• ISSN 1008-505X
  • CN 11-3996/S
WANG Yun-hong, ZHANG Ji-shi, WANG Hong-ye, LIU Xiu-ping, CUI Zhen-ling, MIAO Qi. Improving soil properties and maize yield by integrating soil and crop management measures in coastal saline area[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(11): 2045-2053. DOI: 10.11674/zwyf.2021172
Citation: WANG Yun-hong, ZHANG Ji-shi, WANG Hong-ye, LIU Xiu-ping, CUI Zhen-ling, MIAO Qi. Improving soil properties and maize yield by integrating soil and crop management measures in coastal saline area[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(11): 2045-2053. DOI: 10.11674/zwyf.2021172

Improving soil properties and maize yield by integrating soil and crop management measures in coastal saline area

More Information
  • Received Date: April 01, 2021
  • Accepted Date: September 06, 2021
  • Available Online: November 07, 2021
  • Objectives 

    The effects of integrating soil and crop management on soil properties and maize yield in the coastal saline area was studied for the efficient use of coastal soil.

    Methods 

    The local field experiment commenced in 2016 in the Kenli District of Shandong Province. There were four treatments in total. Two were the local farmers’ practices with or without applying soil remediation agent (ISM and FP). The other two were improved crop management with or without applying soil remediation agent (ISCM, ICM). In the improved crop management, the ZD958 maize cultivar was replaced with DH618; the plant density was increased from 7.5×104 to 9.0×104 plants/hm2, the N–P2O5–K2O dosages were adjusted from 280–90–60 to 200–135–60 kg/hm2, and desulfurized gypsum 30 t/hm2 and cow dung 15 t/hm2 were used as remediation agents. Soil samples at 0–60 cm depth were collected after spring maize harvest in 2020. The samples were collected at 20 cm intervals to determine soil properties and maize yield, and the yield components in the same year were investigated.

    Results 

    Compared with FP, ISM (P < 0.05) decreased exchangeable Na+ content and exchangeable sodium percentage (ESP) values by 17.1% and 28.4%, increased topsoil (0–20 cm) organic carbon (SOC) and total nitrogen (TN) contents by 7.2% and 10.7%, and increased maize yield by 8.0%. ICM increased biomass accumulation at the maturity stage by 19.7%, N partial productivity by 61.7%, grain N content by 6.2%, and yield by 15.5%. ISCM (P < 0.05) reduced exchangeable Na+ content and ESP values by 31.4% and 41.1%, increased SOC and TN storage by 15.8% and 17.4%, increased aboveground N uptake by 29.5%, and increased N partial productivity by 66.2%. Further, ISCM recorded the highest yield of 11.24 t/hm2, which was 18.8% higher than FP.

    Conclusions 

    The application of soil remediation agents, increased plant density, and adjusted maize cultivar and fertilizer input in the coastal saline area increased the storage of SOC and TN, reduced the content of soil exchangeable Na+ and ESP, and promote maize dry matter accumulation. It also increased N uptake, improved N use efficiency, soil quality, and maize yield.

  • [1]
    赵永, 刘旭华, 孙腾达. 基于空间自回归模型的中国耕地面积变化预测[J]. 干旱区资源与环境, 2013, 27(8): 1–5.

    Zhao Y, Liu X H, Sun T D. Prediction of cultivated land change in China based on spatial autoregressive model[J]. Journal of Arid Land Resources and Environment, 2013, 27(8): 1–5.
    [2]
    李贺, 黄翀, 张晨晨, 等. 1976年以来黄河三角洲海岸冲淤演变与入海水沙过程的关系[J]. 资源科学, 2020, 42(3): 486–498. DOI: 10.18402/resci.2020.03.07

    Li H, Huang C, Zhang C C, et al. Coastal erosion and sediment dynamics of the Yellow River Delta and their responses to the runoff-sediment flux since 1976[J]. Resources Science, 2020, 42(3): 486–498. DOI: 10.18402/resci.2020.03.07
    [3]
    范晓梅, 刘高焕, 唐志鹏, 束龙仓. 黄河三角洲土壤盐渍化影响因素分析[J]. 水土保持学报, 2010, 24(1): 139–144.

    Fan X M, Liu G H, Tang Z P, Shu L C. Analysis on main contributors influencing soil salinization of Yellow River Delta[J]. Journal of Soil and Water Conservation, 2010, 24(1): 139–144.
    [4]
    蒋名亮, 陈小兵, 单晶晶, 等. 黄河三角洲县域尺度的盐渍化土壤化学参数特征研究[J]. 土壤, 2017, 49(5): 992–1000.

    Jiang M L, Chen X B, Shan J J, et al. On chemical parameters characteristics of salinity soil on county scale in Yellow River Delta[J]. Soils, 2017, 49(5): 992–1000.
    [5]
    柴寿喜, 杨宝珠, 王晓燕, 等. 渤海湾西岸滨海盐渍土的盐渍化特征分析[J]. 岩土力学, 2008, 29(5): 1217–1221. DOI: 10.3969/j.issn.1000-7598.2008.05.013

    Chai S X, Yang B Z, Wang X Y, et al. Analysis of salinization of saline soil in west coast area of Bohai gulf[J]. Rock and Soil Mechanics, 2008, 29(5): 1217–1221. DOI: 10.3969/j.issn.1000-7598.2008.05.013
    [6]
    Parida A K, Das A B. Salt tolerance and salinity effects on plants: A review[J]. Ecotoxicology and Environmental Safety, 2005, 60(3): 324–349. DOI: 10.1016/j.ecoenv.2004.06.010
    [7]
    王燕, 赵哈林, 董治宝, 等. 荒漠绿洲农田盐渍化过程中土壤有机碳和全氮变化特征[J]. 水土保持学报, 2014, 28(6): 200–205.

    Wang Y, Zhao H L, Dong Z B, et al. The change characteristics of soil organic carbon and soil total nitrogen in farmland salinization in arid oasis[J]. Journal of Soil and Water Conservation, 2014, 28(6): 200–205.
    [8]
    郝存抗, 周蕊蕊, 鹿鸣, 等. 不同盐渍化程度下滨海盐渍土有机碳矿化规律[J]. 农业资源与环境学报, 2020, 37(1): 36–42.

    Hao C K, Zhou R R, Lu M, et al. Soil organic carbon mineralization of coastal soils with different salinity levels[J]. Journal of Agricultural Resources and Environment, 2020, 37(1): 36–42.
    [9]
    孙慧, 张建锋, 许华森, 等. 余姚滨海不同盐碱度土壤微生物群落组成及土壤酶活性的变化[J]. 应用生态学报, 2016, 27(10): 3361–3370.

    Sun H, Zhang J F, Xu H S, et al. Variations of soil microbial community composition and enzyme activities with different salinities on Yuyao coast, Zhejiang, China[J]. Chinese Journal of Applied Ecology, 2016, 27(10): 3361–3370.
    [10]
    路晓筠, 项卫东, 郑光耀, 王艮梅. 盐碱地改良措施研究进展[J]. 江苏农业科学, 2015, 43(12): 5–8.

    Lu X Y, Xiang W D, Zheng G Y, Wang G M. Research progress on improvement measures of saline and alkali soil[J]. Jiangsu Agricultural Sciences, 2015, 43(12): 5–8.
    [11]
    张翼夫, 李问盈, 胡红, 等. 盐碱地改良研究现状及展望[J]. 江苏农业科学, 2017, 45(18): 7–10.

    Zhang Y F, Li W Y, Hu H, et al. Research status and prospect of saline-alkaline land improvement[J]. Jiangsu Agricultural Sciences, 2017, 45(18): 7–10.
    [12]
    张济世, 于波涛, 张金凤, 等. 不同改良剂对滨海盐渍土土壤理化性质和小麦生长的影响[J]. 植物营养与肥料学报, 2017, 23(3): 704–711. DOI: 10.11674/zwyf.16415

    Zhang J S, Yu B T, Zhang J F, et al. Effects of different amendments on soil physical and chemical properties and wheat growth in a coastal saline soil[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(3): 704–711. DOI: 10.11674/zwyf.16415
    [13]
    程镜润, 陈小华, 刘振鸿, 等. 脱硫石膏改良滨海盐碱土的脱盐过程与效果实验研究[J]. 中国环境科学, 2014, 34(6): 1505–1513.

    Cheng J R, Chen X H, Liu Z H, et al. The experimental study on the process and effect to the FGD-gypsum as an improvement in coastal saline-alkali soil[J]. China Environmental Science, 2014, 34(6): 1505–1513.
    [14]
    史振鑫, 吴景贵. 不同处理牛粪对黑土团聚体组成与稳定性的影响[J]. 中国土壤与肥料, 2013, (4): 10–15.

    Shi Z X, Wu J G. Composition and stability of the aggregates in black soil applied with different cattle manures[J]. Soil and Fertilizer Sciences in China, 2013, (4): 10–15.
    [15]
    戚瑞敏, 赵秉强, 李娟, 等. 添加牛粪对长期不同施肥潮土有机碳矿化的影响及激发效应[J]. 农业工程学报, 2016, 32(S2): 118–127.

    Qi R M, Zhao B Q, Li J, et al. Effects of cattle manure addition on soil organic carbon mineralization and priming effects under long-term fertilization regimes[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(S2): 118–127.
    [16]
    刘春卿, 杨劲松, 徐力刚. 不同管理调控措施对盐渍化土壤上大麦生长的影响[J]. 土壤通报, 2004, 35(2): 173–176. DOI: 10.3321/j.issn:0564-3945.2004.02.018

    Liu C Q, Yang J S, Xu L G. Effects of different management and control measures on barley growth in saline soil[J]. Chinese Journal of Soil Science, 2004, 35(2): 173–176. DOI: 10.3321/j.issn:0564-3945.2004.02.018
    [17]
    侯晓静, 杨劲松, 赵曼, 等. 不同施肥措施对滨海盐渍土有机碳含量的影响[J]. 土壤, 2014, 46(5): 780–786.

    Hou X J, Yang J S, Zhao M, et al. Effects of different fertilization on soil organic carbon in costal saline soil region[J]. Soils, 2014, 46(5): 780–786.
    [18]
    Reay D S, Davidson E A, Smith K A, et al. Global agriculture and nitrous oxide emissions[J]. Nature Climate Change, 2012, 2(6): 410–416. DOI: 10.1038/nclimate1458
    [19]
    Guo J H, Liu X J, Zhang Y, et al. Significant acidification in major chinese croplands[J]. Science, 2010, 327(5968): 1008–1010. DOI: 10.1126/science.1182570
    [20]
    Xia Y, Yan X. Ecologically optimal nitrogen application rates for rice cropping in the Taihu Lake region of China[J]. Sustainability Science, 2012, 7(1): 33–44. DOI: 10.1007/s11625-011-0144-2
    [21]
    Song F P, Zhuge Y P, Guo X S, et al. Optimizing irrigation and fertilization can improve degraded saline soils and increase wheat grain yield[J]. Land Degradation and Development, 2021, 32(1): 494–504. DOI: 10.1002/ldr.3682
    [22]
    苗琪, 于宝超, 孙福来, 等. 氮肥种类和用量对黄河三角洲玉米产量及氮肥利用率的影响[J]. 植物营养与肥料学报, 2020, 26(4): 717–726. DOI: 10.11674/zwyf.19250

    Miao Q, Yu B C, Sun F L, et al. Effects of nitrogen fertilizer type and rate on maize yield and nitrogen use efficiency in the Yellow River Delta[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(4): 717–726. DOI: 10.11674/zwyf.19250
    [23]
    Chen X P, Cui Z L, Fan M S, et al. Producing more grain with lower environmental costs[J]. Nature, 2014, 514(7523): 486–489. DOI: 10.1038/nature13609
    [24]
    邢雁, 朱丽琴, 张红艳. EDTA-乙酸铵浸提ICP-OES法直接测定土壤中的交换性钾钠钙镁锰[J]. 安徽农业科学, 2010, 38(28): 15694–15695. DOI: 10.3969/j.issn.0517-6611.2010.28.098

    Xing Y, Zhu L Q, Zhang H Y. Direct determination of the exchangeable K, Na, Ca, Mg and Mn in soil with the method of EDTA-ammonium acetate extracting ICP-OES[J]. Journal of Anhui Agricultural Sciences, 2010, 38(28): 15694–15695. DOI: 10.3969/j.issn.0517-6611.2010.28.098
    [25]
    张辉, 陈小华, 付融冰, 等. 脱硫石膏对不同质地滨海盐碱土性质的改良效果[J]. 环境工程学报, 2017, 11(7): 4397–4403. DOI: 10.12030/j.cjee.201605138

    Zhang H, Chen X H, Fu R B, et al. Effect to FGD (flue gas desulfurization)-gypsum as an improvement to different coastal saline-alkali soil[J]. Chinese Journal of Environmental Engineering, 2017, 11(7): 4397–4403. DOI: 10.12030/j.cjee.201605138
    [26]
    王庆蒙, 景宇鹏, 李跃进, 等. 不同培肥措施对河套灌区盐碱地改良效果[J]. 中国土壤与肥料, 2020, (5): 124–131. DOI: 10.11838/sfsc.1673-6257.19410

    Wang Q M, Jing Y P, Li Y J, et al. Effect of different fertilizer regime on the improvement of saline-alkali soil in Hetao Irrigation District[J]. Soil and Fertilizer Sciences in China, 2020, (5): 124–131. DOI: 10.11838/sfsc.1673-6257.19410
    [27]
    郭军玲, 金辉, 郭彩霞, 等. 不同有机物料对苏打盐化土有机碳和活性碳组分的影响[J]. 植物营养与肥料学报, 2019, 25(8): 1290–1299. DOI: 10.11674/zwyf.18448

    Guo J L, Jin H, Guo C X, et al. Effects of organic materials on soil organic carbon and fractions of active carbon in soda saline soil[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(8): 1290–1299. DOI: 10.11674/zwyf.18448
    [28]
    左文刚, 黄顾林, 朱晓雯, 等. 施用牛粪对沿海泥质滩涂土壤原始肥力驱动及黑麦草幼苗生长的影响[J]. 植物营养与肥料学报, 2016, 22(2): 372–379. DOI: 10.11674/zwyf.14355

    Zuo W G, Huang G L, Zhu X W, et al. Motivating effect of different dairy manure addition on soil initial fertility formation and ryegrass growth in coastal mudflat soil[J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(2): 372–379. DOI: 10.11674/zwyf.14355
    [29]
    Zhang J S, Jiang X L, Xue Y F, et al. Closing yield gaps through soil improvement for maize production in coastal saline soil[J]. Agronomy, 2019, 9(10): 573. DOI: 10.3390/agronomy9100573
    [30]
    卢星辰, 张济世, 苗琪, 等. 不同改良物料及其配施组合对黄河三角洲滨海盐碱土的改良效果[J]. 水土保持学报, 2017, 31(6): 326–332.

    Lu X C, Zhang J S, Miao Q, et al. Improvement effects of different ameliorants and their combinations on coastal saline-alkali soil in the Yellow River Delta[J]. Journal of Soil and Water Conservation, 2017, 31(6): 326–332.
    [31]
    刘正, 高佳, 高飞, 等. 综合农艺管理提高夏玉米产量和养分利用效率的潜力[J]. 植物营养与肥料学报, 2019, 25(11): 1847–1855. DOI: 10.11674/zwyf.18485

    Liu Z, Gao J, Gao F, et al. Potential of integrated agronomic practices to increase grain yield and utilization efficiency of fertilizers in summer maize production[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(11): 1847–1855. DOI: 10.11674/zwyf.18485
    [32]
    Miao Q, Zhang J S, Chen Y L, et al. Integrated nitrogen amount and sources maximize maize nitrogen efficiency in the saline soils[J]. Agronomy Journal, 2021, 113(2): 1183–1196. DOI: 10.1002/agj2.20584
    [33]
    Yan P, Yue S C, Meng Q F, et al. An understanding of the accumulation of biomass and nitrogen is benefit for Chinese maize production[J]. Agronomy Journal, 2016, 108(2): 895–904. DOI: 10.2134/agronj2015.0388
    [34]
    曹胜彪, 张吉旺, 董树亭, 等. 施氮量和种植密度对高产夏玉米产量和氮素利用效率的影响[J]. 植物营养与肥料学报, 2012, 18(6): 1343–1353. DOI: 10.11674/zwyf.2012.12135

    Cao S B, Zhang J W, Dong S T, et al. Effects of nitrogen rate and planting density on grain yield and nitrogen utilization efficiency of high yield summer maize[J]. Journal of Plant Nutrition and Fertilizers, 2012, 18(6): 1343–1353. DOI: 10.11674/zwyf.2012.12135
    [35]
    程前, 李广浩, 陆卫平, 陆大雷. 增密减氮提高夏玉米产量和氮素利用效率[J]. 植物营养与肥料学报, 2020, 26(6): 1035–1046. DOI: 10.11674/zwyf.19392

    Cheng Q, Li G H, Lu W P, Lu D L. Increasing planting density and decreasing nitrogen rate increase yield and nitrogen use efficiency of summer maize[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(6): 1035–1046. DOI: 10.11674/zwyf.19392
    [36]
    丰光, 李妍妍, 景希强, 等. 玉米不同种植密度对主要农艺性状和产量的影响[J]. 玉米科学, 2011, 19(1): 109–111.

    Feng G, Li Y Y, Jing X Q, et al. Effects on agronomic characteristics and yield of maize planting density[J]. Journal of Maize Sciences, 2011, 19(1): 109–111.
    [37]
    李广浩, 刘娟, 董树亭, 等. 密植与氮肥用量对不同耐密型夏玉米品种产量及氮素利用效率的影响[J]. 中国农业科学, 2017, 50(12): 2247–2258. DOI: 10.3864/j.issn.0578-1752.2017.12.006

    Li G H, Liu J, Dong S T, et al. Effects of close planting and nitrogen application rates on grain yield and nitrogen utilization efficiency of different density-tolerance maize hybrids[J]. Scientia Agricultura Sinica, 2017, 50(12): 2247–2258. DOI: 10.3864/j.issn.0578-1752.2017.12.006
    [38]
    齐文增, 陈晓璐, 刘鹏, 等. 超高产夏玉米干物质与氮、磷、钾养分积累与分配特点[J]. 植物营养与肥料学报, 2013, 19(1): 26–36.

    Qi W Z, Chen X L, Liu P, et al. Characteristics of dry matter, accumulation and distribution of N, P and K of super-high-yield summer maize[J]. Journal of Plant Nutrition and Fertilizers, 2013, 19(1): 26–36.
    [39]
    巨晓棠, 张翀. 论合理施氮的原则和指标[J]. 土壤学报, 2020, 58(1): 1–13.

    Ju X T, Zhang C. The principles and indicators of rational N fertilization[J]. Acta Pedologica Sinica, 2020, 58(1): 1–13.
  • Related Articles

    [1]WU Shuai-bing, MIAO Qi, WANG Hong-ye, WANG Yun-hong, LI Jun-chao, SONG Hua-feng, LIU Yu-ming, WANG Wei-dong, CUI Zhen-ling. Optimizing nitrogen fertilizer management to improve yield, N use efficiency and profit of spring maize in coastal saline soil[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(9): 1573-1586. DOI: 10.11674/zwyf.2023054
    [2]ZHAO Ze-zhou, WANG Xiao-ling, LI Hong-bo, REN Shu-peng, CHEN Jing, WANG Lin-ling. Slow-release property and soil remediation mechanism of biochar-based fertilizers[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(5): 886-897. DOI: 10.11674/zwyf.20472
    [3]DONG Qiang, WU De-feng, DANG Ting-hui, GUO Sheng-li. Effects of different nitrogen reduction modes on yield of spring maize and nitrate-N residue in soils of the southern Loess Plateau[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(4): 856-863. DOI: 10.11674/zwyf.16484
    [4]ZHANG Ji-shi, YU Bo-tao, ZHANG Jin-feng, LIU Yu-ming, JIANG Xi-long, CUI Zhen-ling. Effects of different amendments on soil physical and chemical properties and wheat growth in a coastal saline soil[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(3): 704-711. DOI: 10.11674/zwyf.16415
    [5]CHEN Kun, QIN Yu-sheng, YU Hua, KANG Si-wen, FAN Hong-zhu, ZENG Xiang-zhong, TU Shi-hua. Impacts of different fertilizers/amendments on rice yield and nutrient uptake and soil properties in the waterlogged paddy field[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(3): 773-781. DOI: 10.11674/zwyf.2015.0325
    [6]GAO Hong-jun, ZHU Ping, PENG Chang, ZHANG Xiu-zhi, LI Qiang, ZHANG Wei-jian. Effects of partially replacement of inorganic N with organicmaterials on nitrogen efficiency of spring maize and soil inorganic nitrogen content under the same N input[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(2): 318-325. DOI: 10.11674/zwyf.2015.0205
    [7]JUAN Ying-hua, SUN Wen-tao, HAN Xiao-ri, XING Yue-hua, WANG Li-chun, XIE Jia-gui. Response of soil mineral nitrogen accumulation and enzyme activities to nitrogen application in spring maize[J]. Journal of Plant Nutrition and Fertilizers, 2014, 20(6): 1368-1377. DOI: 10.11674/zwyf.2014.0606
    [8]XIE Jia-gui, HOU Yun-peng, YIN Cai-xia, KONG Li-li, QIN Yu-bo, LI Qian, WANG Li-chun*. Effect of potassium application and straw returning on spring maize yield, nutrient absorption and soil potassium balance[J]. Journal of Plant Nutrition and Fertilizers, 2014, 20(5): 1110-1118. DOI: 10.11674/zwyf.2014.0507
    [9]JUAN Ying-hua, WANG Ren, SUN Wen-tao, XING Yue-hua. Real-time nitrogen management for spring maize using the soil nitrate-N test[J]. Journal of Plant Nutrition and Fertilizers, 2013, 19(5): 1248-1256. DOI: 10.11674/zwyf.2013.0526
    [10]Characteristics of nitrogen mineralization and residual in the soil and nitrogen balance in the continuous spring maize cultivation system in Northeast China[J]. Journal of Plant Nutrition and Fertilizers, 2010, 16(5): 1144-1152. DOI: 10.11674/zwyf.2010.0515
  • Cited by

    Periodical cited type(24)

    1. 陈思静,李伏生,农梦玲. 滴灌追氮管理对宿根蔗田土壤氮组分及N_2O排放的影响. 华南农业大学学报. 2023(02): 230-238 .
    2. SONG Ke,QIN Qin,YANG Ye-feng,SUN Li-juan,SUN Ya-fei,ZHENG Xian-qing,Lü Wei-guang,XUE Yong. Drip fertigation and plant hedgerows significantly reduce nitrogen and phosphorus losses and maintain high fruit yields in intensive orchards. Journal of Integrative Agriculture. 2023(02): 598-610 .
    3. 潘飞飞,宋俊杰,李庆飞. 不同种植年限设施菜田土壤硝态氮的累积与空间分布特性. 中国瓜菜. 2022(01): 70-75 .
    4. 王远,许纪元,潘云枫,赵冬青,杨东平,巨昇容,闵炬,施卫明. 长江下游地区水肥一体化对设施番茄氮肥利用率及氨挥发的影响. 土壤学报. 2022(06): 776-785 .
    5. 王远,许纪元,潘云枫,赵冬青,杨东平,巨昇容,闵炬,施卫明. 长江下游地区水肥一体化对设施番茄氮肥利用率及氨挥发的影响. 土壤学报. 2022(03): 776-785 .
    6. 孙延亮,魏孔钦,刘选帅,赵俊威,李生仪,马春辉,张前兵. 紫花苜蓿光合日进程及光合产物分配对施磷的响应. 草业学报. 2022(12): 85-94 .
    7. 陈艺易,颉建明,马宁,刘雪梅,苟亚妮,马红艳,丁东霞,李能慧. 缓释肥替代普通化肥对大棚莴笋产量及品质的影响. 甘肃农业大学学报. 2021(01): 50-57+65 .
    8. 宋科,秦秦,郑宪清,孙丽娟,孙雅菲,吕卫光,薛永. 水肥一体化结合植物篱对减缓果园土壤氮磷地表径流流失的效果. 水土保持学报. 2021(03): 83-89 .
    9. 王京伟,李元,牛文全. 地下滴灌对番茄根际微区氮循环微生物量及土壤N_2O排放的调控机制. 环境科学研究. 2021(06): 1425-1433 .
    10. 仇振杰,孙梦莹. 基于滴灌水肥管理的农田土壤酸化调控机理研究. 湖南城市学院学报(自然科学版). 2021(04): 10-14 .
    11. 王远,许纪元,潘云枫,马明坤,巨昇容,赵冬青,杨东平,闵炬,施卫明. 太湖地区设施番茄水肥一体化技术增效减排效果评价研究. 中国土壤与肥料. 2021(05): 268-274 .
    12. 刘中良,高俊杰,谷端银,闫伟强. 氮肥基追比对设施番茄产量及基质养分的影响. 中国蔬菜. 2020(03): 38-43 .
    13. 黄志浩,曹国军,耿玉辉,潘京洲,邢伟明. 有机肥部分替代氮肥土壤硝态氮动态变化特征及玉米产量效应研究. 玉米科学. 2019(01): 151-158 .
    14. 李若楠,黄绍文,史建硕,王丽英,唐继伟,袁硕,任燕利,郭丽. 日光温室冬春茬番茄优化滴灌肥水管理参数研究. 植物营养与肥料学报. 2019(06): 1010-1021 . 本站查看
    15. 李若楠,黄绍文,史建硕,王丽英,唐继伟,张怀志,袁硕,翟凤芝,任燕利,郭丽. 日光温室冬春茬黄瓜滴灌的肥水优化管理. 中国农业科学. 2019(20): 3648-3660 .
    16. 奚雅静,汪俊玉,李银坤,武雪萍,李晓秀,王碧胜,李生平,宋霄君,刘彩彩. 滴灌水肥一体化配施有机肥对土壤N_2O排放与酶活性的影响. 中国农业科学. 2019(20): 3611-3624 .
    17. 安媛媛. 温室栽培黄瓜土肥水管理技术要点. 南方农业. 2018(14): 1-2 .
    18. 郭鹏飞,张筱茜,韩文,张坤,刁明. 滴灌频率和施氮量对温室西葫芦土壤水分、硝态氮分布及产量的影响. 水土保持学报. 2018(04): 109-114+121 .
    19. 吴瑞华,苏全,孟庆杰,毛建华. 温室栽培黄瓜的土肥水管理. 农业开发与装备. 2017(08): 168 .
    20. 梁元振,仝利朋,吴德亮,郭乾坤,徐凤花,赵京考. 有机无机肥配施对土壤硝态氮、玉米产量和氮素利用率的影响. 玉米科学. 2017(04): 111-116 .
    21. 李生平,武雪萍,龙怀玉,张淑香,王相玲,梁国鹏,高丽丽,李景,王碧胜,郝秀钗,李建波,张胜爱. 负压水肥一体化灌溉对黄瓜产量和水、氮利用效率的影响. 植物营养与肥料学报. 2017(02): 416-426 . 本站查看
    22. 侯利敏,王凌,孙世友,刘孟朝,张国印,茹淑华,耿暖,赵欧亚. 河北露地蔬菜土壤硝态氮淋溶特征及影响因素研究. 华北农学报. 2016(S1): 364-368 .
    23. 杨红,徐唱唱,曹丽花,石玉龙,赛曼,刘合满. 米林县不同种植年限蔬菜大棚土壤pH和无机氮变化特征研究. 农业环境科学学报. 2016(12): 2397-2404 .
    24. 闫波,周婷,王辉民,陈竹君,曹京阳,刘淑敏,周建斌. 日光温室栽培番茄镁缺乏与土壤阳离子平衡的关系. 中国农业科学. 2016(18): 3588-3596 .

    Other cited types(21)

Catalog

    Article views (1784) PDF downloads (85) Cited by(45)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return