• ISSN 1008-505X
  • CN 11-3996/S
ZHONG Ju-xin, TANG Hong-qin, LI Zhong-yi, DONG Wen-bin, WEI Cai-hui, LI Qiang, HE Tie-guang. Effects of combining green manure with chemical fertilizer on the bacterial community structure in karst paddy soil[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(10): 1746-1756. DOI: 10.11674/zwyf.2021246
Citation: ZHONG Ju-xin, TANG Hong-qin, LI Zhong-yi, DONG Wen-bin, WEI Cai-hui, LI Qiang, HE Tie-guang. Effects of combining green manure with chemical fertilizer on the bacterial community structure in karst paddy soil[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(10): 1746-1756. DOI: 10.11674/zwyf.2021246

Effects of combining green manure with chemical fertilizer on the bacterial community structure in karst paddy soil

More Information
  • Received Date: May 04, 2021
  • Accepted Date: July 25, 2021
  • Available Online: October 12, 2021
  • Objectives 

    The aim of this study was to provide a theoretical basis and data support for replacing chemical fertilizer with green manure in karst areas. We studied the effects of applying green manure on soil nutrient status and soil bacterial community.

    Methods 

    A green manure–rice rotation field experiment was conducted for three years in karst paddy field with Chinese milk vetch. There were three treatments: chemical fertilizer (CK), Chinese milk vetch green manure (MV), and the combination of Chinese milk vetch and chemical fertilizer (MF). The soil bacterial community diversity, characteristics and co-occurrence network of soil (0–20 cm) were analyzed using Illumina Novaseq PE250 high-throughput sequencing technology.

    Results 

    Compared with CK, MV and MF increased soil organic carbon (SOC), total nitrogen (TN), and available nitrogen (AN), but significantly decreased soil pH, readily potassium (AK), and C/N ratio. There was no significant difference (P>0.05) in soil bacterial diversity index among the fertilization treatments. The dominant bacteria flora of karst paddy soil were Chloroflexi, Proteobacteria, Nitrospirae, Bacteroidetes and Acidobacteria, regardless of the treatment. However, at the genus level, Geobacter, Anaerolinea, and RBG-16-58-14 were identified as the key genera of karst calcareous paddy soil. Novosphingobium, Syntrophorhabdus, and Phenylobacterium were (P<0.05) higher in MF than CK. Desulfatiglans was higher in CK than MF. The co-occurrence network analysis indicated that CK and MV had similar co-occurrence networks, while MF increased the complexity of the soil bacteria network and the relative abundance of eutrophic bacteria such as Proteobacteria and Bacteroidetes. Meanwhile, the RDA analysis results revealed that soil exchangeable readily available potassium, exchange calcium ions, and total N were the key environmental factors affecting the composition of soil bacterial communities.

    Conclusions 

    The combined use of Chinese milk vetch and chemical fertilizer could improve soil nutrient content and the relative abundance of eutrophic bacteria than a single use of chemical fertilizer and Chinese milk vetch. Our findings are important for maintaining the sustainable development of the karst paddy ecosystem.

  • [1]
    熊康宁, 池永宽. 中国南方喀斯特生态系统面临的问题及对策[J]. 生态经济, 2015, 31(1): 23–30. DOI: 10.3969/j.issn.1671-4407.2015.01.006

    Xiong K N, Chi Y K. The problems in southern China karst ecosystem in southern of China and its countermeasures[J]. Ecological Economy, 2015, 31(1): 23–30. DOI: 10.3969/j.issn.1671-4407.2015.01.006
    [2]
    张美良, 邓自强. 我国南方喀斯特地区的土壤及其形成[J]. 贵州工学院, 1994, (1): 67–75.

    Zhang M L, Deng Z Q. The soil and soil-forming processes in karst area of South China[J]. Journal of Guizhou University of Technology, 1994, (1): 67–75.
    [3]
    曹卫东, 包兴国, 徐昌旭, 等. 中国绿肥科研60年回顾与未来展望[J]. 植物营养与肥料学报, 2017, 23(6): 1450–1461. DOI: 10.11674/zwyf.17291

    Cao W D, Bao X G, Xu C X, et al. Reviews and prospects on science and technology of green manure in China[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(6): 1450–1461. DOI: 10.11674/zwyf.17291
    [4]
    周国朋, 曹卫东, 白金顺, 等. 多年紫云英-双季稻下不同施肥水平对两类水稻土有机质及可溶性有机质的影响[J]. 中国农业科学, 2016, 49(21): 4096–4106. DOI: 10.3864/j.issn.0578-1752.2016.21.004

    Zhou G P, Cao W D, Bai J S, et al. Effects of different fertilization levels on soil organic matter and dissolved organic matter in two paddy soils after multi-years’ rotation of Chinese milk vetch and double-cropping rice[J]. Scientia Agricultura Sinica, 2016, 49(21): 4096–4106. DOI: 10.3864/j.issn.0578-1752.2016.21.004
    [5]
    程会丹, 鲁艳红, 聂军, 等. 减量化肥配施紫云英对稻田土壤碳、氮的影响[J]. 农业环境科学学报, 2020, 39(6): 1259–1270. DOI: 10.11654/jaes.2019-1356

    Cheng H D, Lu Y H, Nie J, et al. Effects of reducing chemical fertilizer combined with Chinese milk vetch on soil carbon and nitrogen in paddy fields[J]. Journal of Agro-Environment Science, 2020, 39(6): 1259–1270. DOI: 10.11654/jaes.2019-1356
    [6]
    高嵩涓, 周国朋, 曹卫东. 南方稻田紫云英作冬绿肥的增产节肥效应与机制[J]. 植物营养与肥料学报, 2020, 26(12): 2115–2126.

    Gao S J, Zhou G P, Cao W D. Effects of milk vetch (Astragalus sinicus) as winter green manure on rice yield and rate of fertilizer application in rice paddies in South China[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(12): 2115–2126.
    [7]
    Gao S J, Zhang R G, Cao W D, et al. Long-term rice-rice-green manure rotation changing the microbial communities in typical red paddy soil in south China[J]. Journal of Integrative Agriculture, 2015, 14(12): 2512–2520. DOI: 10.1016/S2095-3119(15)61230-8
    [8]
    严嘉慧, 周岐海, 蒋云伟, 等. 长期不同施肥措施下岩溶水稻土可培养细菌群落变化及其主要影响因素[J]. 微生物学通报, 2020, 47(9): 2833–2847.

    Yan J H, Zhou Q H, Jiang Y W, et al. Variation of cultivable bacterial community structure and the main influencing factors in karst paddy soil under different fertilization regimes[J]. Microbiologica China, 2020, 47(9): 2833–2847.
    [9]
    鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. 146-195.

    Lu R K. Soil agrochemical analysis method[M]. Beijing: China Agricultural Science and Technology Press, 2000. 146–195.
    [10]
    Wei G S, Li M C, Shi W C, et al. Similar drivers but different effects lead to distinct ecological patterns of soil bacterial and archaeal communities[J]. Soil Biology and Biochemistry, 2019, 144: 107759.
    [11]
    Liang X, Ren H D, Li S, et al. Soil bacterial community structure and co-occurrence pattern during vegetation restoration in karst rocky desertification area[J]. Frontiers in Microbiology, 2017, 8: 2377. DOI: 10.3389/fmicb.2017.02377
    [12]
    高菊生, 徐明岗, 董春华, 等. 长期稻–稻–绿肥轮作对水稻产量及土壤肥力的影响[J]. 作物学报, 2013, 39(2): 343–349. DOI: 10.3724/SP.J.1006.2013.00343

    Gao J S, Xu M G, Dong C H, et al. Effects of long-term rice-rice-green manure cropping rotation on rice yield and soil fertility[J]. Acta Agronomica Sinica, 2013, 39(2): 343–349. DOI: 10.3724/SP.J.1006.2013.00343
    [13]
    Yan X Y, Gong W. The role of chemical and organic fertilizers on yield, yield variability and carbon sequestration-results of a 19-year experiment[J]. Plant and Soil, 2010, 331(1–2): 471–480. DOI: 10.1007/s11104-009-0268-7
    [14]
    潘世娟. 长期定位施肥条件下水田土壤有机质和全氮累积变化研究[D]. 陕西杨凌: 西北农林科技大学硕士学位论文, 2011.

    Pan S J. Study on Chinese of soil organic matter and total nitrogen in paddy soil under long-term experiments[D]. Yangling, Shaanxi: MS Thesis of Northwest Agriculture and Forestry University, 2011.
    [15]
    Mbuthia L W, Acosta-Martinez V, Debruyn J, et al. Long term tillage, cover crop, and fertilization effects on microbial community structure, activity: Implications for soil quality[J]. Soil Biology and Biochemistry, 2015, 89: 23–34.
    [16]
    Zhou G P, Cao W D, Bai J S, et al. Non-additive responses of soil C and N to rice straw and hairy vetch (Vicia villosa roth L. ) mixtures in a paddy soil[J]. Springer International Publishing, 2019, 436(1–2): 229–244.
    [17]
    王绍强, 于贵瑞. 生态系统碳氮磷元素的生态化学计量学特征[J]. 生态学报, 2008, 28(8): 3937–3947. DOI: 10.3321/j.issn:1000-0933.2008.08.054

    Wang S Q, Yu G R. Ecological stoichiometry characteristics of ecosystem carbon, nitrogen and phosphorus elements[J]. Acta Ecologica Sinica, 2008, 28(8): 3937–3947. DOI: 10.3321/j.issn:1000-0933.2008.08.054
    [18]
    林叶春, 李雨, 陈伟, 等. 绿肥压青对喀斯特地区植烟土壤细菌群落特征的影响[J]. 中国土壤与肥料, 2018, (3): 161–167. DOI: 10.11838/sfsc.20180325

    Lin Y C, Li Y, Chen W, et al. Effects of green manures on the bacterial community characteristics of the rhizosphere soil in flue-cured tobacco[J]. Soil and Fertilizer Sciences in China, 2018, (3): 161–167. DOI: 10.11838/sfsc.20180325
    [19]
    王继琛. 长期施肥对稻麦轮作系统土壤细菌及氮转化微生物群落影响的研究[D]. 南京: 南京农业大学博士学位论文, 2018.

    Wang J C. Effects of long-term different fertilization regimes on soil bacteria and nitrogen-cycling related communities in a rice wheat rotation system[D]. Nanjing: PhD Dissertation of Nanjing Agricultural University, 2018.
    [20]
    李增强, 王建红, 张贤. 绿肥腐解及养分释放过程研究进展[J]. 中国土壤与肥料, 2017, (4): 8–16. DOI: 10.11838/sfsc.20170402

    Li Z Q, Wang J H, Zhang X. A review on the research of decomposition and nutrients release of green manure[J]. Soil and Fertilizer Sciences in China, 2017, (4): 8–16. DOI: 10.11838/sfsc.20170402
    [21]
    林郑和, 陈荣冰, 郭少平. 植物对缺磷的生理适应机制研究进展[J]. 作物杂志, 2010, (5): 5–9. DOI: 10.3969/j.issn.1001-7283.2010.05.002

    Lin Z H, Chen R B, Guo S P. Research progress on physiological adaptability of plants to phosphorus deficiency[J]. Crops, 2010, (5): 5–9. DOI: 10.3969/j.issn.1001-7283.2010.05.002
    [22]
    李强. 土地利用方式对岩溶断陷盆地土壤细菌和真核生物群落结构的影响[J]. 地球学报, 2021, (3): 417–425. DOI: 10.3975/cagsb.2020.100701

    Li Q. Land-use types leading to distinct ecological patterns of soil bacterial and eukaryota communities in karst graben basin[J]. Acta Geoscientica Sinica, 2021, (3): 417–425. DOI: 10.3975/cagsb.2020.100701
    [23]
    李慧敏, 王瑞, 施卫明, 等. 菜地土壤解磷微生物特征及其在磷形态转化调控中的作用[J]. 土壤, 2020, 52(4): 668–675.

    Li H M, Wang R, Shi W M, et al. Characteristics of soil phosphorus-solubilizing microorganisms and their role in regulation of phosphorus morphological transformation in vegetable fields[J]. Soils, 2020, 52(4): 668–675.
    [24]
    Yang Z P, Zheng S X, Nie J, et al. Effects of long-term winter planted green manure on distribution and storage of organic carbon and nitrogen in water-stable aggregates of reddish paddy soil under a double-rice cropping system[J]. Journal of Integrative Agriculture, 2014, 13(8): 1772–1781. DOI: 10.1016/S2095-3119(13)60565-1
    [25]
    Pistocchi C, Meszaros E, Tamburini F, et al. Biological processes dominate phosphorus dynamics under low phosphorus availability in organic horizons of temperate forest soils[J]. Soil Biology and Biochemistry, 2018, 126: 64–75. DOI: 10.1016/j.soilbio.2018.08.013
    [26]
    Witter E, Johansson G. Potassium uptake from the subsoil by green manure crops[J]. Biological Agriculture & Horticulture, 2012, 19(2): 127–141.
    [27]
    Gao S J, Cao W D, Gao J S, et al. Effects of long-term application of different green manures on ferric iron reduction in a red paddy soil in Southern China[J]. Journal of Integrative Agriculture, 2017, 16(4): 959–966. DOI: 10.1016/S2095-3119(16)61509-5
    [28]
    Wen Y C, Li H Y, Lin Z A, et al. Long-term fertilization alters soil properties and fungal community composition in fluvo-aquic soil of the North China plain[J]. Scientific Reports, 2020, 10(1): 7198. DOI: 10.1038/s41598-020-64227-6
    [29]
    Zhong Y Q, Yan W M, Shangguan Z P. Impact of long-term N additions upon coupling between soil microbial community structure and activity, and nutrient-use efficiencies[J]. Soil Biology and Biochemistry, 2015, 91: 141–159.
    [30]
    包明, 何红霞, 马小龙, 等. 化学氮肥与绿肥对麦田土壤细菌多样性和功能的影响[J]. 土壤学报, 2018, 55(3): 734–743. DOI: 10.11766/trxb201710270425

    Bao M, He H X, Ma X L, et al. Effects of chemical nitrogen fertilizer and green manure on diversity and functions of soil bacteria in wheat field[J]. Acta Pedologica Sinica, 2018, 55(3): 734–743. DOI: 10.11766/trxb201710270425
    [31]
    Huang M, Tian A, Chen J N, et al. Soil bacterial communities in three rice-based cropping systems differing in productivity[J]. Scientific Reports, 2020, 10(1): 9867. DOI: 10.1038/s41598-020-66924-8
    [32]
    周艳飞, 聂江文, 王幼娟, 等. 施氮水平对稻–稻–紫云英稻田土壤细菌数量及群落结构的影响[J]. 农业资源与环境学报, 2018, 35(6): 508–517.

    Zhou Y F, Nie J W, Wang Y J, et al. Effect of nitrogen application level on abundance and community structure of paddy soil bacteria under rice-rice-Chinese milk vetch (Astragalus sinicus L. ) cropping system[J]. Journal of Agricultural Resources and Environment, 2018, 35(6): 508–517.
    [33]
    Zhou J, Guan D W, Zhou B K, et al. Influence of 34-years of fertilization on bacterial communities in an intensively cultivated black soil in Northeast China[J]. Soil Biology and Biochemistry, 2015, 90: 42–51. DOI: 10.1016/j.soilbio.2015.07.005
    [34]
    Zhou G P, Gao S J, Lu Y H, et al. Co-incorporation of green manure and rice straw improves rice production, soil chemical, biochemical and microbiological properties in a typical paddy field in southern China[J]. Soil & Tillage Research, 2020, 197: 104499.
    [35]
    杨璐, 曾闹华, 白金顺, 等. 紫云英季土壤固氮微生物对外源碳氮投入的响应[J]. 中国农业科学, 2020, 53(1): 105–116. DOI: 10.3864/j.issn.0578-1752.2020.01.010

    Yang L, Zeng N H, Bai J S, et al. Responses of soil diazotroph community to rice straw, glucose and nitrogen addition during Chinese milk vetch growth[J]. Scientia Agricultura Sinica, 2020, 53(1): 105–116. DOI: 10.3864/j.issn.0578-1752.2020.01.010
    [36]
    连宾, 肖波, 肖雷雷, 等. 含钾岩石微生物转化的分子机制及其碳汇效应[J]. 地学前缘, 2020, 27(5): 238–246.

    Lian B, Xiao B, Xiao L L, et al. Molecular mechanism and carbon sink effects of microbial transformation in potasium-bearing rocks[J]. Earth Science Frontiers, 2020, 27(5): 238–246.
    [37]
    Wang T, Flint S, Palmer J. Magnesium and calcium ions: Roles in bacterial cell attachment and biofilm structure maturation[J]. Biofouling, 2019, 35(9): 959–974. DOI: 10.1080/08927014.2019.1674811
    [38]
    唐婧. 基于土壤微生物群系的喀斯特石漠化分子机制研究[D]. 福建厦门: 厦门大学博士学位论文, 2018.

    Tang J, Mechanistic exploration of karst desertification progress by comparative study of soil microbiome[D]. Xiamen, Fujian: PhD Dissertation of Xiamen University, 2018.
    [39]
    Guo J J, Ling N, Chen Z J, et al. Soil fungal assemblage complexity is dependent on soil fertility and dominated by deterministic processes[J]. New Phytologist, 2020, 226(1): 232–243. DOI: 10.1111/nph.16345
    [40]
    Qiu L P, Zhang Q, Zhu H S, et al. Erosion reduces soil microbial diversity, network complexity and multifunctionality[J]. The ISME Journal, 2021, 15(8): 2474–2489. DOI: 10.1038/s41396-021-00913-1
    [41]
    Fierer N, Bradford M A, Jackson R B. Toward an ecological classification of soil bacteria[J]. Ecology, 2007, 88(6): 1354–1364. DOI: 10.1890/05-1839
    [42]
    Li H, Yang S, Semenov M V, et al. Temperature sensitivity of SOM decomposition is linked with a K-selected microbial community[J]. Global Change Biology, 2021, 27: 1–17.
    [43]
    Barberan A, Bates S T, Casamayor E O, Fierer N. Using network analysis to explore co-occurrence patterns in soil microbial communities[J]. The ISME Journal: Multidisciplinary Journal of Microbial Ecology, 2012, 6(2): 343–351.
    [44]
    Davis K E R, Sangwan P, Janssen P H. Acidobacteria, Rubrobacteridae and Chloroflexi are abundant among very slow-growing and mini-colony-forming soil bacteria[J]. Environment Microbiology, 2011, 13(3): 798–805. DOI: 10.1111/j.1462-2920.2010.02384.x
    [45]
    Janssen P H. Identifying the dominant soil bacterial taxa in libraries of 16s rRNA and 16s rRNA genes[J]. Applied and Environmental Microbiology, 2006, 72(3): 1719–1728. DOI: 10.1128/AEM.72.3.1719-1728.2006
    [46]
    Will C, Thurmer A, Wollherr A, et al. Horizon-specific bacterial community composition of German grassland soils, as revealed by pyrosequencing-based analysis of 16s rRNA genes[J]. Applied and Environmental Microbiology, 2010, 76(20): 6751–6759. DOI: 10.1128/AEM.01063-10
    [47]
    Fierer N, Lauber C L, Ramirez K S, et al. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients[J]. The ISME Journal, 2012, 6(5): 1007–1017.
    [48]
    Trivedi P, Anderson I C, Singh B K. Microbial modulators of soil carbon storage: Integrating genomic and metabolic knowledge for global prediction[J]. Trends in Microbiology, 2013, 21(12): 641–651. DOI: 10.1016/j.tim.2013.09.005
    [49]
    Banerjee S, Schlaeppi K, Van Der Heijden M G A. Keystone taxa as drivers of microbiome structure and functioning[J]. Nature Reviews Microbiology, 2018, 16(9): 567–576. DOI: 10.1038/s41579-018-0024-1
    [50]
    Zhang X X, Zhang R J, Gao J S, et al. Thirty-one years of rice-rice-green manure rotations shape the rhizosphere microbial community and enrich beneficial bacteria[J]. Soil Biology and Biochemistry, 2017, 104: 208–217. DOI: 10.1016/j.soilbio.2016.10.023
    [51]
    Lin Y B, Ye Y M, Wu C F, et al. Changes in microbial community structure under land consolidation in paddy soils: A case study in eastern China[J]. Ecological Engineering, 2020, 145: 105696. DOI: 10.1016/j.ecoleng.2019.105696
    [52]
    Lucia F, Ana F S. Strong shift in the diazotrophic endophytic bacterial community inhabiting rice (Oryza sativa) plants after flooding[J]. Fems Microbiology Ecology, 2015, 91(9): DOI: 10.1093/femsec/fiv104.
    [53]
    Wang H H, Li X, Li X Y, et al. Community composition and co-occurrence patterns of diazotrophs along a soil profile in paddy fields of three soil types in China[J]. Microbial Ecology, 2021.DOI: 10.1007/s00248-021-01716-9.
    [54]
    Gschwend F, Aregger K, Gramlich A, et al. Periodic waterlogging consistently shapes agricultural soil microbiomes by promoting specific taxa[J]. Applied Soil Ecology, 2020, 155: 103623. DOI: 10.1016/j.apsoil.2020.103623
    [55]
    Hug L A, Castelle C J, Wrighton K C, et al. Community genomic analyses constrain the distribution of metabolic traits across the Chloroflexi phylum and indicate roles in sediment carbon cycling[J]. Microbiome, 2013, 1(1): 1540–1548.
    [56]
    Wang C, Liu S Y, Zhang Y, et al. Bacterial communities and their predicted functions explain the sediment nitrogen changes along with submerged macrophyte restoration[J]. Microbial Ecology, 2018, 76(3): 625–636. DOI: 10.1007/s00248-018-1166-4
    [57]
    Wang J Y, Rong H W, Zhang C S. Evaluation of the impact of dissolved oxygen concentration on biofilm microbial community in sequencing batch biofilm reactor[J]. Journal of Bioscience and Bioengineering, 2018, 125(5): 532–542. DOI: 10.1016/j.jbiosc.2017.11.007
    [58]
    王怡静, 夏晶晶, 于景丽, 等. 水分驱动半干旱区河流沉积物/土壤厌氧绳菌群落的空间异质性[J]. 微生物学通报, 2020, 47(9): 2807–2821.

    Wang Y J, Xia J J, Yu J L, et al. Moisture determined spatial heterogeneity of river sediment/soil Anaerolineaceae communities in semiarid region[J]. Microbiology China, 2020, 47(9): 2807–2821.
    [59]
    Song D D, Jiang Z, Ma T, et al. Bacterial and archaeal diversity and abundance in shallow subsurface clay sediments at Jianghan Plain, China[J]. Frontiers in Microbiology, 2020, 11: 572560. DOI: 10.3389/fmicb.2020.572560
  • Cited by

    Periodical cited type(11)

    1. 侯超,张成富,张孙健,曹洋,蔡国俊,张建利,苏维词,张丽敏. FAST周边喀斯特峰丛洼地不同演替阶段土壤微生物群落变化. 环境科学与技术. 2024(08): 174-185 .
    2. 刘芳禧,方畅宇,庾振宇,高雅洁,张江林,鲁艳红,廖育林,曹卫东,聂军,屠乃美. 绿肥、秸秆和石灰联用对红壤性水稻土酸度特征和水稻产量的影响. 土壤学报. 2024(06): 1616-1627 .
    3. 肖健,韦星璇,杨尚东,卢文,谭宏伟. 间作西瓜对甘蔗产量效益和根际土壤理化性质及微生态的影响. 作物学报. 2023(02): 526-538 .
    4. 李莹,刘兰英,姜宇杰,何肖云,邱胤辉,任丽花,傅建炜. 辣椒连作对土壤细菌群落的影响. 微生物学报. 2023(01): 297-318 .
    5. 余泓,屈喜燕. 绿肥翻压与氮肥减施对水稻产量、品质及土壤肥力的影响. 河北农机. 2023(06): 130-132 .
    6. 周晓琳,李洪杰,董艳芳,王玉霞,杜梦扬,刘佰霖,王富建,赵同凯,王薇. 有机肥部分替代化肥对麦田土壤养分和细菌群落的影响. 贵州农业科学. 2023(08): 69-75 .
    7. 鲁泽让,夏梓泰,芦美,赵吉霞,李永梅,王自林,范茂攀. 周年轮作休耕对土壤 AMF群落和团聚体稳定性的影响. 环境科学. 2023(09): 5154-5163 .
    8. 石悦,房永雨,刘拴成,穆俊祥,于新超,卜令超,田牧野. 高丹草/黄芪间作对高丹草根际土壤微生物多样性的影响. 中国草地学报. 2023(12): 130-137 .
    9. 尹会强,姚首辉,刘军,孙冰辉,刘政春. 水稻化肥减量增效技术集成的推广与分析. 种子科技. 2022(06): 109-111 .
    10. 孙雨. 翻耕白三叶草对水稻农艺性状的影响. 农业与技术. 2022(10): 87-89 .
    11. 蒲俊宇,李忠义,钟菊新,靳振江,唐红琴,韦彩会,董文斌,何铁光,李强. 绿肥配施氮肥对岩溶区稻田土壤微生物群落的影响. 微生物学报. 2022(06): 2417-2432 .

    Other cited types(7)

Catalog

    Article views (3259) PDF downloads (114) Cited by(18)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return