• ISSN 1008-505X
  • CN 11-3996/S
ZHANG Jun, LIN Wei-jie, LI Yin-bo, ZHAN Yuan-yuan, ZHANG Sheng-cai, LI Yan. Symposium of boron toxicity and photosynthesis response study in leaves of Ponkan (Citrus reticulata Blanco)[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(10): 1879-1886. DOI: 10.11674/zwyf.20123
Citation: ZHANG Jun, LIN Wei-jie, LI Yin-bo, ZHAN Yuan-yuan, ZHANG Sheng-cai, LI Yan. Symposium of boron toxicity and photosynthesis response study in leaves of Ponkan (Citrus reticulata Blanco)[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(10): 1879-1886. DOI: 10.11674/zwyf.20123

Symposium of boron toxicity and photosynthesis response study in leaves of Ponkan (Citrus reticulata Blanco)

More Information
  • Received Date: March 12, 2020
  • Accepted Date: May 17, 2020
  • Available Online: October 20, 2020
  • Objectives 

    Precise diagnose of boron toxicity and the adverse impact on photosynthesis of leaf of Ponkan (Citrus reticulata Blanco) is necessary for the prevention and cure of the obstacle.

    Methods 

    Field investigation and Ponkan leaf nutrition determination was carried out in a Ponkan orchard in Anxi County, Fujian Province, which indicated Ponkan leaves yellowing and abnormal dropping was caused by B toxicity. The leaf samples were collected in normal, moderate yellowing and severe yellowing leaves respectively, and the photosynthesis, chlorophyll fluorescence characteristics and cell membrane permeability were determined.

    Results 

    The contents of K, Mg and Zn in normal, moderate yellowing and severe yellowing leaves all fell in the optimum range, while the B contents in moderate and severe yellowing leaves were 11.11 and 19.71 folds of that in normal leaves of Ponkan, indicating that the yellowing and abnormal dropping of leaves in the tested orchard were caused by B toxicity. There were two typical symptoms of boron toxicity in Ponkan leaves. One symptom was developed from leaf tip along midrib and yellow-bronze necrosis spots occurred on the yellowing area. The other one was developed from leaf edge along midrib and the green main veins surrounded by irregularly mottled yellow-green chlorosis. The content of photosynthetic pigments, the effective photochemical efficiency (Fv'/Fm'), electron transport efficiency (ETR), the effective quantum yield (ΦPS II) and photochemical quenching coefficient (qP) decreased with the aggravation of boron toxicity, whereas non-photochemical quenching coefficient (NPQ), excess excitation energy (E) and antenna heat dissipation (D) increased with the aggravation of B toxicity. Boron toxicity significantly decreased photosynthesis rate (Pn), starch and soluble sugar contents, whereas increased leaves cell membrane permeability.

    Conclusions 

    Excessive foliar boron application could cause the boron toxicity of Ponkan. Boron toxicity will cause the yellowing and abnormal drop of Ponkan leaves and increase the cell membrane permeability, decrease the photosynthetic rate and block the assimilation of photosynthetic products seriously.

  • [1]
    刘桂东, 姜存仓, 王运华, 等. 缺硼条件下两种不同砧木‘纽荷尔’脐橙矿质元素含量变化的比较[J]. 植物营养与肥料学报, 2011, 17(1): 180–185. DOI: 10.11674/zwyf.2011.01180

    Liu G D, Jiang C C, Wang Y H, et al. Changes in mineral element contents of ‘Newhall’ navel orange (Citrus sinensis Osb.) grafted on two different rootstocks under boron deficiency[J]. Journal of Plant Nutrition and Fertilizers, 2011, 17(1): 180–185. DOI: 10.11674/zwyf.2011.01180
    [2]
    唐玉琴, 彭良志, 淳长品, 等. 红壤甜橙园土壤和叶片营养元素相关性分析[J]. 园艺学报, 2013, 40(4): 623–632.

    Tang Y Q, Peng L Z, Chun C P, et al. Correlation analysis on nutrient element contents in orchard soils and sweet orange leaves in southern Jiangxi province of China[J]. Acta Horticulturae Sinica, 2013, 40(4): 623–632.
    [3]
    张世祺, 程琛, 林伟杰, 等. 琯溪蜜柚园土壤和树体的硼素营养与果实粒化关系研究[J]. 果树学报, 2019, 36(4): 468–475.

    Zhang S Q, Cheng C, Lin W J, et al. Analysis of boron nutrition status in soils and trees and its relationship with fruit granulation in ‘Guanximiyou’ pomelo[J]. Journal of Fruit Science, 2019, 36(4): 468–475.
    [4]
    王南南, 彭抒昂, 刘永忠. 柑橘硼营养研究现状与展望[J]. 华中农业大学报, 2015, 34(4): 137–143.

    Wang N N, Peng S A, Liu Y Z. Advances on boron nutrition of citrus[J]. Journal of Huazhong Agricultural University, 2015, 34(4): 137–143.
    [5]
    卢晓佩, 姜存仓, 董肖昌, 等. 硼胁迫下不同柑橘砧木叶片物质组成及结构的FTIR表征[J]. 光谱学与光谱分析, 2017, 37(5): 1380–1385.

    Lu X P, Jiang C C, Dong X C, et al. FTIR spectroscopic characterization of material composition and structure of leaves of different citrus rootstocks under boron stress[J]. Spectroscopy and Spectral Analysis, 2017, 37(5): 1380–1385.
    [6]
    Sheng O, Zhou G, Wei Q, Peng S, et al. Effects of excess boron on growth, gas exchange, and boron status of four orange scion-rootstock combinations[J]. Journal of Plant Nutrition and Soil Science, 2010, 173(3): 469–476. DOI: 10.1002/jpln.200800273
    [7]
    Huang J H, Qi Y P, Wen S X, et al. Illumina microRNA profiles reveal the involvement of miR397a in citrus adaptation to long-term boron toxicity via modulating secondary cell-wall biosynthesis[J]. Scientific Reports, 2016, 6: 1–14. DOI: 10.1038/s41598-016-0001-8
    [8]
    Jin L F, Liu Y Z, Yin X X, et al. Transcript analysis of citrus miRNA397 and its targetLAC7 reveals a possible role in response to boron toxicity[J]. Acta Physiologiae Plantarum, 2016, 38(1): 1–7. DOI: 10.1007/s11738-015-2023-4
    [9]
    Shah A, Wu X, Ullah A, et al. Deficiency and toxicity of boron: Alterations in growth, oxidative damage and uptake by citrange orange plants[J]. Ecotoxicology and Environmental Safety, 2017, 145: 575–582. DOI: 10.1016/j.ecoenv.2017.08.003
    [10]
    Huang J H, Cai Z J, Wen S X, et al. Effects of boron toxicity on root and leaf anatomy in two citrus species differing in boron tolerance[J]. Trees, 2014, 28(6): 1653–1666. DOI: 10.1007/s00468-014-1075-1
    [11]
    Shuang H, Ning T, Huanxin J, et al. CO2 assimilation, photosystem II photochemistry, carbohydrate metabolism and antioxidant system of citrus leaves in response to boron stress[J]. Plant Science, 2009, 176(1): 143–153. DOI: 10.1016/j.plantsci.2008.10.004
    [12]
    DB35/T742–2007. 亚热带果树营养诊断样品采集技术规范[S]. 2007.

    DB35/T742–2007. Technical specification for sampling of nutritional diagnosis of subtropical fruit trees[S]. 2007.
    [13]
    郝建军, 康宗利, 于洋. 植物生理学实验技术[M]. 北京: 化学工业出版社, 2007. 65–68.

    Hao J J, Kang Z L, Yu Y. Plant physiological experiment[M]. Beijing: Chemical Industry Press, 2007.65–68.
    [14]
    孙德智, 韩晓日, 彭靖, 等. 外源水杨酸和一氧化氮对盐胁迫番茄幼苗光系统Ⅱ功能及激发能分配利用的影响[J]. 植物营养与肥料学报, 2018, 24(1): 170–178. DOI: 10.11674/zwyf.17123

    Sun D Z Han X R, Peng J, et al. Effects of exogenous salicylic acid and nitric oxide on PSⅡ function and distribution and utilization of excitation energy in tomato seedlings under NaCl stress[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(1): 170–178. DOI: 10.11674/zwyf.17123
    [15]
    王学奎. 植物生理生化实验原理和技术 (第二版)[M]. 北京: 高等教育出版社, 2006: 202–203.

    Wang X K. Principle and technology of plant physiological and biochemical experiment (2nd Edition)[M]. Beijing: Higher Education Press, 2006, 202–203.
    [16]
    张蜀秋, 韩玉珍, 李云. 植物生理学实验技术教程[M]. 北京: 科学出版社, 2011. 203–204.

    Zhang S Q, Han Y Z, Li Y. Plant physiology experiment technique tutorial[M]. Beijing: Science Press, 2011.203–204.
    [17]
    Sang W, Huang Z R, Qi Y P, et al. An investigation of boron-toxicity in leaves of two citrus species differing in boron-tolerance using comparative proteomics[J]. Journal of Proteomics, 2015, 123: 128–146. DOI: 10.1016/j.jprot.2015.04.007
    [18]
    Martínez C M R, Martínez A B, Quiñones A, et al. Physiological and molecular responses to excess boron in citrus macrophylla W[J]. PLoS One, 2015, 10(7): 1–18.
    [19]
    Wu X, Lu X, Riaz M, et al. Boron deficiency and toxicity altered the subcellular structure and cell wall composition architecture in two citrus rootstocks[J]. Scientia Horticulturae, 2018, 238: 147–154. DOI: 10.1016/j.scienta.2018.04.057
    [20]
    俞立达. 柑桔叶尖黄化病研究[J]. 园艺学报, 1982, 9(2): 1–4.

    Yu L D. Studies on chlorosis of citrus leaf apex[J]. Acta Horticulture Sinica, 1982, 9(2): 1–4.
    [21]
    张广越, 彭良志, 淳长品, 等. 脐橙叶片镁、硼含量变化与缺素黄化的关系[J]. 园艺学报, 2010, 37(8): 1317–1324.

    Zhang G Y, Peng L Z, Chun C P, et al. Seasonal changes in leaf magnesium and boron contents and their relationships to leaf yellowing of navel orange (Citrus sinensis Osbeck)[J]. Acta Horticulture Sinica, 2010, 37(8): 1317–1324.
    [22]
    凌丽俐, 彭良志, 淳长品, 等. 赣南纽荷尔脐橙叶片黄化与营养元素丰缺的相关性[J]. 中国农业科学, 2010, 43(17): 3602–3607. DOI: 10.3864/j.issn.0578-1752.2010.17.014

    Ling L L, Peng L Z, Chun C P, et al. Relationship between leaf yellowing degree and nutrimental elements levels in navel orange (Citrus sinensis Osbeck) leaves in southern Jiangxi Province of China[J]. Science Agricultura Sinica, 2010, 43(17): 3602–3607. DOI: 10.3864/j.issn.0578-1752.2010.17.014
    [23]
    庄伊美. 柑桔营养诊断指导施肥的实践[J]. 浙江柑橘, 1996, (2): 8–11.

    Zhuang Y M. Fertilization practice of citrus based on nutrition diagnosis[J]. Zhejiang Ganju, 1996, (2): 8–11.
    [24]
    Marco L, Theoni M, Ioannis E P, et al. Boron toxicity in higher plants: an update[J]. Planta, 2019, 250: 1011–1032. DOI: 10.1007/s00425-019-03220-4
    [25]
    刘春光, 何小娇. 过量硼对植物的毒害及高硼土壤植物修复研究进展[J]. 农业环境科学学报, 2012, 31(2): 230–236.

    Liu C G, He X J, Boron toxicity in plant and phytoremediation of boron-laden soils[J]. Journal of Agro-Environment Science, 2012, 31(2): 230–236.
    [26]
    简水仙, 李松伟, 邓烈, 等. 影响柑桔光合作用的内外因素研究综述[J]. 中国南方果树, 2011, 40(4): 32–36.

    Jian S X, Li S W, Deng L, et al. Progress of internal and external factors on Photosynthesis of Citrus[J]. South China Fruits, 2011, 40(4): 32–36.
    [27]
    Aftab T, Khan M M A, Idrees M, et al. Boron induced oxidative stress, antioxidant defence response and changes in artemisinin content in Artemisia annua L [J]. Journal of Agronomy & Crop Science, 2010, 196(6): 423–430.
    [28]
    Kato M, Shimizu S. Chlorophyll metabolism in higher plants Ⅵ. involvement of peroxidase in chlorophyll degradation[J]. Plant & Cell Physiology, 1985, 26(7): 1291–1301.
    [29]
    马为民, 施定基, 王全喜. 用基因工程提高光合同化CO2效率的一个关键酶——果糖–1,6–二磷酸酶[J]. 生物化学与生物物理进展, 2003, 30(3): 446–446. DOI: 10.3321/j.issn:1000-3282.2003.03.034

    Ma W M, Shi D J, Wang Q X. A key enzyme for improving the efficiency of photo-contracted CO2 by genetic engineering––Fructose-1,6-bisphosphatase[J]. Progress in Biochemistry and Biophysics, 2003, 30(3): 446–446. DOI: 10.3321/j.issn:1000-3282.2003.03.034
    [30]
    Aftab T, Khan M M A, Idrees M, et al. Methyl jasmonate counteracts boron toxicity by preventing oxidative stress and regulating antioxidant enzyme activities and artemisinin biosynthesis in Artemisia annua L.[J]. Protoplasma, 2011, 248(3): 601–612. DOI: 10.1007/s00709-010-0218-5
  • Cited by

    Periodical cited type(3)

    1. 李群贞,阮科,朱礼乾,曹婷婷,凌丽俐,彭良志,淳长品. 重庆春见和沃柑果园叶片黄化原因分析. 中国南方果树. 2024(05): 37-42 .
    2. 植金丽,曾黎明,李穆,巫辅民,李伏生. 保果剂和施肥处理对澳洲坚果着果和产量的影响. 中国南方果树. 2023(02): 58-65 .
    3. 陆芃希,张峻,肖本木,衣萌,王平,李延,吴良泉. 脐橙缺钼症的诊断及光合生理响应. 热带作物学报. 2023(10): 2034-2042 .

    Other cited types(3)

Catalog

    Article views (1762) PDF downloads (60) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return