Citation: | XIE Chang-yan, PENG Li-run, JIN Xin, GONG Xue, XU Yang-chun, DONG Cai-xia. Difference in physiological response of different pear rootstocks under iron deficiency stress[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(3): 779-789. DOI: 10.11674/zwyf.17313 |
The study was aimed to provide theoretical bases for breeding high Fe use efficiency cultivar by comparing the difference in Fe distribution and content of organic acid in pear rootstocks under Fe deficiency.
A hydroponic experiment was carried out with three cultivars, which were HB-Pyrus betulaefolia (HB-Ⅰ), ZZ-Pyrus betulaefolia (ZZ-Ⅱ) and HS-Pyrus ussuriensis (HS) supplied by 1 μmol/L FeNa-EDTA and 40 μmol/L FeNa-EDTA. After 21 days, the characteristic of root architecture and the content of active Fe, total Fe and organic acids in each part of pear rootstocks were determined.
Under iron deficiency stress, the active iron and total iron accumulation in the leaves of HB-Ⅰ were 15.71 and 78.82 mg/plant, the distribution ratios of active and total Fe in stems and leaves were 2.80 and 2.94 times of those in ZZ-Ⅱ and 3.29 and 2.05 times of those in HS, respectively. The chlorophyⅡcontents in the first leaf from the top of both ZZ-Ⅱ and HS were all significantly higher than that of HB-I. The content of citric acid was the highest in three kinds of pear rootstocks, followed by malic acid, and they accounted for 74.8% of total organic acid content in the three pear stocks. The malic acid contents in roots and leaves of HS under iron deficiency were 0.96 and 4.80 mg/g, respectively, which were 4.70 and 1.69 times of those under normal iron treatment and were significantly higher than those in both HB-Ⅰ and ZZ-Ⅱ. In the roots and leaves of HB-Ⅰ and ZZ-Ⅱ, the citric acid contents were relatively higher than other organic acids, especially in HB-I, reaching 4.02 and 11.98 mg/g.
The absorption and transportation of iron in the three cultivars of pear rootstocks were physiologically different. The root absorption capacity of Pyrus betulaefoliaⅠ was relatively better, and content and accumulation of active iron in root and leaves were relatively higher. As compared with other varieties, Pyrus betulaefoliaⅠ was non-susceptible to iron deficiency. Under iron deficiency stress, the root of Pyrus ussuriensis mainly synthesized malic acid, while the root of Pyrus betulaefolia mainly synthesized citric acid, which suggested one of the mechanisms for their different responses to iron deficiency.
[1] |
Guerinot M L, Yi Y. Iron: nutritious, noxious, and not readily available[J]. Plant Physiology, 1994, 104: 815–820.
|
[2] |
Christin H, Petty P, Ouertani K, et al. Influence of iron, potassium, magnesium and nitrogen deficiencies on the growth and development of sorghum(Sorghum bicolor L.) and sunflower(Helianthus annuus L.) seedlings [J]. Journal of Biotech Research, 2009, 28(3): 154–156.
|
[3] |
Niebur W S, Fehr W R. Agronomic evaluation of soybean genotypes resistant to iron deficiency chlorosis[J]. CropScience, 1981, 21: 551–554.
|
[4] |
石荣丽, 张福锁, 邹春琴. 不同基因型小麦铁营养效率差异及其可能机制[J]. 植物营养与肥料学报, 2010, 16(6): 1306–1311.
Shi R L, Zhang F S, Zou C Q. Iron efficiency of different wheat genotypes and its main contributed factors [J]. Plant Nutrition and Fertilizer Science, 2010, 16(6): 1306–1311.
|
[5] |
韩振海, 王永章, 孙文彬. 铁高效及低效苹果基因型的铁离子吸收动力学研究[J]. 园艺学报, 1995, 22(4): 313–317.
Han Z H, Wang Y Z, Sun W B. Iron absorption kinetics for Fe-efficient vs.-inefficient species in Malus [J]. Acta Horticultulturae Sinica, 1995, 22(4): 313–317.
|
[6] |
苏律, 宋俊霞, 胡同乐, 等. 铁肥不同施用方式对苹果缺铁黄化病的矫正效果[J]. 江苏农业科学, 2016, 44(1): 188–189.
Su L, Song J X, Hu T L, et al. Effect of different application methods of iron fertilizer on iron deficiency chlorosis of apple [J]. Journal of Jiangsu Agricultural Science, 2016, 44(1): 188–189.
|
[7] |
韩振海, 沈隽. 果树的缺铁失绿症[J]. 园艺学报, 1991, 18(4): 323–328.
Han Z H, Shen J. Iron chlorosis of fruit trees[J]. Acta Horticulturae Sinica, 1991, 18(4): 323–328.
|
[8] |
Han Z H, Wang Q, Chen L. Root and rhizosphere responses of iron-efficient or-inefficient apple genotypes to solution pH [J]. Plant Nutrition, 1997, 20(11): 1517–1525.
|
[9] |
Zha Q, Wang Y, Zhang X Z, Han Z H. Both immanently high activite iron contents and increased root ferrous uptake in response to low iron stress contribute to the iron deficiency tolerance in Malus Xiaojinensis[J]. Plant Science, 2014, 214(1): 47–56.
|
[10] |
Ma C H, Tanabe K, Itai A, et al. Tolerance to lime-induced iron chlorosis of Asian pear rootstocks(Pyrus spp.) [J]. Japan Society of Horticultural Science, 2006, 74(6): 419–423.
|
[11] |
殷文娟, 吴玉霞, 何天明, 等. 缺铁胁迫对3种梨砧木幼苗生理特性的影响[J]. 经济林研究, 2015, 33(2): 124–128.
Yin W J, Wu Y X, He T M, et al. Effects of iron deficiency stress on physiological characteristics of three cultivars of pear rootstock seedings[J]. Nonwood Forest Research, 2015, 33(2): 124–128.
|
[12] |
张恒涛, 许雪峰, 王忆, 等. 半根供铁对苹果砧木幼苗生长的影响[J]. 果树学报, 2009, 26(5): 710–713.
Zhang H T, Xu X F, Wang Y, et al. Effects of the half root supply on the growth of apple trees [J]. Journal of Fruit Science, 2009, 26(5): 710–713.
|
[13] |
Kobayashi T, Nishizawa N K. Iron uptake, translocation, and regulation in higher plants [J]. FEBS Letters, 2007, 581: 2273–2280.
|
[14] |
申红芸, 熊宏春, 郭笑彤, 左元梅. 植物吸收和转运铁的分子生理机制研究进展[J]. 植物营养与肥料学报, 2011, 17 (6): 1522–1530.
Shen H Y, Xiong H C, Guo X T, Zuo Y M. Progress of molecular and physiological mechanism of iron uptake and translocation in plants [J]. Plant Nutrition and Fertilizer Science, 2011, 17(6): 1522–1530.
|
[15] |
Takagi S C. Production of phytosiderophores[A]. Barton L L, Hemming B C. Iron chelation in plants and soil microorganisms[M]. San Diego: Academic Press, 1993. 111–130.
|
[16] |
Li X F, Ma J F, Matsmoto H. Patten of a luminum-induced secretion of organic acids differs between rye and wheat [J]. Plant Physiology, 2000, 123: 1537–1543.
|
[17] |
Olsen R A, Bennett J H, Blume D, Brown J C. Chemical aspects of Fe stress response mechanism in tomatoes [J]. Journal of Plant Nutrition, 1981, 3(6): 905–921.
|
[18] |
李振侠, 徐继忠, 高仪, 等. 苹果砧木SH40和八棱海棠缺铁胁迫下根系有机酸分泌的差异[J]. 园艺学报, 2007, 34(2): 279–282.
Li Z X, Xu J Z, Gao Y, et al.. Difference of organic acid exudation from roots of SH40 and Balenghaitang under iron deficiency stress[J]. Acta Horticulturae Sinica, 2007, 34(2): 279–282.
|
[19] |
姚改芳, 杨志军, 张绍玲, 等. 梨不同栽培种果实有机酸组分及含量特征分析[J]. 园艺学报, 2014, 41(4): 755–764.
Yao G F, Yang Z J, Zhang S L, et al. Characteristics of components and contents of organic acid in pear fruits from different cultivated species [J]. Acta Horticulturae Sinica, 2014, 41(4): 755–764.
|
[20] |
李甲明, 杨志军, 乐文全, 等. ‘鸭梨’ב京白梨’杂交后代果实有机酸积累差异及相关酶活性的研究[J]. 西北植物学报, 2014, 34(2): 318–324.
Li J M, Yang Z J, Yue W Q, et al. Difference of acidity accumulation and related enzyme activities of pear from hybrid offspring of ‘Yali’×Jingbaili’ [J]. Acta Botanica Boreali-Occidentalia Sinica, 2014, 34(2): 318–324.
|
[21] |
Han Z H, Wang Q, Shen T. Comparison of some physiological and biochemical characteristics between iron efficient and iron-inefficient species in genus Malus[J]. Plant Nutrition, 1994, 17: 1257–1264.
|
[22] |
王爱斌. 杜梨缺铁胁迫的生理响应及耐缺铁性资源筛选[D]. 石家庄: 河北农业大学硕士学位论文, 2015.
Wang A B. Effect of iron-deficiency stress on physiological characters and screening out iron tolerance of Pyrus betulifolia Bge [D]. Shijiazhuang: MS Thesis of Hebei Agricultural University, 2015.
|
[23] |
司跃腾. 冀中黄冠梨主栽区果园营养状况分析[D]. 石家庄: 河北农业大学硕士学位论文, 2014.
Si Y T. Orchard nutritional status analysis of Huangguan pear main area in Hebei central [D]. Shijiazhuang: MS Thesis of Hebei Agricultural University, 2014.
|
[24] |
王学奎. 植物生理生化实验原理与技术[M]. 北京: 高等教育出版社, 2006.
Wang X K. Principles and techniques of plant physiological biochemical experiment[M]. Beijing: Higher Education Press, 2006.
|
[25] |
许良政, 张福锁, 李春俭. 双子叶植物根系Fe3+还原酶活性的2,2'-联吡啶比色测定法[J]. 植物营养与肥料学报, 1998, 4(1): 63–66.
Xu L Z, Zhang F S, Li C J. 2,2'-bipyridyl-colorimetric method for measurement of Fe(Ⅲ) reductase activity in roots of dicotyls [J]. Plant Nutrition and Fertilizer Science, 1998, 4(1): 63–66.
|
[26] |
Melgarejo P, Salazar D M, Artes F. Organic acid and sugars composition of harvested pomegranate fruits [J]. European Food Research and Technology, 2000, 211(3): 185–190.
|
[27] |
Karkacier M, Erbas M, Uslu M K, et al. Comparison of different extraction and detection methods for sugars using amino-bonded phase HPLC [J]. Journal of Chromatographic Science, 2003, 41(6): 331–333.
|
[28] |
焦晓峰. 缺铁胁迫对5种苹果砧木幼苗生理特性的影响[D]. 乌鲁木齐: 新疆农业大学硕士学位论文, 2015.
Jiao X F. Effect of iron deficiency stress on physiological characteristics of five kinds of apple rootstock seedlings [D]. Urumchi: MS Thesis of Xinjiang Agricultural University, 2015.
|
[29] |
齐笑笑. 三种柑橘砧木对锌、铁胁迫的响应及其生理机制[D]. 合肥: 安徽师范大学硕士学位论文, 2010.
Qi X X. Response and its physiological mechanism of the three citrus rootstocks to zinc stress [D]. Hefei: MS Thesis of Anhui Agricultural University, 2010.
|
[30] |
Krouma A, Drevon J J, Abdelly C. Genotypic variation of N2-fixing common bean (Phaseolus vulgaris L.) in response to iron deficiency [J]. Journal of Plant Physiology, 2006, 163(11): 1094–1100.
|
[31] |
董慕新, 张辉. 果树叶盐酸提取铁与叶失绿关系的研究[J]. 中国农业科学, 1988, 21(5): 85–89.
Dong M X, Zhang H. The relationship between HCl extractable iron and chlorosis in fruit plant leaves [J]. Scientia Agricultura Sinica, 1988, 21(5): 85–89.
|
[32] |
王翠玲, 周卫东, 杨晓明, 等. 石灰性土壤上不同葡萄品种叶片的铁含量与其黄化的关系[J]. 园艺学报, 2007, (4): 829–834.
Wang C L, Zhou W D, Yang X M, et al. Studies on chlorosis and iron contents of leaves from different grapevine cultivars on calcareous soil [J]. Acta Horticulturae Sinica, 2007, (4): 829–834.
|
[33] |
陆海峰, 潘英华, 卿冬进. 缺水和缺铁胁迫对玉米光合作用特性和根生长的影响[J]. 广西农业生物科学, 2007, 26(1): 44–49.
Lu H F, Pan Y H, Qing D J. Effects of water deficit and iron deficit on photosynthetic characteristics and root growth of maize [J]. Journal of Guangxi Agricultural and Biological Science, 2007, 26(1): 44–49.
|
[34] |
乔海涛, 杨洪强, 申为宝, 等. 缺氮和缺铁对平邑甜茶幼苗根系构型的影响[J]. 园艺学报, 2009, 36(3): 321–326.
Qiao H T, Yang H Q, Shen W B, et al. Effect of nitrogen deficient and iron-deficient on root architecture of young seedings of Malus hupehensis (Pamp) Rehd [J]. Acta Horticulturae Sinica, 2009, 36(3): 321–326.
|
[35] |
殷文娟. 3种梨砧木幼苗对缺铁胁迫的生理响应[D]. 乌鲁木齐: 新疆农业大学硕士学位论文, 2014.
Yin W J. Physiological response of three pear rootstocks to iron deficient sress [D]. Urumchi: MS Thesis of Xinjiang Agricultural University, 2014.
|
[36] |
周丽, 黄文斌, 王煜婷, 等. 养分缺乏下外源有机酸对落叶松幼苗吸收Fe的影响[J]. 国土与自然资源研究, 2012, 6(32): 86–88.
Zhou L, Huang W B, Wang Y T, et al. Effect of exogenous organic acids on Fe absorption of larix olgensis seedlings with nutrient deficiency [J]. Territory and Natural Resources Study, 2012, 6(32): 86–88.
|
[37] |
Kabir A H, Paltridge H G, Able A J, et al. Natural variation for Fe-efficiency is associated with upregulation of strategy I mechanisms and enhanced citrate and ethylene synthesis in Pisum sativum L [J]. Planta, 2012,235(6): 1409–1419.
|
[1] | GU Chi-ming, LI Yue, LI Yin-shui, XIE Li-hua, SHEN Xin-jie, LI Xiao-yong, QIN Lu, LIAO Xing. Effects of organic acid composition in the decomposed liquid of green manure crops on the activation level of AlPO4 and FePO4·2H2O[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(9): 1627-1635. DOI: 10.11674/zwyf.2021092 |
[2] | JI Lin, LI Tingxuan*, ZHANG Xizhou, YU Haiying. Characteristics of organic acid and amino acid in root exudates of rice genotype with high nitrogen efficiency[J]. Journal of Plant Nutrition and Fertilizers, 2012, 18(5): 1046-1055. DOI: 10.11674/zwyf.2012.12036 |
[3] | LI Canwen, WANG Kangcai, WU Jian, TANG Xiaoqing. Effects of nitrogen form on the growth and accumulation of total alkaloid and free total organic acids of Pinellia ternata[J]. Journal of Plant Nutrition and Fertilizers, 2012, 18(1): 256-260. DOI: 10.11674/zwyf.2012.11156 |
[4] | JIE Xiao-lei, DU Jun1, LIU Shi-liang, YU Yong-qang, HUA Dang-ling, HAN Fu-gen. Effects of different organic acids on maturity and quality of flue-cured tobacco[J]. Journal of Plant Nutrition and Fertilizers, 2008, 14(4): 734-741. DOI: 10.11674/zwyf.2008.0418 |
[5] | ZHANG Jun-ying, WANG Jing-guo, XU Yong-li, LI Hai-gang. Effect of nitrogen on the species and contents of organic acids in root exudates of different soybean cultivars[J]. Journal of Plant Nutrition and Fertilizers, 2007, 13(3): 398-403. DOI: 10.11674/zwyf.2007.0308 |
[6] | PANG Rong-li, JIE Xiao-lei, FANG Jin-bao, TAN Jin-fang, LI You-tian. Effect of organic acids on transformation of inorganic phosphorus with different phosphate sources in calcic fluvo-aquic soil[J]. Journal of Plant Nutrition and Fertilizers, 2007, 13(1): 39-43. DOI: 10.11674/zwyf.2007.0107 |
[7] | ZONG Liang, XU Xiao, CAO Yao, MA Jian. Study on effect of different coated organic acids on detoxification of aluminum of wheat in red soil[J]. Journal of Plant Nutrition and Fertilizers, 2003, 9(1): 67-70. DOI: 10.11674/zwyf.2003.0112 |
[8] | LONG Xinxian, NI Wuzhong, YE Zhengqian, YANG Xiaoe . Effect of organic acids application on zinc uptake and accumulation by two ecotypes of Sedum alfredii Hance[J]. Journal of Plant Nutrition and Fertilizers, 2002, 8(4): 467-472. DOI: 10.11674/zwyf.2002.0417 |
[9] | HU Hong qing, HE Ji zheng, LI Xue yuan. Competitive adsorption of phosphate and several organic acids on Al(OH)x surfaces[J]. Journal of Plant Nutrition and Fertilizers, 2001, 7(1): 50-55. DOI: 10.11674/zwyf.2001.0108 |
[10] | Hu Hongqing, Li Xueyuan, He Jizheng. EFFECTS OF ORGANIC ACIDS ON PHOSPHATE ADSORPTION BY SYNTHETIC Al OXIDES[J]. Journal of Plant Nutrition and Fertilizers, 2000, 6(1): 35-41. DOI: 10.11674/zwyf.2000.0106 |