• ISSN 1008-505X
  • CN 11-3996/S
WANG Zhi-yuan, LUO Shang, HAN Yong-liang, LI Han, ZHAO Ting-ting, YANG Lan. Effects of naphthalene acetic acid and phthalamic acid on the uptake and transfer of nutrients after anthesis in maize[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(1): 127-137. DOI: 10.11674/zwyf.2021327
Citation: WANG Zhi-yuan, LUO Shang, HAN Yong-liang, LI Han, ZHAO Ting-ting, YANG Lan. Effects of naphthalene acetic acid and phthalamic acid on the uptake and transfer of nutrients after anthesis in maize[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(1): 127-137. DOI: 10.11674/zwyf.2021327

Effects of naphthalene acetic acid and phthalamic acid on the uptake and transfer of nutrients after anthesis in maize

More Information
  • Received Date: June 23, 2021
  • Accepted Date: September 16, 2021
  • Available Online: January 03, 2022
  •   Objectives  We studied the effects of naphthalene acetic acid (NAA) and auxin inhibitor (NPA) on the uptake and transfer of nutrients after anthesis to provide technical ways for achieving improved maize efficiency.
      Methods  A field experiment was conducted with the maize cultivar of Zhengdan 958 (ZD958). NAA and NPA of 0.05, 0.1, and 0.5 mmol/L were sprayed on maize leaves at silking stage. The suitably applied concentration, determined by yield and nutrient transfer, was 0.05–0.1 mmol/L. A pot experiment was conducted to study the absorption and transfer of nutrients affected by NAA (0.1 mmol/L) and NPA (0.1 mmol/L), with clean water as the control. The maize was divided into two groups before silking. The first group’s female ears were covered with bags to prevent pollination, and the other group was allowed to undergo pollination. The mineral contents in different tissues at the silking and physiological maturity stages were determined.
      Results  Compared to the control, low concentration of NAA treatments (0.05 mmol/L and 0.1 mmol/L) significantly increased the grain yield, 100 grain weight and harvest index, which were increased by 14.3%, 14.2% and 8.9% in 0.1 mmol/L NAA treatment, respectively. Compared with NAA and NPA, source-sink relationship had a greater impact on the absorption and translocation of dry matter and nutrients. With the increase of source-sink ratio, the pre-silking nutrient translocation decreased and the pre-silking nutrient accumulation increased. The translocation and accumulation of P, K, Cu, and Mn were more sensitive to NAA and NPA. Compared to the control, NAA increased post-silking K and Mn contents in leaves by 25.6% and 90.4%, while NPA increased post-silking K content in stems and leaves by 56.4% and 65.9%, respectively. However, the contents of N, Mg, Zn, and Fe were less affected by NAA and NPA.
      Conclusions  NAA can improve maize yield and promote the transfer of nutrients to grains. NPA allows assimilates to accumulate in leaves and improve the source strength. Without grain formation, NPA enhances the growth of leaves, and improves mineral nutrition accumulation of whole plant. In practice, growth regulators can be used according to different production purposes to obtain maximum economic benefits.
  • [1]
    孙炬仁. 玉米秸秆营养成分的影响因素及不同收获期对饲用价值的影响研究进展[J]. 饲料研究, 2021, 44(18): 154–157. Sun J R. Research progress on influencing factors of corn stalk nutritional components and the effect of different harvest periods on feeding value[J]. Feed Research, 2021, 44(18): 154–157.
    [2]
    潘蒙英健, 高峰, 李长忠, 等. 黄淮海地区不同青贮玉米品种播期及其适应性研究[J]. 青岛农业大学学报(自然科学版), 2018, 35(3): 200–206. Pan M Y J, Gao F, Li C Z, et al. Study on different sowing seasons on yields and its adaptability of silage corn in Huang-Huai-Hai region[J]. Journal of Qingdao Agricultural University (Natural Science), 2018, 35(3): 200–206.
    [3]
    朱永波. 氮肥运筹对粮饲兼用型玉米产量和品质的影响[J]. 基层农技推广, 2021, 9(9): 70–72. Zhu Y B. Effects of nitrogen management on yield and quality of grain and forage maize[J]. Primary Agricultural Technology Extension, 2021, 9(9): 70–72.
    [4]
    Lee R H, Wang C H, Huang L T, et al. Leaf senescence in rice plants: Cloning and characterization of senescence up-regulated genes[J]. Journal of Experimental Botany, 2001, 52(358): 1117–1121. DOI: 10.1093/jexbot/52.358.1117
    [5]
    Balazadeh S, Riano-Pachon D M, Mueller-Roeber B. Transcription factors regulating leaf senescence in Arabidopsis thaliana[J]. Plant Biology, 2008, 10(1): 63–75.
    [6]
    吴连成, 李沛, 田磊, 等. 阻断授粉诱导玉米叶片提前衰老的转录组分析[J]. 作物学报, 2018, 44(11): 1661–1672. Wu L C, Li P, Tian L, et al. Transcriptome analysis of maize leaf senescence induced by blocking pollination[J]. Acta Agronomica Sinica, 2018, 44(11): 1661–1672. DOI: 10.3724/SP.J.1006.2018.01661
    [7]
    苏凯. 超高产夏玉米叶片保绿特性及氮素调控研究[D]. 山东泰安: 山东农业大学硕士学位论文, 2011.

    Su K. Study on leaf green keeping characteristics and nitrogen regulation of super high yield summer maize[D]. Taian, Shandong: MS Thesis of Shandong Agricultural University, 2011.
    [8]
    许璐璐, 王涵, 高盼盼, 等. 环境胁迫对植物根系形态的影响[J]. 安徽农业科学, 2020, 48(14): 16–19. Xu L L, Wang H, Gao P P, et al. The effect of environmental stress on plant root morphology[J]. Journal of Anhui Agricultural Science, 2020, 48(14): 16–19.
    [9]
    Davies P J. Plant hormones[M]. Dordrecht: Kluwer Academic Publishers, 2004.
    [10]
    武刚. 植物生长调节剂在茄果类蔬菜上的应用[J]. 河北农业科技, 2007, (2): 17–18. Wu G. Application of plant growth regulators in solanaceous vegetables[J]. Hebei Agricultural Science and Technology, 2007, (2): 17–18.
    [11]
    王丹. 拟南芥叶片衰老过程中DNA甲基化模式变化及其对基因表达的调控[D]. 杭州: 浙江大学硕士学位论文, 2017.

    Wang D. Changes of DNA methylation patterns in Arabidopsis leaf senescence and its regulation on gene expression[D]. Hangzhou, Zhejiang: MS Thesis of Zhejiang University, 2017.
    [12]
    高辉, 张红芳, 袁思安, 李小婷. 植物内源激素对干旱胁迫的响应研究[J]. 绿色科技, 2013, (11): 5–7. Gao H, Zhang H F, Yuan S A, Li X T. Response of plant endogenous hormones to drought stress[J]. Journal of Green Science and Technology, 2013, (11): 5–7. DOI: 10.3969/j.issn.1674-9944.2013.11.002
    [13]
    周斌. 缺锌胁迫下玉米根系生长及其对外源生长素的响应[D]. 贵阳: 贵州师范大学硕士学位论文, 2017.

    Zhou B. Root growth of maize under zinc deficiency stress and its response to exogenous auxin[D]. Guiyang: MS Thesis of Guizhou Normal University, 2017.
    [14]
    段娜, 贾玉奎, 徐军, 等. 植物内源激素研究进展[J]. 中国农学通报, 2015, 31(2): 159–165. Duan N, Jia Y K, Xu J, et al. Research progress of plant endogenous hormones[J]. Chinese Agricultural Science Bulletin, 2015, 31(2): 159–165. DOI: 10.11924/j.issn.1000-6850.2014-2335
    [15]
    Abdelrahman M, Burritt D J, Gupta A, et al. Heat stress effects on source-sink relationships and metabolome dynamics in wheat[J]. Journal of Experimental Botany, 2020, 71(2): 543–554. DOI: 10.1093/jxb/erz296
    [16]
    Zhang D, Sun Z, Feng L, et al. Maize plant density affects yield, growth and source-sink relationship of crops in maize/peanut intercropping[J]. Field Crops Research, 2020, 257: 107926. DOI: 10.1016/j.fcr.2020.107926
    [17]
    王晓旭, 郑学锋, 曹莹, 等. 源调节对移栽玉米物质生产及子粒养分含量的影响[J]. 玉米科学, 2020, 28(1): 111–116. Wang X X, Zheng X F, Cao Y, et al. Effects of source regulation on matter production and grain nutrient content of transplanted maize[J]. Journal of Maize Sciences, 2020, 28(1): 111–116.
    [18]
    Molisch H. The movement of sap in plants[J]. Nature, 1928, 122(3066): 168–169.
    [19]
    李明娜, 吴连成, 田磊, 等. 阻止授粉诱导玉米衰老提前启动现象的研究[J]. 玉米科学, 2017, 25(5): 9–18. Li M N, Wu L C, Tian L, et al. Research on preventing pollination induced premature initiation of maize senescence[J]. Journal of Maize Sciences, 2017, 25(5): 9–18.
    [20]
    Morris S E, Cox M, Ross J J, et al. Auxin dynamics after decapitation are not correlated with the initial growth of axillary buds[J]. Plant Physiology, 2005, 138(3): 1665–1672. DOI: 10.1104/pp.104.058743
    [21]
    Zhang Q, Chen H, Huang D, et al. Water managements limit heavy metal accumulation in rice: Dual effects of iron-plaque formation and microbial communities[J]. Science of the Total Environment, 2019, 687: 790–799. DOI: 10.1016/j.scitotenv.2019.06.044
    [22]
    王爱国, 罗广华. 植物的超氧物自由基与羟胺反应的定量关系[J]. 植物生理学通讯, 1990, (6): 55–57. Wang A G, Luo G H. Quantitative relationship between superoxide free radicals and hydroxylamine reaction in plants[J]. Plant Physiology Journal, 1990, (6): 55–57.
    [23]
    兰海波. 萘乙酸(NAA)对盆栽冬红果衰老的影响[D]. 河北保定: 河北农业大学硕士学位论文, 2006.

    Lan H B. Effect of NAA on senescence of potted red fruits[D]. Baoding, Hebei: MS Thesis of Hebei Agricultural University, 2006.
    [24]
    Hooijdonk B, Woolley D J, Warrington I J, et al. Initial alteration of scion architecture by dwarfing apple rootstocks may involve shoot-root-shoot signalling by auxin, gibberellin, and cytokinin[J]. Journal of Horticultural Science and Biotechnology, 2010, 85(1): 59–65. DOI: 10.1080/14620316.2010.11512631
    [25]
    王瑞军, 王晓维, 石蕾, 等. 喷施NAA与打顶对棉花倒四叶SPAD值及产量影响初报[J]. 新疆农垦科技, 2015, 38(10): 12–13. Wang R J, Wang X W, Shi L, et al. Effect of spraying NAA and topping on SPAD value of cotton top four leaves and yield[J]. Xinjiang Farm Research of Science and Technology, 2015, 38(10): 12–13. DOI: 10.3969/j.issn.1001-361X.2015.10.012
    [26]
    徐晓燕, 周初跃, 李卫芳, 李章海. 钾、硼和萘乙酸对烟株生长及钾吸收分配影响的研究[J]. 土壤, 2002, (2): 82–85. Xu X Y, Zhou C Y, Li W F, Li Z H. Effects of potassium, boron and naphthylacetic acid on tobacco growth and potassium absorption and distribution[J]. Soils, 2002, (2): 82–85. DOI: 10.3321/j.issn:0253-9829.2002.02.006
    [27]
    彭正萍, 门明新, 马峙英, 等. 去穗和萘乙酸涂切口对小麦体内光合产物和磷分配的影响[J]. 作物学报, 2007, 33(9): 1563–1566. Peng Z P, Men M X, Ma Z Y, et al. Effects of ear removal and NAA coating on photosynthetic products and phosphorus distribution in wheat[J]. Acta Agronomica Sinica, 2007, 33(9): 1563–1566. DOI: 10.3321/j.issn:0496-3490.2007.09.027
    [28]
    张吉旺, 胡昌浩, 王空军, 等. 高产优质饲用玉米生产技术研究[J]. 玉米科学, 2007, (1): 107–111. Zhang J W, Hu C H, Wang K J, et al. Study on high yield and quality production technology of maize as feedstuff[J]. Journal of Maize Sciences, 2007, (1): 107–111. DOI: 10.3969/j.issn.1005-0906.2007.01.027
    [29]
    欧阳立明, 张舜杰, 陈剑峰, 等. 不同植物生长物质对水培黄瓜幼苗生长和根系发育的影响[J]. 中国农学通报, 2010, 26(3): 161–166. Ouyang L M, Zhang S J, Chen J F, et al. Effects of different plant growth substances on seedling growth and root development of hydroponic cucumber[J]. Chinese Agricultural Science Bulletin, 2010, 26(3): 161–166.
    [30]
    宋守晔, 郭战伟, 刘健康, 等. 外源植物激素在烟草生产中的应用效果及前景展望[J]. 河南农业科学, 2004, (10): 29–32. Song S Y, Guo Z W, Liu J K, et al. Application effect and prospect of exogenous plant hormones in tobacco production[J]. Journal of Henan Agricultural Sciences, 2004, (10): 29–32. DOI: 10.3969/j.issn.1004-3268.2004.10.011
    [31]
    Gutierrez L, Mongelard G, Flokova K, et al. Auxin controls Arabidopsis adventitious root initiation by regulating jasmonic acid homeostasis[J]. The Plant Cell, 2012, 24(6): 2515–2527. DOI: 10.1105/tpc.112.099119
    [32]
    刘洪展, 郑风荣, 唐学玺. 外源生长素对半海水胁迫下玉米幼苗叶片衰老特性的影响[J]. 干旱地区农业研究, 2010, 28(2): 104–108. Liu H Z, Zheng F R, Tang X X. Effects of exogenous auxin on leaf senescence characteristics of maize seedlings under semi seawater stress[J]. Agricultural Research in the Arid Areas, 2010, 28(2): 104–108.
    [33]
    李墨爱. 外源NAA对杨树同化物再分配的影响[D]. 南京: 南京林业大学硕士学位论文, 2009.

    Li M A. Effects of exogenous NAA on the redistribution of assimilates in poplar[D]. Nanning: MS Thesis of Nanjing Forestry University, 2009.
    [34]
    Cao M, Chen R, Li P, et al. TMK1-mediated auxin signalling regulates differential growth of the apical hook[J]. Nature, 2019, 568: 240–243. DOI: 10.1038/s41586-019-1069-7
    [35]
    徐明杰, 张琳, 汪新颖, 等. 不同管理方式对夏玉米氮素吸收、分配及去向的影响[J]. 植物营养与肥料学报, 2015, 21(1): 36–45. Xu M J, Zhang L, Wang X Y, et al. Effects of different management methods on nitrogen absorption, distribution and fate of summer maize[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(1): 36–45. DOI: 10.11674/zwyf.2015.0104
    [36]
    Uribelarrea M, Crafts-Brandner S J, Below F E. Physiological N response of field-grown maize hybrids (Zea mays L. ) with divergent yield potential and grain protein concentration[J]. Plant & Soil, 2009, 316(1–2): 151–160.
    [37]
    Coque M, Martin A, Veyrieras J B, et al. Genetic variation for N-remobilization and postsilking N-uptake in a set of maize recombinant inbred lines. 3. QTL detection and coincidences[J]. Theoretical & Applied Genetics, 2008, 117(5): 729–747.
    [38]
    Yang L, Guo S, Chen Q, et al. Use of the stable nitrogen isotope to reveal the source-sink regulation of nitrogen uptake and remobilization during grain filling phase in maize[J]. PLoS ONE, 2016, 11(9): e0162201. DOI: 10.1371/journal.pone.0162201
    [39]
    杨恒山, 张玉芹, 徐寿军, 等. 超高产春玉米干物质及养分积累与转运特征[J]. 植物营养与肥料学报, 2012, 18(2): 315–323. Yang H S, Zhang Y Q, Xu S J, et al. Characteristics of dry matter and nutrient accumulation and transportation of super high yield spring maize[J]. Journal of Plant Nutrition and Fertilizers, 2012, 18(2): 315–323. DOI: 10.11674/zwyf.2012.11296
    [40]
    Gallais A, Coque M, Quillere I, et al. Modelling postsilking nitrogen fluxes in maize (Zea mays) using N-15-labelling field experiments[J]. New Phytologist, 2006, 172: 696–707. DOI: 10.1111/j.1469-8137.2006.01890.x
    [41]
    游永亮, 李源, 赵海明, 等. 播期和种植密度对青贮玉米生产性能和饲用品质的影响[J]. 草地学报, 2021, 29(11): 2615–2624. You Y L, Li Y, Zhao H M, et al. Effects of sowing date and planting density on production performance and forage quality of silage corn[J]. Acta Agrestia Sinica, 2021, 29(11): 2615–2624.
    [42]
    Sekhon R S, Breitzman M W, Silva R R, et al. Stover composition in maize and sorghum reveals remarkable genetic variation and plasticity for carbohydrate accumulation[J]. Frontiers in Plant Science, 2016, 7: 822.

Catalog

    Article views (1485) PDF downloads (63) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return