q, Lu Y H. Microbial mechanisms of methane production and oxidation in terrestrial ecosystems[J]. Acta Ecologica Sinica, 2015, 35(20): 6592–6603.
    [26]
    李忠佩, 吴晓晨, 陈碧云. 不同利用方式下土壤有机碳转化及微生物群落功能多样性变化[J]. 中国农业科学, 2007, 40(8): 1712–1721. Li Z P, Wu X C, Chen B Y. Changes in transformation of soil organic carbon and functional diversity of soil microbial community under different land use patterns[J]. Scientia Agricultura Sinica, 2007, 40(8): 1712–1721.
    [27]
    朱强根, 朱安宁, 张佳宝, 等. 保护性耕作下土壤动物群落及其与土壤肥力的关系[J]. 农业工程学报, 2010, 26(2): 70–76. Zhu Q G, Zhu A N, Zhang J B, et al. Relation of agricultural soil fauna and soil fertility under conservation tillage systems[J]. Transactions of the CSAE, 2010, 26(2): 70–76.
    [28]
    Hyvonen R, Agren G I, Andren O. Modelling long-term: Carbon and nitrogen dynamics in an arable soil receiving organic matter[J]. Ecological Applications, 1996, 6(4): 1345–1354.
    [29]
    Simek M, Kalcik J. Carbon and nitrate utilization in soils: the effect of long-term fertilization on potential denitrification[J]. Geoderma, 1998, 83(3–4): 269–280.
    [30]
    Throback I N, Enwall K, Jarvis A, Hallin S. Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE[J]. FEMS Microbiology Ecology, 2004, 49(3): 401–417.
    [31]
    Wang F E, Chen Y X, Tian G M, et al. Microbial biomass carbon, nitrogen and phosphorus in the soil profiles of different vegetation covers established for soil rehabilitation in a red soil region of southeastern China[J]. Nutrient Cycling in Agroecosystems, 2004, 68(3): 181–189.
    [32]
    Feng G, Zhang F S, Li X L, Christie P. Uptake of nitrogen from indigenous soil pool by cotton plant inoculated with arbuscular mycorrhizal fungi[J]. Communications in Soil Science and Plant Analysis, 2002, 33(19–22): 3825–3836.
    [33]
    Feng G, Song Y C, Li X L, Christie P. Contribution of arbuscular mycorrhizal fungi to utilization of organic sources of phosphorus by red clover in a calcareous soil[J]. Applied Soil Ecology, 2003, 22(2): 139–148.
    [34]
    Liao M, Chen C L, Huang C Y. Effect of heavy metals on soil microbial activity and diversity in a reclaimed mining wasteland of red soil area[J]. Journal of Environmental Sciences, 2005, 17(5): 832–837.
    [35]
    Banerjee S, Kirkby C A, Schmutter D, et al. Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil[J]. Soil Biology & Biochemistry, 2016, 97: 188–198.
    [36]
    Embacher A, Zsolnay A, Gattinger A, Munch J C. The dynamics of water extractable organic matter (WEOM) in common arable topsoils: II. Influence of mineral and combined mineral and manure fertilization in a Haplic Chernozem[J]. Geoderma, 2008, 148(1): 63–69.
    [37]
    Cherif H, Ayari F, Ouzari H, et al. Effects of municipal solid waste compost, farmyard manure and chemical fertilizers on wheat growth, soil composition and soil bacterial characteristics under Tunisian arid climate[J]. European Journal of Soil Biology, 2009, 45(2): 138–145.
    [38]
    Ding W X, Meng L, Yin Y F, et al. CO2 emission in an intensively cultivated loam as affected by long-term application of organic manure and nitrogen fertilizer[J]. Soil Biology & Biochemistry, 2007, 39: 669–679.
    [39]
    Murase J, Matsui Y, Katoh M, et al. Incorporation of 13 C-labeled rice-straw-derived carbon into microbial communities in submerged rice field soil and percolating water[J]. Soil Biology & Biochemistry, 2006, 38: 3483–3491.
    [40]
    Moore-Kucera J, Dick R P. Application of C-13-labeled litter and root materials for in situ decomposition studies using phospholipid fatty acids[J]. Soil Biology & Biochemistry, 2008, 40: 2485–2493.
    [41]
    Warnock D D, Mummey D L, McBride B, et al. Influences of non-herbaceous biochar on arbuscular mycorrhizal fungal abundances in roots and soils: Results from growth-chamber and field experiments[J]. Applied Soil Ecology, 2010, 46(3): 450–456.
    [42]
    Yang X B, Ying G G, Peng P A, et al. Influence of biochars on plant uptake and dissipation of two pesticides in an agricultural soil[J]. Journal of Agricultural and Food Chemistry, 2010, 58(13): 7915–7921.
    [43]
    Sun B, Wang X Y, Wang F, et al. Assessing the relative effects of geographic location and soil type on microbial communities associated with straw decomposition[J]. Applied and Environmental Microbiology, 2013, 79(11): 3327–3335.
    [44]
    Zhang A F, Liu Y M, Pan G X, et al. Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain[J]. Plant and Soil, 2012, 351(1–2): 263–275.
    [45]
    Quilliam R S, DeLuca T H, Jones D L. Biochar application reduces nodulation but increases nitrogenase activity in clover[J]. Plant and Soil, 2013, 366(1–2): 83–92.
    [46]
    Schmidt M W I, Torn M S, Abiven S, et al. Persistence of soil organic matter as an ecosystem property[J]. Nature, 2011, 478(7367): 49–56.
    [47]
    Lehmann J, Kleber M. The contentious nature of soil organic matter[J]. Nature, 2015, 528(7580): 60–68.
    [48]
    Zhang Y G, Zhang X Q, Liu X D, et al. Microarray-based analysis of changes in diversity of microbial genes involved in organic carbon decomposition following land use/cover changes[J]. FEMS Microbiology Letters, 2007, 266(2): 144–151.
    [49]
    Xie W J, Zhou J M, Wang H Y, et al. Short-term effects of copper, cadmium and cypermethrin on dehydrogenase activity and microbial functional diversity in soils after long-term mineral or organic fertilization[J]. Agriculture Ecosystems & Environment, 2009, 129(4): 450–456.
    [50]
    Pii Y, Mimmo T, Tomasi N, et al. Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review[J]. Biology and Fertility of Soils, 2015, 51(4): 403–415.
    [51]
    Li B, Li Y Y, Wu H M, et al. Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(23): 6496–6501.
    [52]
    Yang C M, Yang L Z, Yan T M. Chemical and microbiological parameters of paddy soil quality as affected by different nutrient and water regimes[J]. Pedosphere, 2005, 15(3): 369–378.
    [53]
    Zhang P J, Zheng J F, Pan G X, et al. Changes in microbial community structure and function within particle size fractions of a paddy soil under different long-term fertilization treatments from the Tai Lake region, China[J]. Colloids and Surfaces B: Biointerfaces, 2007, 58(2): 264–270.
    [54]
    Zhong W H, Cai Z C. Long-term effects of inorganic fertilizers on microbial biomass and community functional diversity in a paddy soil derived from quaternary red clay[J]. Applied Soil Ecology, 2007, 36(2–3): 84–91.
    [55]
    Nie M, Zhang X D, Wang J Q, et al. Rhizosphere effects on soil bacterial abundance and diversity in the Yellow River Deltaic ecosystem as influenced by petroleum contamination and soil salinization[J]. Soil Biology & Biochemistry, 2009, 41: 2535–2542.
    [56]
    Tang X Y, Placella S A, Dayde F, et al. Phosphorus availability and microbial community in the rhizosphere of intercropped cereal and legume along a P-fertilizer gradient[J]. Plant and Soil, 2016, 407: 119–134.
    [57]
    Jiang Y, Liu M, Zhang J B, et al. Nematode grazing promotes bacterial community dynamics in soil at the aggregate level [J]. The ISME Journal, 2017. doi:10.1038/ismej. 2017.120.
    [58]
    Jiang H, Deng Q, Zhou G, et al. Responses of soil respiration and its temperature/moisture sensitivity to precipitation in three subtropical forests in southern China[J]. Biogeosciences, 2013, 10(6): 3963–3982.
    [59]
    Liu J J, Sui Y Y, Yu Z H, et al. High throughput sequencing analysis of biogeographical distribution of bacterial communities in the black soils of northeast China[J]. Soil Biology & Biochemistry, 2014, 70: 113–122.
    [60]
    Liang Y, Jiang Y, Wang F, et al. Long-term soil transplant simulating climate change with latitude significantly alters microbial temporal turnover[J]. The ISME Journal, 2015, 9: 2561–2572.
    [61]
    Zhou J, Deng Y, Luo F, et al. Phylogenetic molecular ecological network of soil microbial communities in response to elevated CO2[J]. MBio, 2011, 2(4): e00122–11.
    [62]
    Pan F J, Xu Y L, McLaughlin N B, et al. Response of soil nematode community structure and diversity to long-term land use in the black soil region in China[J]. Ecological Research, 2012, 27(4): 701–714.
    [63]
    Jiang Y J, Sun B, Li H X, et al. Aggregate-related changes in network patterns of nematodes and ammonia oxidizers in an acidic soil[J]. Soil Biology & Biochemistry, 2015, 88: 101–109.
  • Related Articles

    [1]LÜ Meng-zhen, WU Nei, SHEN Jian-guo, WANG Hai-zhen. Bibliometric analysis of research hotspots and trends of biological nitrogen fixation at home and abroad from 1990 to 2023[J]. Journal of Plant Nutrition and Fertilizers, 2025, 31(2): 375-394. DOI: 10.11674/zwyf.2024337
    [2]YANG Hong-yun, GUO Zi-wei, GUO Gao-fei, HUANG Jin-long, QIAN Zheng, ZHANG Lin-peng, LIU Jiao-jiao. Rice nitrogen nutrition diagnosis based on stacking integrated convolutional neural network[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(3): 573-581. DOI: 10.11674/zwyf.2022348
    [3]HU Xiao-jing, LIU Jun-jie, YU Zhen-hua, WEI Dan, ZHOU Bao-ku, CHEN Xue-li, WANG Guang-hua. Response of nirS-type denitrifier community and network structures to long-term application of chemical fertilizers in a black soil of northeast China[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(1): 1-9. DOI: 10.11674/zwyf.19063
    [4]XUE Wei, HU Xue-jiao, WEI Zhong, MEI Xin-lan, CHEN Xing-jian, XU Yang-chun. Prediction of compost maturity based on convolutional neural network[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(11): 1977-1988. DOI: 10.11674/zwyf.18477
    [5]ZHOU Qiong, YANG Hong-yun, YANG Jun, SUN Yu-ting, SUN Ai-zhen, YANG Wen-ji. Feasibility study of BP neural network and probabilistic neural network for nitrogen nutrition diagnosis of rice images[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(1): 134-141. DOI: 10.11674/zwyf.18026
    [6]ZHANG Xue-yan, ZHANG Ya-ping, XU Fan, TIAN Xing-wu, LIU Xin, QI Juan-xia, LI Jian-she. Comparison of soil nematodes community structure and diversity in cucumber greenhouses in different cultivation years[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(3): 696-703. DOI: 10.11674/zwyf.16246
    [7]LU Hai-fei, ZHENG Jin-wei, YU Xi-chu, ZHOU Hui-min, ZHENG Ju-feng, ZHANG Xu-hui, LIU Xiao-yu, CHENG Kun, LI Lian-qing, PAN Gen-xing. Microbial community diversity and enzyme activity of red paddy soil underlong-term combined inorganic-organic fertilization[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(3): 632-643. DOI: 10.11674/zwyf.2015.0310
    [8]FANG Yu-lin, QU Yan-peng, ZHANG Jia-han, MENG Jiang-fei, LIU Jin-chuan, CHENG Bao-sen, LUAN Li-ying. The screening, identification of arbuscular mycorrhizal fungi in Northwestern vineyards[J]. Journal of Plant Nutrition and Fertilizers, 2011, 17(1): 124-130. DOI: 10.11674/zwyf.2011.0117
    [9]WU Feng-zhi, YU Gao-bo, LIU Bo. Effect of different base fertilizers on soil microbial community diversity in cucumber rhizosphere[J]. Journal of Plant Nutrition and Fertilizers, 2008, 14(3): 576-580. DOI: 10.11674/zwyf.2008.0327
    [10]Jiang Mulan Song Yuping Zhang Xuejiang, . THE DIVERSITY OF DOMINANT SOYBEAN RHIZOBIUM TYPE IN CHINESE SOILS AND ITS SYMBIOTIC CHARACTERISTIC WTIH HOST[J]. Journal of Plant Nutrition and Fertilizers, 1995, 1(2): 65-70. DOI: 10.11674/zwyf.1995.0210
  • Cited by

    Periodical cited type(20)

    1. 谭小敏,吕开源,马惠,吴宏亮,赵如浪,康建宏,吴娜. 秸秆还田模式下种植密度对玉米根际土壤真菌群落的影响及其驱动因素分析. 中国农业气象. 2024(03): 232-244 .
    2. 吕聪娜,王冠军,赵锐,刘茗,柴龙行,尤飞,白金顺. 水稻碳足迹研究进展文献计量学分析. 中国土壤与肥料. 2024(08): 242-250 .
    3. 朱天琦,谷强,彭泽晨,侯扶江. 土壤细菌结构和功能对团聚体碳、氮储量的响应:以高寒草甸、温性草原、荒漠为例. 中国草地学报. 2023(06): 92-102 .
    4. 赵丽丽,张新民. 中国土壤微生物领域研究现状与前沿热点分析. 农业图书情报学报. 2022(02): 75-87 .
    5. 马笑,张世浩,张芬,刘发波,梁涛,王孝忠,陈新平. 基于Web of Science对蔬菜系统活性氮损失研究的文献计量分析. 中国农学通报. 2022(26): 124-132 .
    6. 李航,李亚菲,张影,李东方,吴大付,王菲. 小麦根际解磷细菌的筛选及其解磷能力鉴定. 上海农业学报. 2022(05): 70-77 .
    7. 李翠兰,卢恩佳,朱文昊,王宏瑞,耿一丹,高强,张晋京. 近40年来吉林省黑土地玉米磷素研究进展. 吉林农业大学学报. 2022(06): 665-671 .
    8. 吴汉卿,张宝贵,王学霞,曹兵,陈立娟,刘杰,陈延华. 文献计量分析在快速检索文献中的应用——以土壤氨挥发为例. 中国农学通报. 2021(01): 147-157 .
    9. 程林,章力干,张国漪,齐永波,郜红建,疏晴,张富源,朱荣,蒋东. 氨基酸增值尿素对水稻苗期生长及根际微生物菌群的影响. 植物营养与肥料学报. 2021(01): 35-44 . 本站查看
    10. 马宁,沈其荣,张超,李想,刘艳霞,杨兴明. 基于文献计量的土壤微生物群落研究国际发展态势. 农业生物技术学报. 2021(04): 813-824 .
    11. 纪立东,郭鑫年,孙权,王锐. 宁夏引黄灌区不同土地利用方式土壤微生物群落多样性研究. 生态环境学报. 2020(03): 516-524 .
    12. 安显金,李维. 国际土壤有机质研究概况和趋势——基于文献计量学分析. 土壤通报. 2020(02): 404-415 .
    13. 詹天宇,孙建,张振超,刘某承. 基于meta分析的放牧压力对内蒙古高原草地生态系统的影响. 中国生态农业学报(中英文). 2020(12): 1847-1858 .
    14. 陈香,李卫民,刘勤. 基于文献计量的近30年国内外土壤微生物研究分析. 土壤学报. 2020(06): 1458-1470 .
    15. 邱洁,侯怡铃,徐丽丽,钱叶,丁祥. 不同品种桑树根际土壤细菌多样性的高通量测序分析. 南方农业学报. 2019(03): 585-592 .
    16. 高利娟,张猛,魏建林,刘冬梅,丁效东. 磷肥减施对设施番茄根系形态、磷吸收及土壤微生物量磷含量的影响. 天津农业科学. 2019(08): 16-22 .
    17. 汪峰,姚红燕,陈若霞,陈贵,戴瑶璐. 慈溪1000年时间序列农田土壤氮矿化和硝化的变化. 土壤学报. 2019(05): 1161-1170 .
    18. 陈海蕊. 基于电子商务大数据领域的数据可视化分析系统设计. 科技创新与应用. 2018(24): 82-83 .
    19. 沈仁芳,王超,孙波. “藏粮于地、藏粮于技”战略实施中的土壤科学与技术问题. 中国科学院院刊. 2018(02): 135-144 .
    20. 苏兵强. 长期模拟氮沉降对杉木人工林土壤养分含量的影响. 南昌工程学院学报. 2018(03): 6-11 .

    Other cited types(23)

Catalog

    Article views (4392) PDF downloads (593) Cited by(43)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return