• ISSN 1008-505X
  • CN 11-3996/S
LI Shu-bin, ZHOU Li-li, WU Si-pan, SUN Min, DING Guo-chang, LIN Si-zu. Effects of different nitrogen forms on nutrient uptake and distribution of Cunninghamia lanceolata plantlets under drought stress[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(1): 152-162. DOI: 10.11674/zwyf.19049
Citation: LI Shu-bin, ZHOU Li-li, WU Si-pan, SUN Min, DING Guo-chang, LIN Si-zu. Effects of different nitrogen forms on nutrient uptake and distribution of Cunninghamia lanceolata plantlets under drought stress[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(1): 152-162. DOI: 10.11674/zwyf.19049

Effects of different nitrogen forms on nutrient uptake and distribution of Cunninghamia lanceolata plantlets under drought stress

More Information
  • Received Date: February 05, 2019
  • Accepted Date: August 19, 2019
  • Available Online: December 10, 2019
  • Objectives 

    Drought stress is one of important abiotic factors limiting plant growth, adding nitrogen exerts important alleviating effects on improving plant drought resistance. This study was aimed to investigate the effects of different nitrogen sources on nutrient uptake and distribution of Cunninghamia lanceolata plantlets under drought stress.

    Methods 

    A hydroponic culture experiment was conducted with two superior Chinese fir clones (No. 7–14 and No. 8–8) as study materials. The drought stress was made by adding 10% (w/v) PEG-6000 in the nutrient solution. Three nitrogen forms (NO3-N, NH4+-N and the combination of both) were setup in the same concentration of 4.571 mmol/L. Nutrient content and biomass of root, stem and leaves were measured at 20 days since the beginning of culture.

    Results 

    1) The clones, drought stress and N forms had significant effects on root N, P and K contents and leaf P content. Compared to normal water supplying, adding NH4+-N enhanced total N and K uptake in leaves and total P and K uptake in stems and leaves; adding both N sources promoted total K absorption in roots under drought stress. Adding NH4+-N increased Ca uptake in roots and stems under drought stress, but the Ca uptake in leaves was not changed. Drought stress had significant effects on Fe, Mn, Cu, and Zn uptake in roots, and N forms had significant effects on Cu, Zn uptake in leaves. All the three N source treatments showed inhibitory effect on the Mg, Fe, Mn and Cu uptake in organs, but NH4+-N showed less inhibition than NO3-N did. Compared to normal control, all the three N source treatments reduced Zn uptake in roots but increased those in stems and leaves, implying that N supply could adjust the distribution of Zn in organs and alleviate the occurrence of Zn deficiency under drought stress. The nutrient uptake varied significantly among organs. Total N and P uptake was in the order of leaf > root > stem, K and Ca uptake in the order of leaf > stem > root, Fe and Cu uptake in the order of root > leaf > stem, Mg, Mn and Zn uptake was not in consistent orders. NH4+-N uptake was in the order of leaf > root > stem, and it was significantly higher than NO3-N uptake in all organs, which indicated that Chinese fir tended to absorb NH4+-N.

    Conclusions 

    Under drought stress, nitrogen supplying sources affect nutrient uptake and distribution of Chinese fir plantlets, but the effect varied among nutrients and clones. NH4+-N performs better than NO3-N in improving nutrient uptake for Chinese fir plantlets under drought stress, so Chinese fir is thought prefer NH4+-N nutrition.

  • [1]
    Muslima N, Renu P, Siddiqi T O, et al. Nitrogen-deficiency stress induces protein expression differentially in low-N tolerant and low-n sensitive maize genotypes[J]. Frontiers in Plant Science, 2016, 7. doi: 10.3389/fpls.2016.00298
    [2]
    崔晓阳, 宋金凤. 原始森林土壤NH4+/NO3-生境特征与某些针叶树种的适应性[J]. 生态学报, 2004, 25(11): 3082–3092.

    Cui X Y, Song J F. Soil NH4+/NO3- nitrogen characteristics in primary forests and the adaptability of some coniferous species[J]. Acta Ecologica Sinica, 2004, 25(11): 3082–3092.
    [3]
    李常诚, 李倩茹, 徐兴良, 等. 不同林龄杉木氮素的获取策略[J]. 生态学报, 2016, 36(9): 2620–2625.

    Li C C, Li Q R, Xu X L, et al. Nitrogen acquisition strategies of Cunninghamia lanceolata at different ages[J]. Acta Ecologica Sinica, 2016, 36(9): 2620–2625.
    [4]
    樊卫国, 葛会敏. 不同形态及配比的氮肥对枳砧脐橙幼树生长及氮素吸收利用的影响[J]. 中国农业科学, 2015, 48(13): 2666–2675. DOI: 10.3864/j.issn.0578-1752.2015.13.018

    Fan W G, Ge H M. Effects of nitrogen fertilizer of different forms and ratios on growth, nitrogen absorption and utilization of young navel orange trees grafted on Poncirus trifoliata[J]. Scientia Agricultura Sinica, 2015, 48(13): 2666–2675. DOI: 10.3864/j.issn.0578-1752.2015.13.018
    [5]
    盛炜彤, 范少辉, 马祥庆, 等. 杉木人工林长期生产力保持机制研究[M]. 北京: 科学出版社, 2005. 153–156.

    Sheng W T, Fan S H, Ma X Q, et al. Long term productivity of Chinese fir plantations[M]. Beijing: Science Press, 2005. 153–156.
    [6]
    马晓东, 钟小莉, 桑钰. 干旱胁迫下胡杨实生幼苗氮素吸收分配与利用[J]. 生态学报, 2018, 38(20): 7508–7519.

    Ma X D, Zhong X L, Sang Y. Characteristics of nitrogen absorption, distribution, and utilization by Populus euphratica seedlings under drought stress[J]. Acta Ecologica Sinica, 2018, 38(20): 7508–7519.
    [7]
    叶莉莎, 陈双林. 硝态氮和铵态氮供应比例对雷竹碳、氮、磷化学计量的影响[J]. 植物营养与肥料学报, 2016, 22(6): 1672–1678. DOI: 10.11674/zwyf.15520

    Ye L S, Chen S L. Effects of nitrate and ammonia supply ratio on the C, N and P stoichiometric characteristics of Phyllostachys violascens[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(6): 1672–1678. DOI: 10.11674/zwyf.15520
    [8]
    GaoY, Li Y, Yang X, et al. Ammonium nutrition increases water absorption in rice seedlings (Oryza sativa L.) under water stress[J]. Plant and Soil, 2010, 331(1-2): 193-201. DOI: 10.1007/s11104-009-0245-1
    [9]
    马祥庆, 刘爱琴, 黄宝龙, 等. 氮素高效基因型杉木无性系的选择研究[J]. 林业科学, 2002, 38(6): 53–57. DOI: 10.3321/j.issn:1001-7488.2002.06.010

    Ma X Q, Liu A Q, Huang B L, et al. Study on selection of high-nitrogen-efficiency-genotypes of Chinese fir clones[J]. Scientia Silvae Sinicae, 2002, 38(6): 53–57. DOI: 10.3321/j.issn:1001-7488.2002.06.010
    [10]
    林有乐. 2003年干旱对1~3年生杉木林生长的影响[J]. 福建林业科技. 2004, 31(3): 31–34. DOI: 10.3969/j.issn.1002-7351.2004.03.008

    Lin Y L. Effects of the 2003 drought on the growth of 1-to3-year-old Chinese fir (Cunninghamia Lanceolata) plantation[J]. Journal of Fujian Forestry Science and Technology, 2004, 31(3): 31–34. DOI: 10.3969/j.issn.1002-7351.2004.03.008
    [11]
    李树斌, 丁国昌, 曹光球, 等. 不同杉木无性系模拟胁迫下抗旱性综合评价[J]. 福建农林大学学报(自然科学版), 2012, 41(5): 491–496.

    Li S B, Ding G C, Cao G Q, et al. Drought resistance estimation of different Chinese fir clones under simulated water stress[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2012, 41(5): 491–496.
    [12]
    郭伟志. 干旱胁迫下不同杉木无性系的若干生理响应和差异蛋白质组分析[D]. 福州: 福建农林大学硕士学位论文, 2012.

    Guo W Z. Analysis on some physiological effects and differential proteome of the different Chinese fir clones under drought stress[D]. Fuzhou: MS Thesis of Fujian Agriculture and Forestry University, 2012.
    [13]
    刘欢, 王超琦, 吴家森, 等. 氮素指数施肥对杉木无性系苗生长及养分含量的影响[J]. 应用生态学报, 2016, 27(10): 3123–3128.

    Liu H, Wang C Q, Wu J S, et al. Effects of exponential N fertilization on the growth and nutrient content in clonal Cunninghamia lanceolata seedlings[J].Chinese Journal of Applied Ecology, 2016, 27(10): 3123–3128.
    [14]
    Lü XT, Dijkstra FA, Kong DL, et al. Plant nitrogen uptake drives responses of productivity to nitrogen and water addition in a grassland[J]. Scientific Reports, 2014, 4: 4817.
    [15]
    康晓育, 常聪, 孙协平, 等. 低氮和干旱胁迫对富士和秦冠生长及氮素利用的影响[J]. 植物营养与肥料学报, 2014, 20(4): 965–973. DOI: 10.11674/zwyf.2014.0419

    Tang X Y, Chang C, Sun X P, et al. How nitrogen and drought stress affect growth and nitrogen use efficiency for Fuji and Qinguan apple seedlings[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(4): 965–973. DOI: 10.11674/zwyf.2014.0419
    [16]
    王旭明, 张铮, 王海红, 等. 局部根区水氮耦合对玉米幼苗养分吸收利用的影响[J]. 干旱地区农业研究, 2010, 28(3): 107–113.

    Wang X M, Zhang Z, Wang H H, et al. Interactive effects of water and nitrogen supply on nutrient absorption and utilization of maize seedlings under partial root-zone water stress[J]. Agricultural Research in the Arid Areas, 2010, 28(3): 107–113.
    [17]
    牛振明, 张国斌, 刘赵帆, 等. 氮素形态及配比对甘蓝养分吸收、产量以及品质的影响[J].草业学报, 2013, 22(6): 68–76. DOI: 10.11686/cyxb20130609

    Niu Z M, Zhang G B, Liu Z F, et al. Effects of different nitrogen forms on nutrient uptake, yield formation and quality of cabbage[J]. Acta Prataculturae Sinica, 2013, 22(6): 68–76. DOI: 10.11686/cyxb20130609
    [18]
    邹春琴, 李春俭, 张福锁, 等. 铁和不同形态氮素对玉米植株吸收矿质元素及其在体内分布的影响. Ⅰ. 对氮、磷、钾、钙、镁等营养元素的影响[J]. 植物营养与肥料学报, 1996, 2(1): 68–73. DOI: 10.3321/j.issn:1008-505X.1996.01.009

    Zou C Q, Li C J, Zhang F S, et al. Effects of Fe and different forms of nitrogen on uptake and distribution of mineral elements in corn plants Ⅰ. on the N, P, K Ca, and Mg[J]. Plant Nutrition and Fertilizer Science, 1996, 2(1): 68–73. DOI: 10.3321/j.issn:1008-505X.1996.01.009
    [19]
    刘秀珍, 郭丽娜, 赵兴杰. 不同水分条件下氮肥形态配比对苋菜养分与产量的影响[J]. 水土保持学报, 2008, 22(6): 141–144. DOI: 10.3321/j.issn:1009-2242.2008.06.030

    Liu X Z, Guo L N, Zhao X J. Effects of nitrogen forms on nutrient and yield of Amaranth with different irrigation[J]. Journal of Soil and Water Conservation, 2008, 22(6): 141–144. DOI: 10.3321/j.issn:1009-2242.2008.06.030
    [20]
    Gutschick VP, Alamos L, Mexico N. Evolved strategies in nitrogen acquisition by plants[J]. The American Naturalist. 1981, 118(5): 607–637. DOI: 10.1086/283858
    [21]
    唐辉, 李婷婷, 沈朝华, 等. 氮素形态对香榧苗期光合作用、主要元素吸收剂氮代谢的影响[J]. 林业科学, 2014, 50(10): 158–163.

    Tang H, Li T T, Shen C H, et al. Effects of nitrogen forms on foliar photosynthesis, nutrient status and nitrogen metabolism of Torreya grandis Seedlings[J]. Scientia Silvae Sinicae, 2014, 50(10): 158–163.
    [22]
    Olykan S T and Adams J A. Pinus radiata seedling growth and micronutrient uptake in a sand culture experiment as affected by the form of nitrogen[J]. New Zealand Journal of Forestry Science, 1995, 25(1): 49–60.
    [23]
    王国英. 不同形态氮素及植物激素对烟草生长、养分吸收和分配的影响[D]. 保定: 河北农业大学硕士学位论文, 2002.

    Wang G Y. Effects of different nitrogen froms and combined with plant hormone on growth, nutrient uptake and their distribution in tobacco plants[D]. Baoding: MS Thesie of Hebei Agricnltural University, 2002.
    [24]
    Ruan JY, Zhang FS, Ming HW. Effects of nitrogen form and phosphorus source on the growth, nutrient uptake and rhizosphere soil property Camellia sinensis L.[J]. Plant and Soil, 2000, 223: 63–71.
    [25]
    范钦桢. 铵对钾素释放、固定影响的研究[J]. 土壤学报, 1993, 30(3): 245–251.

    Fan Q Z. Influence of ammonium on release and fixation of potassium in soil[J]. Acta Pedologica Sinica, 1993, 30(3): 245–251.
    [26]
    Ek H, Andersson S, Arnebrant K, et al. Growth and assimilation of NH4+ and NO3- by Paxillus involutus in association with Betula pendula and Piceaabies as affected by substrate pH[J]. New Phytologist, 1994, 128(4):629–637. DOI: 10.1111/j.1469-8137.1994.tb04027.x
    [27]
    艾绍英, 姚建武, 黄小红, 等. 蔬菜硝酸盐的还原转化特性研究[J]. 植物营养与肥料学报, 2002, 8(1): 40–43. DOI: 10.3321/j.issn:1008-505X.2002.01.007

    Ai S Y, Yao J W, Huagn X H, et al. Study on the nitrate reduction characteristics of vegetables[J]. Plant Nutrition and Fertilizer Science, 2002, 8(1): 40–43. DOI: 10.3321/j.issn:1008-505X.2002.01.007
    [28]
    邹春琴, 李春俭, 张福锁, 等. 铁和不同形态氮素对玉米植株吸收矿质元素及其在体内分布的影响Ⅱ. 对铁、锰、铜、锌等营养元素的影响[J]. 植物营养与肥料学报, 1996, 2(3): 219–225. DOI: 10.3321/j.issn:1008-505X.1996.03.005

    Zou C Q, Li C J, Zhang F S, et al. Effects of iron and different forms of nitrogen on uptake and distribution of mineral elements in corn plantsⅡ. on the Fe, Mn, Cu and Zn[J]. Plant Nutrition and Fertilizer Science, 1996, 2(3): 219–225. DOI: 10.3321/j.issn:1008-505X.1996.03.005
    [29]
    Warren C R and Adams M A. Possible cause of slow growth of nitrate-supplied Pinus pinaster[J]. Canadian Journal of Forest Research, 2002, 32: 569–580. DOI: 10.1139/x01-225

Catalog

    Article views (2685) PDF downloads (140) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return