Citation: | JIA Li-hua, WANG Xin, ZHANG Rui, LIN De-li, QIU Rui, XING Guo-zhen, LIU Na, ZHENG Wen-ming. Rhizosphere microbial community mediated a synergism regulatory mechanism of phosphorus stress and immunity in plants by the integrated pathway[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(2): 321-327. DOI: 10.11674/zwyf.17441 |
Long-term interaction between plants and soil microbes gradually forms a synergism regulatory mechanism in soils. Both plant species and root exudates could affect the structural characteristics of root microbial community. Conversely, the rhizospheric microbes also influence the responses of plants to biotic or abiotic environmental stresses in the soils. Studying the responsive mechanism of plant to the phosphorus starvation (low phosphorus tolerance) and disease defense system (immunity) has a positive role in promoting agricultural production management. Recent studies have shown that the rhizospheric microbes could induce the recognizing of plants to the nutrient substance (starvation response) and regulating the pathogen defense system (immunity) in an integrated pathway. Phosphorus stress and immunity in plants is usually influenced by the root associated microbes, we highlighted the recent research progresses in the interaction mechanism between the plant molecular responses and rhizospheric ecological types. We hope that this review will provide a novel clue for better understanding of the responsive mechanism of low phosphorus-tolerant crop and disease defense system.
[1] |
Wang X R, Yan X L, Liao H, et al. Genetic improvement for phosphorus efficiency in soybean: a radical approach[J]. Annals of Botany, 2010, 106(1): 215–222. DOI: 10.1093/aob/mcq029
|
[2] |
Runge-Metzger A. Closing the cycle: obstacles to efficient P management for improved global food security[A]. Tiessen B. Phosphorus in the global enviroment: Transfers, cycles and management[M]. New York: John Wiler and Sons, 1995. 27–42.
|
[3] |
Uexküll H R V, Mutert E. Global extent, development and economic impact of acid soils[J]. Plant and Soil, 1995, 171(1): 1–15. DOI: 10.1007/BF00009558
|
[4] |
Richardson A E, Barea J, Mcneill A M, et al. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms[J]. Plant and Soil, 2009, 321(2): 305–339.
|
[5] |
Liang C, Wang J, Zhao J, et al. Control of phosphate homeostasis through gene regulation in crops[J]. Current Opinion in Plant Biology, 2014, 21: 59–66. DOI: 10.1016/j.pbi.2014.06.009
|
[6] |
Smith S E, Smith F A, Jakobsen I. Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses[J]. Plant Physiology, 2003, 133(1): 16–20. DOI: 10.1104/pp.103.024380
|
[7] |
Smith S E, Smith F A, Jakobsen I. Functional diversity in Arbuscular Mycorrhizal (AM) symbioses: The contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake[J]. New Phytologist, 2004, 162(2): 511–524. DOI: 10.1111/nph.2004.162.issue-2
|
[8] |
Bago B. Putative sites for nutrient uptake in arbuscular mycorrhizal fungi[J]. Plant and Soil, 2000, 226(2): 263–274. DOI: 10.1023/A:1026456818903
|
[9] |
Richardson A E, Simpson R J. Soil microorganisms mediating phosphorus availability update on microbial phosphorus[J]. Plant Physiology, 2011, 156(3): 989–996. DOI: 10.1104/pp.111.175448
|
[10] |
Hayat R, Ali S, Amara U, et al. Soil beneficial bacteria and their role in plant growth promotion: a review[J]. Annals of Microbiology, 2010, 60(4): 579–598. DOI: 10.1007/s13213-010-0117-1
|
[11] |
王梓. 东北黑土不同土壤利用方式下微生物群落的变化特征[D]. 哈尔滨: 东北农业大学博士学位论文, 2016.
Wang Z. The characteristics of microbial communities in the different soils of northeast black soil[D]. Harbin: PhD Dissertation of Northeast Agricultural University, 2016.
|
[12] |
Joner E J, Jakobsen I R S. Arbuscular mycorrhizal phosphate transport under monoxenic conditions using radio-labelled inorganic and organic phosphate[J]. Biotechnology Letters, 2000, 22(21): 1705–1708. DOI: 10.1023/A:1005684031296
|
[13] |
宋勇春, 李晓林, 冯固. 泡囊丛枝(VA)菌根对玉米根际磷酸酶活性的影响[J]. 应用生态学报, 2001, 12(4): 593–596. DOI: 10.3321/j.issn:1001-9332.2001.04.027
Song YC, Li X, Feng G. Effects of Vesicular arbuscular mycorrhizal on phosphatase activity in maize rhizosphere[J]. Chinese Journal of Applied Ecology, 2001, 12(4): 593–596. DOI: 10.3321/j.issn:1001-9332.2001.04.027
|
[14] |
Castrillo G, Teixeira P J, Paredes S H, et al. Root microbiota drive direct integration of phosphate stress and immunity[J]. Nature, 2017, 543(7646): 513–518. DOI: 10.1038/nature21417
|
[15] |
Garbeva P, Elsas J D V, Veen J A V. Rhizosphere microbial community and its response to plant species and soil history[J]. Plant and Soil, 2008, 302(1–2): 19–32. DOI: 10.1007/s11104-007-9432-0
|
[16] |
傅明辉, 郑李军, 蒋丽花, 等. 富营养化水体中水生植物根际微生物群落研究[J]. 环境科学与技术, 2013, (S2): 133–137.
Fu M H, Zheng L J, Jiang L H, et al. Study on structure and function of rhizosphere microbial communities of aquatic plant in eutrophic water[J]. Environmental Science and Tecnology, 2013, (S2): 133–137.
|
[17] |
Manuel A, Maria G, Cristina L, et al. Plant genotype strongly modifies the structure and growth of maize rhizosphere microbial communities[J]. Soil Biology and Biochemistry, 2010, 42(12): 2276–2281. DOI: 10.1016/j.soilbio.2010.08.029
|
[18] |
Fernández D A, Roldán A, Azcón R, et al. Effects of water stress organic amendment and mycorrhizal inoculation on soil microbial community structure and activity during the establishment of two heavy metal-tolerant native plant species[J]. Microbial Ecology, 2012, 63(4): 794–803. DOI: 10.1007/s00248-011-9972-y
|
[19] |
Berg G, Smalla K. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere[J]. Fems Microbiology Ecology, 2009, 68(1): 1–13. DOI: 10.1111/fem.2009.68.issue-1
|
[20] |
Garbeva P, van Veen J A, van Elsas J D. Microbial diversity in soil: selection microbial populations by plant and soil type and implications for disease suppressiveness[J]. Annual Review of Phytopathology, 2004, 42(42): 243–270.
|
[21] |
Broeckling C D, Broz A K, Bergelson J, et al. Root exudates regulate soil fungal community composition and diversity[J]. Applied and Environmental Microbiology, 2008, 74(3): 738–744. DOI: 10.1128/AEM.02188-07
|
[22] |
丁建莉, 姜昕, 马鸣超, 等. 长期有机无机肥配施对东北黑土真菌群落结构的影响[J]. 植物营养与肥料学报, 2017, 23(4): 914–923.
Ding J L, Jiang X, Ma M C, et al. Structure of soil fungal communities under long-term inorganic and organic fertilization in black soil of Northeast China[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(4): 914–923.
|
[23] |
Ahmed A, Hasnain S. Auxins as one of the factors of plant growth improvement by plant growth promoting rhizobacteria[J]. Polish Journal of Microbiology, 2014, 63(3): 261–266.
|
[24] |
Hinsinger P. Bioavailability of inorganic P in the rhizosphere as affected by root-induced chemical changes: A review.[J]. Plant and Soil, 2001, 237(2): 173–195. DOI: 10.1023/A:1013351617532
|
[25] |
Harrison M J. Signaling in the arbuscular mycorrhizal symbiosis[J]. Annual Review of Microbiology, 2005, 59(1): 19–42. DOI: 10.1146/annurev.micro.58.030603.123749
|
[26] |
Raaijmakers J M, Leeman M, OorschotM M P V, et al. Dose-response relationships in biological control of Fusarium wilt of radish by Pseudomonas spp [J]. Phytopathology, 1995, 85(10): 1075–1081. DOI: 10.1094/Phyto-85-1075
|
[27] |
Boer W D, Wagenaar A M, Gunnewiek P J A K, et al. In vitro suppression of fungi caused by combinations of apparently non-antagonistic soil bacteria[J]. Fems Microbiology Ecology, 2007, 59(1): 177–185. DOI: 10.1111/fem.2007.59.issue-1
|
[28] |
Garbeva P, Silby M W, Raaijmakers J M, et al. Transcriptional and antagonistic responses of Pseudomonas fluorescens Pf0–1 to phylogenetically different bacterial competitors[J]. ISME Journal, 2011, 5(6): 973–985. DOI: 10.1038/ismej.2010.196
|
[29] |
Berendsen R L, Pieterse C M J, Bakker P A H M. The rhizosphere microbiome and plant health[J]. Trends in Plant Science, 2012, 17(8): 478–486. DOI: 10.1016/j.tplants.2012.04.001
|
[30] |
Hacquard S, Garrido-Oter R, González A, et al. Microbiota and host nutrition across plant and animal kingdoms[J]. Cell Host and Microbe, 2015, 17(5): 603–616. DOI: 10.1016/j.chom.2015.04.009
|
[31] |
Bustos R, Castrillo G, Linhares F, et al. A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in Arabidopsis[J]. Plos Genetics, 2010, 6(9): e1001102. DOI: 10.1371/journal.pgen.1001102
|
[32] |
Gonzalez E, Solano R, Rubio V, et al. Phosphate transporter traffic facilitator1 is a plant-specific SEC12-related protein that enables the endoplasmic reticulum exit of a high-affinity phosphate transporter in Arabidopsis[J]. Plant Cell, 2005, 17(12): 3500–3512. DOI: 10.1105/tpc.105.036640
|
[33] |
Lambers H, Martinoia E, Renton M. Plant adaptations to severely phosphorus-impoverished soils[J]. Current Opinion in Plant Biology, 2015, 25: 23–31. DOI: 10.1016/j.pbi.2015.04.002
|
[34] |
Kei H, Nina G, Soledad S, et al. Root endophyte Colletotrichum tofieldiae confers plant fitness benefits that are phosphate status dependent[J]. Cell, 2016, 165: 464–474. DOI: 10.1016/j.cell.2016.02.028
|
[35] |
Harrison M J. Cellular programs for arbuscular mycorrhizal symbiosis[J]. Current Opinion in Plant Biology, 2012, 15(6): 691–698. DOI: 10.1016/j.pbi.2012.08.010
|
[36] |
位昕禹, 刘显元, 黄琰, 等. 植物免疫研究进展[J]. 黑龙江农业科学, 2009, (1): 147–149. DOI: 10.3969/j.issn.1002-2767.2009.01.060
Wei XY, Liu XY, Huang Y, et al. Advances in plant immune[J]. Heilongjiang Academy of Agricultural Sciences, 2009, (1): 147–149. DOI: 10.3969/j.issn.1002-2767.2009.01.060
|
[37] |
邹丽. 水杨酸, 茉莉酸对水稻木质素合成调控的研究[D]. 武汉: 华中农业大学博士学位论文, 2014.
Zou L. Salicylates/Jasmonates regulate lignin biosynthesis in rice[D]. Wuhan: PhD Dissertation of Huazhong Agricultural University, 2014.
|
[38] |
Glazebrook J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens[J]. Annual Review of Phytopathology, 2005, 43(1): 205–227. DOI: 10.1146/annurev.phyto.43.040204.135923
|
[39] |
Schweizer F, Fernández-Calvo P, Zander M, et al. Arabidopsis basic helix-loop-helix transcription factors MYC2, MYC3 and MYC4 regulate glucosinolate biosynthesis, insect performance, and feeding behavior[J]. Plant Cell, 2013, 25(8): 3117–3132. DOI: 10.1105/tpc.113.115139
|
[40] |
Pant B D, Pant P, Erban A, et al. Identification of primary and secondary metabolites with phosphorus status-dependent abundance in Arabidopsis, and of the transcription factor PHR1 as a major regulator of metabolic changes during phosphorus limitation[J]. Plant Cell and Environment, 2015, 38(1): 172–187. DOI: 10.1111/pce.2015.38.issue-1
|
[41] |
Rallapalli G, Kemen E M, Robertseilaniantz A, et al. EXPRSS: an Illumina based high-throughput expression-profiling method to reveal transcriptional dynamics[J]. BMC Genomics, 2014, 15(1): 1–18. DOI: 10.1186/1471-2164-15-1
|
1. |
芦燕,魏倩倩,徐青山,张耿苗,赵钰杰,伍少福,张均华,朱春权. 化肥减量配施生物有机肥对水稻产量、土壤结构和土壤固碳增汇能力的影响. 中国土壤与肥料. 2024(11): 114-121 .
![]() | |
2. |
王静,唐刚,刘磊,付文涛,刘桃菊,曾勇军,陈金,黄山. 土壤有机质含量对红壤性稻田残留氮在团聚体内分布的影响. 中国土壤与肥料. 2022(12): 10-16 .
![]() | |
3. |
刘沥阳,华伟,张诗雨,彭启超,戴健,韩晓日. 东北棕壤长期不同施肥处理轮作大豆氮素吸收和土壤硝态氮特征. 植物营养与肥料学报. 2020(01): 10-18 .
![]() | |
4. |
曹寒冰,谢钧宇,强久次仁,郭璐,洪坚平,荆耀栋,孟会生. 施肥措施对复垦土壤团聚体碳氮含量和作物产量的影响. 农业工程学报. 2020(18): 135-143 .
![]() |