• ISSN 1008-505X
  • CN 11-3996/S
LIU Yan, YAO Yuan-yuan, YANG Yue-chao, CHENG Dong-dong, LI Shan, WANG Xiao-qi, SUN Lei. Effects of small molecule organic sylvites on seed germination and seedling growth of rice (Oryza sativa L.)[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(12): 2142-2151. DOI: 10.11674/zwyf.19334
Citation: LIU Yan, YAO Yuan-yuan, YANG Yue-chao, CHENG Dong-dong, LI Shan, WANG Xiao-qi, SUN Lei. Effects of small molecule organic sylvites on seed germination and seedling growth of rice (Oryza sativa L.)[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(12): 2142-2151. DOI: 10.11674/zwyf.19334

Effects of small molecule organic sylvites on seed germination and seedling growth of rice (Oryza sativa L.)

More Information
  • Received Date: August 14, 2019
  • Accepted Date: November 27, 2019
  • Available Online: December 16, 2019
  • Objectives 

    Applying small molecule organic sylvite is one of the measures to promote rice growth and production. This study investigated the effects of three small molecule organic sylvites on rice seed germination and seedling growth at different concentrations.

    Methods 

    Germination and hydroponic experiments were conducted using rice cultivar Lindao 21 as tested material. Three small molecular organic sylvites of potassium formate (OSA), potassium acetate (OSB) and potassium propionate (OSC) were used as treatments and potassium sulfate (IOS) as control. The concentrations of K+ in the nutrient solution were 0.25 mmol/L and 0.50 mmol/L. Rice seeds were loaded on paper, which was soaked in treatment solutions, for germinating at 25℃. Rice seedlings at 2-leaves-one-sprout stage were transformed into treatment solutions and cultured at 25℃ and 12 h light/12 h dark. At 4-leaves-one-sprout stage, the seedlings were harvested for the measurement of growth, root morphology and photosynthetic characteristics.

    Results 

    Small molecule organic sylvite promoted the early germination of rice seeds. At 48 h, the germination rates of OSA and OSB were respectively 35.6% and 37.8% higher than that of IOS in the K+ concentration of 0.25 mmol/L, and 34.0% and 27.7% higher in the concentration of 0.50 mmol/L. Compared with IOS, OSA at 0.25 and 0.50 mmol/L, and OSB at 0.25 mmol/L significantly increased the leaf width and fresh weight of rice seedling, and significantly increased the root weight, total root length, root surface area and root volume of rice seedling. Compared with IOS, OSC increased the chlorophyll content in leaves, while OSA and OSB significantly increased the net photosynthetic efficiency, stomatal conductance and transpiration rate of rice seedling leaves. The small molecule organic sylvite could improve the root activity of rice seedlings, and promote the absorption of potassium in rice seedlings. At 0.50 mmol/L of K+ treatment concentration, the total plant K contents in OSA and OSB were significantly increased by 19.6% and 28.3% compared with IOS.

    Conclusions 

    Compared with potassium sulfate, potassium formate, potassium acetate and potassium propionate could promote the early germination of rice seeds, the growth of rice seedlings, the photosynthetic efficiency and the absorption of K, and the best effect is from 0.25 mmol/L potassium formate.

  • [1]
    Gontia-Mishra I, Sapre S, Tiwari S. Zinc solubilizing bacteria from the rhizosphere of rice as prospective modulator of zinc biofortification in rice[J]. Rhizosphere, 2017, 3: 185-190. DOI: 10.1016/j.rhisph.2017.04.013
    [2]
    FAO. FAOSTAT[BD/OL]. 2014. http://faostat.fao.org
    [3]
    Xu X, He P, Yang F, et al. Methodology of fertilizer recommendation based on yield response and agronomic efficiency for rice inchina[J]. Field Crops Research, 2017, 206: 33-42. DOI: 10.1016/j.fcr.2017.02.011
    [4]
    Long S, Marshall-Colon A, Zhu X G. Meeting the global food demand of the future by engineering crop photosynthesis and yield potential[J]. Cell, 2015, 161(1): 56-66. DOI: 10.1016/j.cell.2015.03.019
    [5]
    Long H. Land consolidation: An indispensable way of spatial restructuring in rural China[J]. Journal of Geographical Sciences, 2014, 24(2): 211- 225. DOI: 10.1007/s11442-014-1083-5
    [6]
    安宁, 范明生, 张福锁. 水稻最佳作物管理技术的增产增效作用[J]. 植物营养与肥料学报, 2015, 21(4): 846-852. DOI: 10.11674/zwyf.2015.0403

    An N, Fan M S, Zhang F S. Increasing yield and efficiency of optimal rice crop management techniques[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(4): 846-852. DOI: 10.11674/zwyf.2015.0403
    [7]
    麻坤, 刁钢. 化肥对中国粮食产量变化贡献率的研究[J]. 植物营养与肥料学报, 2018, 24(4): 1113-1120. DOI: 10.11674/zwyf.17375

    Ma K, Diao G. Research on the contribution rate of fertilizer to grain yield change in China[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(4): 1113-1120. DOI: 10.11674/zwyf.17375
    [8]
    Chen P, Nie T, Chen S, et al. Recovery efficiency and loss of 15N-labelled urea in a rice-soil system under water saving irrigation in the Songnen Plain of Northeast China[J]. Agricultural Water Management, 2019, 222: 139-153. DOI: 10.1016/j.agwat.2019.04.026
    [9]
    汪良驹, 姜卫兵, 黄保健. 5-氨基乙酰丙酸对弱光下甜瓜幼苗光合作用和抗冷性的促进效应[J]. 园艺学报, 2004, (3): 321-326. DOI: 10.3321/j.issn:0513-353X.2004.03.007

    Wang L J, Jiang W B, Huang B J. Effects of 5-aminolevulinic acid on photosynthesis and cold resistance of muskmelon seedlings under low light[J]. Acta Horticiturae Sinica, 2004, (3): 321-326. DOI: 10.3321/j.issn:0513-353X.2004.03.007
    [10]
    刘小琥, 彭新湘, 陈德万. 烟草植株各部位的草酸含量变化(简报)[J]. 植物生理学通讯, 2001, 37(2): 126-127.

    Liu X H, Peng X X, Chen D W. Changes of oxalic acid content in different parts of tobacco plant (bulletin)[J]. Journal of Plant Physiology, 2001, 37(2): 126-127.
    [11]
    徐慧敏, 徐福利, 李宏智, 徐渭玲. 低分子有机酸对辣椒生长发育及叶片活性氧代谢的影响[J]. 西北农业学报, 2009, 18(3): 213-217. DOI: 10.3969/j.issn.1004-1389.2009.03.048

    Xu H M, Xu F L, Li H Z, Xu W L. Effects of low molecular organic acids on growth and development of pepper and active oxygen metabolism in leaves[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2009, 18(03): 213-217. DOI: 10.3969/j.issn.1004-1389.2009.03.048
    [12]
    徐慧敏. 低分子有机物质对辣椒生长发育过程的效应研究[D]. 杨凌: 西北农林科技大学硕士学位论文, 2009.

    Xu H M. Study on the effects of low molecular organic substances on the growth and development process of pepper[D]. Yangling: MS Thesis of Northwest Agriculture and Forestry University, 2009.
    [13]
    韦峥宇, 沈方科, 尹永强, 等. 有机酸-钾、有机酸-钾镁对烤烟烟叶钾含量及产质量的影响[J]. 广东农业科学, 2011, 38(5): 78-80. DOI: 10.3969/j.issn.1004-874X.2011.05.027

    Wei Z Y, Shen F K, Yin Y Q, et al. Effects of organic acid-potassium and organic acid-potassium magnesium on potassium content and yield quality of flue-cured tobacco leaves[J]. Guangdong Agricultural Sciences, 2011, 38(5): 78-80. DOI: 10.3969/j.issn.1004-874X.2011.05.027
    [14]
    韩锦峰, 杨素勤, 王永华, 等. 不同相伴阴离子钾肥对烤烟光合特性、钾含量及化学成分的影响[J]. 中国烟草学报, 2002, 8(3): 22-25. DOI: 10.3321/j.issn:1004-5708.2002.03.004

    Han J F, Yang S Q, Wang Y H, et al. Effects of different concomitant anion potassium fertilizer on photosynthetic characteristics, potassium content and chemical composition of flue-cured tobacco[J]. Acta Tabacaria Sinica, 2002, 8(3): 22-25. DOI: 10.3321/j.issn:1004-5708.2002.03.004
    [15]
    许萍, 宁敏, 杨承华. 添加有机酸钾对卷烟焦油量等的影响[J]. 合肥工业大学学报(自然科学版), 1999, 22(3): 88-93.

    Xu P, Ning M, Yang C H. The effect of adding potassium organic acid on the coke yield of cigarette[J]. Journal of Hefei University of Technology(Natural Science Edition), 1999, 22(3): 88-93.
    [16]
    Yao Y, Wang C, Wang X, et al. Activation of fulvic acid-like in paper mill effluents using H2O2/TiO2 catalytic oxidation: Characterization and salt stress bioassays[J]. Journal of Hazardous Materials, 2019, 378, doi: 10.1016/j.jhazmat.2019.05.095
    [17]
    郝再彬, 苍晶, 徐仲, 等. 植物生理实验[M]. 哈尔滨: 哈尔滨工业大学出版社, 2004.

    Hao Z B, Cang J, Xu Z, et al. Plant physiological experiment[M]. Harbin: Harbin Institute of Technology Press, 2004.
    [18]
    鲍士旦. 土壤农化分析(第3版)[M]. 北京: 中国农业出版社, 2000.

    Bao S D. Soil and agrochemical analysis (3rd edition)[M]. Beijing: China Agricultural Press, 2000.
    [19]
    于会丽, 林治安, 李燕婷, 等. 喷施小分子有机物对小油菜生长发育和养分吸收的影响[J]. 植物营养与肥料学报, 2014, 20(6): 1560-1568.

    Yu H L, Lin Z A, Li Y T, et al. Effects of spraying small molecular organics on growth, development and nutrient absorption of rapeseed[J]. Journal of Plant Nutrition and Fertilizers, 2014, 20(06): 1560-1568.
    [20]
    张金汕,, 贾永红, 孙鹏, 等. 施钾和叶面喷施赤霉素对春小麦种子萌发的影响[J]. 新疆农业科学, 2018, 55(8): 1384-1391.

    Zhang J S, Jia Y H, Sun P, et al. Effects of potassium and gibberellin on seed germination of spring wheat[J]. Xinjiang Agricultural Sciences, 2018, 55(08): 1384-1391.
    [21]
    梁德印, 徐美德. 钾在植物生理中的作用[J]. 农业科技通讯, 1986, (9): 31.

    Liang D Y, Xu M D. The role of potassium in plant physiology[J]. Journal of agricultural science and technology, 1986, (9): 31.
    [22]
    王晓光, 曹敏建, 王伟, 等. 钾对大豆根系形态与生理特性的影响[J]. 大豆科学, 2005, 24(2): 126-129. DOI: 10.3969/j.issn.1000-9841.2005.02.009

    Wang X G, Cao M J, Wang W, et al. Effects of potassium concentration in the soil on the morphological and physiological characteristics of soybean root[J]. Soybean Science, 2005, 24(2): 126-129. DOI: 10.3969/j.issn.1000-9841.2005.02.009
    [23]
    郭泽, 李子绅, 代晓燕, 王英锋. 低钾胁迫下外源生长素对烟草根系生长及钾吸收的影响[J]. 植物营养与肥料学报, 2019, 25(7): 1173-1184. DOI: 10.11674/zwyf.18321

    Guo Z, Li Z S, Dai X Y, Wang Y F. Effects of auxin on tobacco root growth and potassium uptake under low potassium stress[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(7): 1173-1184. DOI: 10.11674/zwyf.18321
    [24]
    South P F, Cavanagh A P, Liu H W, Ort D R.. Synthetic glycolate metabolism pathways stimulate crop growth and productivity in the field[J]. Science, 2019, 363(6422): eaat9077. DOI: 10.1126/science.aat9077
    [25]
    Raines c a. Increasing photosynthetic carbon assimilation in C3 plants to improve crop yield: current and future strategies[J]. Plant Physiology, 2011, 155: 36-42. DOI: 10.1104/pp.110.168559
    [26]
    柳沈辉, 伍俊为, 黄裕钧, 等. 有机碳对嘉宝果地上部生长和叶绿素含量的影响[J]. 亚热带农业研究, 2018, 14(3): 177-180.

    Liu S H, Wu J W, Huang Y J, et al. Effects of organic carbon on growth and chlorophyll content in the aboveground of garbo fruit[J]. Journal of Aubtropical Agriculture, 2018, 14(03): 177-180.
    [27]
    Ambavaram M M R, Basu S, Krishnan A, et al. Coordinated regulation of photosynthesis in rice increases yield and tolerance to environmental stress[J]. Nature Communications, 2014, 5(1), doi: 10.1038/ncomms6302.

Catalog

    Article views (3402) PDF downloads (170) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return