• ISSN 1008-505X
  • CN 11-3996/S
WANG Yun-hong, ZHANG Ji-shi, WANG Hong-ye, LIU Xiu-ping, CUI Zhen-ling, MIAO Qi. Improving soil properties and maize yield by integrating soil and crop management measures in coastal saline area[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(11): 2045-2053. DOI: 10.11674/zwyf.2021172
Citation: WANG Yun-hong, ZHANG Ji-shi, WANG Hong-ye, LIU Xiu-ping, CUI Zhen-ling, MIAO Qi. Improving soil properties and maize yield by integrating soil and crop management measures in coastal saline area[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(11): 2045-2053. DOI: 10.11674/zwyf.2021172

Improving soil properties and maize yield by integrating soil and crop management measures in coastal saline area

More Information
  • Received Date: April 01, 2021
  • Accepted Date: September 06, 2021
  • Available Online: November 07, 2021
  • Objectives 

    The effects of integrating soil and crop management on soil properties and maize yield in the coastal saline area was studied for the efficient use of coastal soil.

    Methods 

    The local field experiment commenced in 2016 in the Kenli District of Shandong Province. There were four treatments in total. Two were the local farmers’ practices with or without applying soil remediation agent (ISM and FP). The other two were improved crop management with or without applying soil remediation agent (ISCM, ICM). In the improved crop management, the ZD958 maize cultivar was replaced with DH618; the plant density was increased from 7.5×104 to 9.0×104 plants/hm2, the N–P2O5–K2O dosages were adjusted from 280–90–60 to 200–135–60 kg/hm2, and desulfurized gypsum 30 t/hm2 and cow dung 15 t/hm2 were used as remediation agents. Soil samples at 0–60 cm depth were collected after spring maize harvest in 2020. The samples were collected at 20 cm intervals to determine soil properties and maize yield, and the yield components in the same year were investigated.

    Results 

    Compared with FP, ISM (P < 0.05) decreased exchangeable Na+ content and exchangeable sodium percentage (ESP) values by 17.1% and 28.4%, increased topsoil (0–20 cm) organic carbon (SOC) and total nitrogen (TN) contents by 7.2% and 10.7%, and increased maize yield by 8.0%. ICM increased biomass accumulation at the maturity stage by 19.7%, N partial productivity by 61.7%, grain N content by 6.2%, and yield by 15.5%. ISCM (P < 0.05) reduced exchangeable Na+ content and ESP values by 31.4% and 41.1%, increased SOC and TN storage by 15.8% and 17.4%, increased aboveground N uptake by 29.5%, and increased N partial productivity by 66.2%. Further, ISCM recorded the highest yield of 11.24 t/hm2, which was 18.8% higher than FP.

    Conclusions 

    The application of soil remediation agents, increased plant density, and adjusted maize cultivar and fertilizer input in the coastal saline area increased the storage of SOC and TN, reduced the content of soil exchangeable Na+ and ESP, and promote maize dry matter accumulation. It also increased N uptake, improved N use efficiency, soil quality, and maize yield.

  • [1]
    赵永, 刘旭华, 孙腾达. 基于空间自回归模型的中国耕地面积变化预测[J]. 干旱区资源与环境, 2013, 27(8): 1–5.

    Zhao Y, Liu X H, Sun T D. Prediction of cultivated land change in China based on spatial autoregressive model[J]. Journal of Arid Land Resources and Environment, 2013, 27(8): 1–5.
    [2]
    李贺, 黄翀, 张晨晨, 等. 1976年以来黄河三角洲海岸冲淤演变与入海水沙过程的关系[J]. 资源科学, 2020, 42(3): 486–498. DOI: 10.18402/resci.2020.03.07

    Li H, Huang C, Zhang C C, et al. Coastal erosion and sediment dynamics of the Yellow River Delta and their responses to the runoff-sediment flux since 1976[J]. Resources Science, 2020, 42(3): 486–498. DOI: 10.18402/resci.2020.03.07
    [3]
    范晓梅, 刘高焕, 唐志鹏, 束龙仓. 黄河三角洲土壤盐渍化影响因素分析[J]. 水土保持学报, 2010, 24(1): 139–144.

    Fan X M, Liu G H, Tang Z P, Shu L C. Analysis on main contributors influencing soil salinization of Yellow River Delta[J]. Journal of Soil and Water Conservation, 2010, 24(1): 139–144.
    [4]
    蒋名亮, 陈小兵, 单晶晶, 等. 黄河三角洲县域尺度的盐渍化土壤化学参数特征研究[J]. 土壤, 2017, 49(5): 992–1000.

    Jiang M L, Chen X B, Shan J J, et al. On chemical parameters characteristics of salinity soil on county scale in Yellow River Delta[J]. Soils, 2017, 49(5): 992–1000.
    [5]
    柴寿喜, 杨宝珠, 王晓燕, 等. 渤海湾西岸滨海盐渍土的盐渍化特征分析[J]. 岩土力学, 2008, 29(5): 1217–1221. DOI: 10.3969/j.issn.1000-7598.2008.05.013

    Chai S X, Yang B Z, Wang X Y, et al. Analysis of salinization of saline soil in west coast area of Bohai gulf[J]. Rock and Soil Mechanics, 2008, 29(5): 1217–1221. DOI: 10.3969/j.issn.1000-7598.2008.05.013
    [6]
    Parida A K, Das A B. Salt tolerance and salinity effects on plants: A review[J]. Ecotoxicology and Environmental Safety, 2005, 60(3): 324–349. DOI: 10.1016/j.ecoenv.2004.06.010
    [7]
    王燕, 赵哈林, 董治宝, 等. 荒漠绿洲农田盐渍化过程中土壤有机碳和全氮变化特征[J]. 水土保持学报, 2014, 28(6): 200–205.

    Wang Y, Zhao H L, Dong Z B, et al. The change characteristics of soil organic carbon and soil total nitrogen in farmland salinization in arid oasis[J]. Journal of Soil and Water Conservation, 2014, 28(6): 200–205.
    [8]
    郝存抗, 周蕊蕊, 鹿鸣, 等. 不同盐渍化程度下滨海盐渍土有机碳矿化规律[J]. 农业资源与环境学报, 2020, 37(1): 36–42.

    Hao C K, Zhou R R, Lu M, et al. Soil organic carbon mineralization of coastal soils with different salinity levels[J]. Journal of Agricultural Resources and Environment, 2020, 37(1): 36–42.
    [9]
    孙慧, 张建锋, 许华森, 等. 余姚滨海不同盐碱度土壤微生物群落组成及土壤酶活性的变化[J]. 应用生态学报, 2016, 27(10): 3361–3370.

    Sun H, Zhang J F, Xu H S, et al. Variations of soil microbial community composition and enzyme activities with different salinities on Yuyao coast, Zhejiang, China[J]. Chinese Journal of Applied Ecology, 2016, 27(10): 3361–3370.
    [10]
    路晓筠, 项卫东, 郑光耀, 王艮梅. 盐碱地改良措施研究进展[J]. 江苏农业科学, 2015, 43(12): 5–8.

    Lu X Y, Xiang W D, Zheng G Y, Wang G M. Research progress on improvement measures of saline and alkali soil[J]. Jiangsu Agricultural Sciences, 2015, 43(12): 5–8.
    [11]
    张翼夫, 李问盈, 胡红, 等. 盐碱地改良研究现状及展望[J]. 江苏农业科学, 2017, 45(18): 7–10.

    Zhang Y F, Li W Y, Hu H, et al. Research status and prospect of saline-alkaline land improvement[J]. Jiangsu Agricultural Sciences, 2017, 45(18): 7–10.
    [12]
    张济世, 于波涛, 张金凤, 等. 不同改良剂对滨海盐渍土土壤理化性质和小麦生长的影响[J]. 植物营养与肥料学报, 2017, 23(3): 704–711. DOI: 10.11674/zwyf.16415

    Zhang J S, Yu B T, Zhang J F, et al. Effects of different amendments on soil physical and chemical properties and wheat growth in a coastal saline soil[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(3): 704–711. DOI: 10.11674/zwyf.16415
    [13]
    程镜润, 陈小华, 刘振鸿, 等. 脱硫石膏改良滨海盐碱土的脱盐过程与效果实验研究[J]. 中国环境科学, 2014, 34(6): 1505–1513.

    Cheng J R, Chen X H, Liu Z H, et al. The experimental study on the process and effect to the FGD-gypsum as an improvement in coastal saline-alkali soil[J]. China Environmental Science, 2014, 34(6): 1505–1513.
    [14]
    史振鑫, 吴景贵. 不同处理牛粪对黑土团聚体组成与稳定性的影响[J]. 中国土壤与肥料, 2013, (4): 10–15.

    Shi Z X, Wu J G. Composition and stability of the aggregates in black soil applied with different cattle manures[J]. Soil and Fertilizer Sciences in China, 2013, (4): 10–15.
    [15]
    戚瑞敏, 赵秉强, 李娟, 等. 添加牛粪对长期不同施肥潮土有机碳矿化的影响及激发效应[J]. 农业工程学报, 2016, 32(S2): 118–127.

    Qi R M, Zhao B Q, Li J, et al. Effects of cattle manure addition on soil organic carbon mineralization and priming effects under long-term fertilization regimes[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(S2): 118–127.
    [16]
    刘春卿, 杨劲松, 徐力刚. 不同管理调控措施对盐渍化土壤上大麦生长的影响[J]. 土壤通报, 2004, 35(2): 173–176. DOI: 10.3321/j.issn:0564-3945.2004.02.018

    Liu C Q, Yang J S, Xu L G. Effects of different management and control measures on barley growth in saline soil[J]. Chinese Journal of Soil Science, 2004, 35(2): 173–176. DOI: 10.3321/j.issn:0564-3945.2004.02.018
    [17]
    侯晓静, 杨劲松, 赵曼, 等. 不同施肥措施对滨海盐渍土有机碳含量的影响[J]. 土壤, 2014, 46(5): 780–786.

    Hou X J, Yang J S, Zhao M, et al. Effects of different fertilization on soil organic carbon in costal saline soil region[J]. Soils, 2014, 46(5): 780–786.
    [18]
    Reay D S, Davidson E A, Smith K A, et al. Global agriculture and nitrous oxide emissions[J]. Nature Climate Change, 2012, 2(6): 410–416. DOI: 10.1038/nclimate1458
    [19]
    Guo J H, Liu X J, Zhang Y, et al. Significant acidification in major chinese croplands[J]. Science, 2010, 327(5968): 1008–1010. DOI: 10.1126/science.1182570
    [20]
    Xia Y, Yan X. Ecologically optimal nitrogen application rates for rice cropping in the Taihu Lake region of China[J]. Sustainability Science, 2012, 7(1): 33–44. DOI: 10.1007/s11625-011-0144-2
    [21]
    Song F P, Zhuge Y P, Guo X S, et al. Optimizing irrigation and fertilization can improve degraded saline soils and increase wheat grain yield[J]. Land Degradation and Development, 2021, 32(1): 494–504. DOI: 10.1002/ldr.3682
    [22]
    苗琪, 于宝超, 孙福来, 等. 氮肥种类和用量对黄河三角洲玉米产量及氮肥利用率的影响[J]. 植物营养与肥料学报, 2020, 26(4): 717–726. DOI: 10.11674/zwyf.19250

    Miao Q, Yu B C, Sun F L, et al. Effects of nitrogen fertilizer type and rate on maize yield and nitrogen use efficiency in the Yellow River Delta[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(4): 717–726. DOI: 10.11674/zwyf.19250
    [23]
    Chen X P, Cui Z L, Fan M S, et al. Producing more grain with lower environmental costs[J]. Nature, 2014, 514(7523): 486–489. DOI: 10.1038/nature13609
    [24]
    邢雁, 朱丽琴, 张红艳. EDTA-乙酸铵浸提ICP-OES法直接测定土壤中的交换性钾钠钙镁锰[J]. 安徽农业科学, 2010, 38(28): 15694–15695. DOI: 10.3969/j.issn.0517-6611.2010.28.098

    Xing Y, Zhu L Q, Zhang H Y. Direct determination of the exchangeable K, Na, Ca, Mg and Mn in soil with the method of EDTA-ammonium acetate extracting ICP-OES[J]. Journal of Anhui Agricultural Sciences, 2010, 38(28): 15694–15695. DOI: 10.3969/j.issn.0517-6611.2010.28.098
    [25]
    张辉, 陈小华, 付融冰, 等. 脱硫石膏对不同质地滨海盐碱土性质的改良效果[J]. 环境工程学报, 2017, 11(7): 4397–4403. DOI: 10.12030/j.cjee.201605138

    Zhang H, Chen X H, Fu R B, et al. Effect to FGD (flue gas desulfurization)-gypsum as an improvement to different coastal saline-alkali soil[J]. Chinese Journal of Environmental Engineering, 2017, 11(7): 4397–4403. DOI: 10.12030/j.cjee.201605138
    [26]
    王庆蒙, 景宇鹏, 李跃进, 等. 不同培肥措施对河套灌区盐碱地改良效果[J]. 中国土壤与肥料, 2020, (5): 124–131. DOI: 10.11838/sfsc.1673-6257.19410

    Wang Q M, Jing Y P, Li Y J, et al. Effect of different fertilizer regime on the improvement of saline-alkali soil in Hetao Irrigation District[J]. Soil and Fertilizer Sciences in China, 2020, (5): 124–131. DOI: 10.11838/sfsc.1673-6257.19410
    [27]
    郭军玲, 金辉, 郭彩霞, 等. 不同有机物料对苏打盐化土有机碳和活性碳组分的影响[J]. 植物营养与肥料学报, 2019, 25(8): 1290–1299. DOI: 10.11674/zwyf.18448

    Guo J L, Jin H, Guo C X, et al. Effects of organic materials on soil organic carbon and fractions of active carbon in soda saline soil[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(8): 1290–1299. DOI: 10.11674/zwyf.18448
    [28]
    左文刚, 黄顾林, 朱晓雯, 等. 施用牛粪对沿海泥质滩涂土壤原始肥力驱动及黑麦草幼苗生长的影响[J]. 植物营养与肥料学报, 2016, 22(2): 372–379. DOI: 10.11674/zwyf.14355

    Zuo W G, Huang G L, Zhu X W, et al. Motivating effect of different dairy manure addition on soil initial fertility formation and ryegrass growth in coastal mudflat soil[J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(2): 372–379. DOI: 10.11674/zwyf.14355
    [29]
    Zhang J S, Jiang X L, Xue Y F, et al. Closing yield gaps through soil improvement for maize production in coastal saline soil[J]. Agronomy, 2019, 9(10): 573. DOI: 10.3390/agronomy9100573
    [30]
    卢星辰, 张济世, 苗琪, 等. 不同改良物料及其配施组合对黄河三角洲滨海盐碱土的改良效果[J]. 水土保持学报, 2017, 31(6): 326–332.

    Lu X C, Zhang J S, Miao Q, et al. Improvement effects of different ameliorants and their combinations on coastal saline-alkali soil in the Yellow River Delta[J]. Journal of Soil and Water Conservation, 2017, 31(6): 326–332.
    [31]
    刘正, 高佳, 高飞, 等. 综合农艺管理提高夏玉米产量和养分利用效率的潜力[J]. 植物营养与肥料学报, 2019, 25(11): 1847–1855. DOI: 10.11674/zwyf.18485

    Liu Z, Gao J, Gao F, et al. Potential of integrated agronomic practices to increase grain yield and utilization efficiency of fertilizers in summer maize production[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(11): 1847–1855. DOI: 10.11674/zwyf.18485
    [32]
    Miao Q, Zhang J S, Chen Y L, et al. Integrated nitrogen amount and sources maximize maize nitrogen efficiency in the saline soils[J]. Agronomy Journal, 2021, 113(2): 1183–1196. DOI: 10.1002/agj2.20584
    [33]
    Yan P, Yue S C, Meng Q F, et al. An understanding of the accumulation of biomass and nitrogen is benefit for Chinese maize production[J]. Agronomy Journal, 2016, 108(2): 895–904. DOI: 10.2134/agronj2015.0388
    [34]
    曹胜彪, 张吉旺, 董树亭, 等. 施氮量和种植密度对高产夏玉米产量和氮素利用效率的影响[J]. 植物营养与肥料学报, 2012, 18(6): 1343–1353. DOI: 10.11674/zwyf.2012.12135

    Cao S B, Zhang J W, Dong S T, et al. Effects of nitrogen rate and planting density on grain yield and nitrogen utilization efficiency of high yield summer maize[J]. Journal of Plant Nutrition and Fertilizers, 2012, 18(6): 1343–1353. DOI: 10.11674/zwyf.2012.12135
    [35]
    程前, 李广浩, 陆卫平, 陆大雷. 增密减氮提高夏玉米产量和氮素利用效率[J]. 植物营养与肥料学报, 2020, 26(6): 1035–1046. DOI: 10.11674/zwyf.19392

    Cheng Q, Li G H, Lu W P, Lu D L. Increasing planting density and decreasing nitrogen rate increase yield and nitrogen use efficiency of summer maize[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(6): 1035–1046. DOI: 10.11674/zwyf.19392
    [36]
    丰光, 李妍妍, 景希强, 等. 玉米不同种植密度对主要农艺性状和产量的影响[J]. 玉米科学, 2011, 19(1): 109–111.

    Feng G, Li Y Y, Jing X Q, et al. Effects on agronomic characteristics and yield of maize planting density[J]. Journal of Maize Sciences, 2011, 19(1): 109–111.
    [37]
    李广浩, 刘娟, 董树亭, 等. 密植与氮肥用量对不同耐密型夏玉米品种产量及氮素利用效率的影响[J]. 中国农业科学, 2017, 50(12): 2247–2258. DOI: 10.3864/j.issn.0578-1752.2017.12.006

    Li G H, Liu J, Dong S T, et al. Effects of close planting and nitrogen application rates on grain yield and nitrogen utilization efficiency of different density-tolerance maize hybrids[J]. Scientia Agricultura Sinica, 2017, 50(12): 2247–2258. DOI: 10.3864/j.issn.0578-1752.2017.12.006
    [38]
    齐文增, 陈晓璐, 刘鹏, 等. 超高产夏玉米干物质与氮、磷、钾养分积累与分配特点[J]. 植物营养与肥料学报, 2013, 19(1): 26–36.

    Qi W Z, Chen X L, Liu P, et al. Characteristics of dry matter, accumulation and distribution of N, P and K of super-high-yield summer maize[J]. Journal of Plant Nutrition and Fertilizers, 2013, 19(1): 26–36.
    [39]
    巨晓棠, 张翀. 论合理施氮的原则和指标[J]. 土壤学报, 2020, 58(1): 1–13.

    Ju X T, Zhang C. The principles and indicators of rational N fertilization[J]. Acta Pedologica Sinica, 2020, 58(1): 1–13.
  • Cited by

    Periodical cited type(8)

    1. 耿林林,李洪秀,李传浩,刘秀萍. 黄河三角洲滨海盐碱地改良研究进展. 现代农业科技. 2025(06): 115-118 .
    2. 王韵弘,苗琪,李俊超,王红叶,张济世,崔振岭. 田间管理措施对滨海盐渍地区中低产田生产力的影响. 中国农业科技导报. 2024(01): 163-172 .
    3. 朱志刚,李美丽,李俊东,何文江. 氯化铵水溶液浸提-电感耦合等离子体发射光谱法测定石灰性土壤中交换性钠的含量. 分析仪器. 2024(02): 14-19 .
    4. 韩笑晨,张贵芹,王亚辉,任昊,王洪章,刘国利,林佃旭,王子强,张吉旺,赵斌,任佰朝,刘鹏. 土壤调理剂对滨海盐碱地土壤盐分含量及夏玉米产量的影响. 作物学报. 2024(07): 1776-1786 .
    5. 刘俊青,刘淼,梁正伟. 有机肥施用改良盐碱地及其作用机理. 土壤与作物. 2024(03): 340-347 .
    6. 白小龙,王彬,刘云鹏,王腾,张百含,刘盼婷,田丰,赵卉. 改良物料配施提升河套灌区盐碱土团聚体稳定性、有机碳含量及玉米产量. 植物营养与肥料学报. 2024(11): 2082-2092 . 本站查看
    7. 李传福,朱桃川,明玉飞,杨宇轩,高舒,董智,李永强,焦树英. 有机肥与脱硫石膏对黄河三角洲盐碱地土壤团聚体及其有机碳组分的影响. 生态环境学报. 2023(05): 878-888 .
    8. 柳丽,李洁,白羿雄,杜中平,李屹,陈来生,韩睿. KOH和NH_3·H_2O联合固态预处理对青稞秸秆厌氧发酵特性的影响. 环境科学研究. 2022(08): 1966-1973 .

    Other cited types(8)

Catalog

    Article views (1790) PDF downloads (85) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return