Citation: | WANG Jing, ZHENG Fen-li, ZHAO Miao-miao, WEI Han-mei, JIAO Jian-yu, WANG Xue-song. Effects of CO2 doubling, warming, and light drought stress on root growth and nitrogen uptake of winter wheat[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(11): 1977-1989. DOI: 10.11674/zwyf.2022119 |
Root system is the major organ of crop for nitrogen uptake. Researches on influences of CO2 doubling, warming, light drought stress and their interactions on root growth and nitrogen uptake can provide a scientific strategy for crop nutrient management to cope with climate change.
A pot experiment was conducted using winter wheat (Triticum aestivum L.) as test materials in artificial climate chambers. Four climate scenarios were established as follows: the controlled experiment (atmospheric CO2 concentration 400 μmol/mol+normal ambient temperature, CK), doubled CO2 (800 μmol/mol+normal ambient temperature, ECO2), elevated temperature (400 μmol/mol+elevated temperature by 4℃, ETem), and doubled CO2 and elevated temperature (800 μmol/mol+elevated temperature by 4℃, ECO2+ETem) , meanwhile, each climate scenario included two water conditions, i.e., sufficient water supply (80% of field capacity) and light drought stress (60% of field capacity). The responses of root growth (root biomass, root to shoot ratio, total root length, root total surface area, and total root volume) and nitrogen uptake of winter wheat were investigated. Further, the relationship between nitrogen uptake and root growth was analyzed.
1) Effects of CO2 doubling on root growth of winter wheat at different growth stages were insignificant. Increasing temperature by 4℃ and light drought stress inhibited root growth at both anthesis and grain filling stages (P<0.05) . 2) The combination of CO2 doubling, warming, and light drought stress inhibited root growth of winter wheat (P<0.05), while the synergistic effects of warming and light drought stress inhibited root growth. 3) CO2 doubling decreased root nitrogen concentration of winter wheat at the grain filling stage (P<0.05), while had no significant effect on shoot nitrogen concentration. Increasing temperature by 4℃ increased the root and shoot nitrogen concentration at each winter wheat stage; light drought stress increased root and shoot nitrogen concentration. The interaction of CO2 doubling and warming affected root nitrogen concentration; warming and light drought stress enhanced root and shoot nitrogen concentration (P<0.05). However, the interaction of CO2 doubling and light drought stress and CO2 doubling, warming, and light drought stress did not affect root and shoot nitrogen concentration (P>0.05) . 4) The responses of root and shoot nitrogen accumulation to CO2 doubling, warming, light drought stress, and their interactions had the same trend as root morphological indexes. There were positive correlations between root nitrogen accumulation and the morphological indexes of winter wheat.
In this experiment, warming and drought stress synergistically inhibited root growth of winter wheat. CO2 doubling did not affect root and shoot nitrogen uptake across the growth stages of winter wheat. In contrast, warming and drought stress increased the root and shoot nitrogen concentration but decreased root and shoot nitrogen accumulation, and warming is considered the dominant factor affecting the nitrogen uptake of winter wheat.
[1] |
Plattner, GianKasper. IPCC, 2014: Climate change 2014: Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change[J]. Journal of Romance Studies, 2014, 4(2): 85–88.
|
[2] |
Clarkson D T. Factors affecting mineral nutrient acquisition by plants[J]. Annual Review of Plant Physiology, 1985, 36: 77–115. DOI: 10.1146/annurev.pp.36.060185.000453
|
[3] |
Madhu M, Hatfield J L. Dynamics of plant root growth under increased atmospheric carbon dioxide[J]. Agronomy Journal, 2013, 105(3): 657–669. DOI: 10.2134/agronj2013.0018
|
[4] |
Drennan P M, Nobel P S. Root growth dependence on soil temperature for Opuntia ficus-indica: Influences of air temperature and a doubled CO2 concentration[J]. Functional Ecology, 1998, 12(6): 959–964. DOI: 10.1046/j.1365-2435.1998.00276.x
|
[5] |
Huang B R, Rachmilevitch S, Xu J C. Root carbon and protein metabolism associated with heat tolerance[J]. Journal of Experimental Botany, 2012, 63(9): 3455–3465. DOI: 10.1093/jxb/ers003
|
[6] |
Bassirirad H. Kinetics of nutrient uptake by roots: Responses to global change[J]. New Phytologist, 2000, 147(1): 155–169. DOI: 10.1046/j.1469-8137.2000.00682.x
|
[7] |
康亮, 梁琼月, 姚一华, 等. 不同氮效率木薯品种根系形态、构型及氮吸收动力学特征[J]. 植物营养与肥料学报, 2019, 25(11): 1920–1928. Kang L, Liang Q Y, Yao Y H, et al. Root morphology, configuration and nitrogen absorption kinetics of cassava cultivars with different nitrogen efficiencies[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(11): 1920–1928. DOI: 10.11674/zwyf.19024
Kang L, Liang Q Y, Yao Y H, et al. Root morphology, configuration and nitrogen absorption kinetics of cassava cultivars with different nitrogen efficiencies[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(11): 1920–1928. DOI: 10.11674/zwyf.19024
|
[8] |
Liao M T, Palta J A, Fillery I R P. Root characteristics of vigorous wheat improve early nitrogen uptake[J]. Australian Journal of Agricultural Research, 2006, 57(10): 1097–1107. DOI: 10.1071/AR05439
|
[9] |
Cotrufo M F, Ineson P, Scott A. Elevated CO2 reduces the nitrogen concentration of plant tissues[J]. Global Change Biology, 1998, 4(1): 43–54. DOI: 10.1046/j.1365-2486.1998.00101.x
|
[10] |
Luo Y, Field C B, Mooney H A. Predicting responses of photosynthesis and root fraction to elevated [CO2]a: Interactions among carbon, nitrogen, and growth[J]. Plant, Cell and Environment, 1994, 17(11): 1195–1204. DOI: 10.1111/j.1365-3040.1994.tb02017.x
|
[11] |
Rustad L E, Campbell J L, Marion G M, et al. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming[J]. Oecologia, 2001, 126(4): 543–562. DOI: 10.1007/s004420000544
|
[12] |
He M Z, Dijkstra F A. Drought effect on plant nitrogen and phosphorus: A meta-analysis[J]. New Phytologist, 2014, 204(4): 924–931. DOI: 10.1111/nph.12952
|
[13] |
Gavito M E, Curtis P S, Mikkelsen T N, Jakobsen I. Interactive effects of soil temperature, atmospheric carbon dioxide and soil N on root development, biomass and nutrient uptake of winter wheat during vegetative growth[J]. Journal of Experimental Botany, 2001, 52: 1913–1923. DOI: 10.1093/jexbot/52.362.1913
|
[14] |
Wang H, Yang Z Z, Yu Y N, et al. Drought enhances nitrogen uptake and assimilation in maize roots[J]. Agronomy Journal, 2017, 109(1): 39–46. DOI: 10.2134/agronj2016.01.0030
|
[15] |
Li C H, Zhu J G, Sha L N, et al. Rice (Oryza sativa L. ) growth and nitrogen distribution under elevated CO2 concentration and air temperature[J]. Ecological Research, 2017, 32(3): 405–411. DOI: 10.1007/s11284-017-1450-7
|
[16] |
王斌, 万运帆, 郭晨, 等. 模拟大气温度和CO2浓度升高对双季稻氮素利用的影响[J]. 作物学报, 2015, 41(8): 1295–1303. Wang B, Wan Y F, Guo C, et al. Effects of elevated air temperature and carbon dioxide concentration on nitrogen use of double rice (Oryza sativa L. ) in open-top chambers[J]. Acta Agronomica Sinica, 2015, 41(8): 1295–1303. DOI: 10.3724/SP.J.1006.2015.01295
Wang B, Wan Y F, Guo C, et al. Effects of elevated air temperature and carbon dioxide concentration on nitrogen use of double rice (Oryza sativa L. ) in open-top chambers[J]. Acta Agronomica Sinica, 2015, 41(8): 1295–1303. DOI: 10.3724/SP.J.1006.2015.01295
|
[17] |
Sinclair T R, Pinter P J, Kimball B A, et al. Leaf nitrogen concentration of wheat subjected to elevated [CO2] and either water or N deficits[J]. Agriculture, Ecosystems & Environment, 2000, 79(1): 53–60.
|
[18] |
Bista D R, Heckathorn S A, Jayawardena D M, Boldt J K. Effect of drought and carbon dioxide on nutrient uptake and levels of nutrient-uptake proteins in roots of barley[J]. American Journal of Botany, 2020, 107(10): 1401–1409. DOI: 10.1002/ajb2.1542
|
[19] |
Hussain H A, Men S N, Hussain S, et al. Interactive effects of drought and heat stresses on morpho-physiological attributes, yield, nutrient uptake and oxidative status in maize hybrids[J]. Scientific Reports, 2019, 9(1): 3890.
|
[20] |
Giri A, Heckathorn S, Mishra S, et al. Heat stress decreases levels of nutrient-uptake and -assimilation proteins in tomato roots[J]. Plants-Basel, 2017, 6(1): 1–15.
|
[21] |
Benlloch-Gonzalez M, Bochicchio R, Berger J, et al. High temperature reduces the positive effect of elevated CO2 on wheat root system growth[J]. Field Crops Research, 2014, 165: 71–79. DOI: 10.1016/j.fcr.2014.04.008
|
[22] |
Erice G, Irigoyen J J, Sanchez-Diaz M, et al. Effect of drought, elevated CO2 and temperature on accumulation of N and vegetative storage proteins (VSP) in taproot of nodulated alfalfa before and after cutting[J]. Plant Science, 2007, 172(5): 903–912. DOI: 10.1016/j.plantsci.2006.12.013
|
[23] |
World Data Centre for Greenhouse Gases. Data (surface/mobile) [EB/OL].https://gaw.kishou.go.jp/search/station#WLG.
|
[24] |
国家气象科学数据中心. 地面气象资料[EB/OL]. http://data.cma.cn/order/list/show_value/normal.html.
China Meteorological Data Service Center, National Meteorological Information Centre. Surface date [EB/OL]. http://data.cma.cn/order/list/show_value/normal.html.
|
[25] |
时振振, 李胜, 马绍英, 等. 不同品种小麦抗氧化系统对水分胁迫的响应[J]. 草业学报, 2015, 24(7): 68–78. Shi Z Z, Li S, Ma S Y, et al. Response of the antioxidant system to water stress in different wheat varieties[J]. Acta Prataculturae Sinica, 2015, 24(7): 68–78. DOI: 10.11686/cyxb2014342
Shi Z Z, Li S, Ma S Y, et al. Response of the antioxidant system to water stress in different wheat varieties[J]. Acta Prataculturae Sinica, 2015, 24(7): 68–78. DOI: 10.11686/cyxb2014342
|
[26] |
王宝英, 张学. 农作物高产的适宜土壤水分指标研究[J]. 灌溉排水, 1996, 15(3): 35–39. Wang B Y, Zhang X. Studies on optimum moisture index for high yield of crops[J]. Journal of Irrigation and Drainage, 1996, 15(3): 35–39.
Wang B Y, Zhang X. Studies on optimum moisture index for high yield of crops[J]. Journal of Irrigation and Drainage, 1996, 15(3): 35-39.
|
[27] |
Rogers H H, Prior S A, Runion G B, Mitchell R J. Root to shoot ratio of crops as influenced by CO2[J]. Plant and Soil, 1996, 187(2): 229–248.
|
[28] |
Lamber H, Boogaard R V D, Veneklaas E J, Villar R. Effects of global environmental change on carbon partitioning in vegetative plants of Triticum aestivum and closely related Aegilops species[J]. Global Change Biology, 2010, 1(6): 397-406.
|
[29] |
朱春梧, 曾青, 朱建国, 等. 大气CO2浓度上升对植物地下竞争的影响[J]. 中国生态农业学报, 2007, 15(4): 185–189. Zhu C W, Zeng Q, Zhu J G, et al. Effect of elevated CO2 on below-ground plant competition[J]. Chinese Journal of Eco-Agriculture, 2007, 15(4): 185–189.
Zhu C W, Zeng Q, Zhu J G, et al. Effect of elevated CO2 on below-ground plant competition[J]. Chinese Journal of Eco-Agriculture, 2007 15(4): 185-189.
|
[30] |
Norby R J. Issues and perspectives for investigating root responses to elevated atmospheric carbon dioxide[J]. Plant and Soil, 1994, 165(1): 9–20. DOI: 10.1007/BF00009958
|
[31] |
Billes G, Rouhier H, Bottner P. Modifications of the carbon and nitrogen allocations in the plant (Triticum aestivum L. ) soil system in response to increased atmospheric CO2 concentration[J]. Plant and Soil, 1993, 157(2): 215–225. DOI: 10.1007/BF00011050
|
[32] |
Ainsworth E A, Long S P. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2[J]. New Phytologist, 2005, 165(2): 351–372. DOI: 10.1111/j.1469-8137.2004.01224.x
|
[33] |
Tingey D T, Phillips D L, Johnson M G. Elevated CO2 and conifer roots: Effects on growth, life span and turnover[J]. New Phytologist, 2000, 147(1): 87–103. DOI: 10.1046/j.1469-8137.2000.00684.x
|
[34] |
春亮, 陈范骏, 张福锁, 米国华. 不同氮效率玉米杂交种的根系生长、氮素吸收与产量形成[J]. 植物营养与肥料学报, 2005, 11(5): 615–619. Chun L, Chen F J, Zhang F S, Mi G H. Root growth, nitrogen uptake and yield formation of hybrid maize with different N efficiency[J]. Journal of Plant Nutrition and Fertilizers, 2005, 11(5): 615–619.
Chun L, Chen F J, Zhang F S, Mi G H. Root growth, nitrogen uptake and yield formation of hybrid maize with different N efficiency[J]. Journal of Plant Nutrition and Fertilizers, 2005, 11(5): 615-619.
|
[35] |
魏海燕, 张洪程, 张胜飞, 等. 不同氮利用效率水稻基因型的根系形态与生理指标的研究[J]. 作物学报, 2008, 34(3): 429–436. Wei H Y, Zhang H C, Zhang S F, et al. Root morphological and physiological characteristics in rice genotypes with different N use efficiencies[J]. Acta Agronomica Sinica, 2008, 34(3): 429–436. DOI: 10.3724/SP.J.1006.2008.00429
Wei H Y, Zhang H C, Zhang S F, et al. Root morphological and physiological characteristics in rice genotypes with different N use efficiencies[J]. Acta Agronomica Sinica, 2008, 34(3): 429-436. DOI: 10.3724/SP.J.1006.2008.00429
|
[36] |
王小娟, 王文明, 张振华, 等. 大气CO2浓度和供氮水平对油菜前期生长及氮素吸收利用的影响[J]. 生态学杂志, 2014, 33(1): 83–88. Wang X J, Wang W M, Zhang Z H, et al. Effects of atmospheric CO2 concentrations and N application levels on the growth, N uptake and utilization of oilseed rape during vegetative stage[J]. Chinese Journal of Ecology, 2014, 33(1): 83–88.
Wang X J, Wang W M, Zhang Z H, et al. Effects of atmospheric CO2 concentrations and N application levels on the growth, N uptake and utilization of oilseed rape during vegetative stage[J]. Chinese Journal of Ecology, 2014, 33(1): 83-88.
|
[37] |
Aloni B, Karni L, Daie J. Effect of heat-stress on the growth, root sugars, acid invertase and protein profile of pepper seedings following transplanting[J]. Journal of Horticultural Science, 1992, 67(5): 717–725. DOI: 10.1080/00221589.1992.11516302
|
[38] |
Batts G R, Ellis R H, Morison J I L, et al. Yield and partitioning in crops of contrasting cultivars of winter wheat in response to CO2 and temperature in field studies using temperature gradient tunnels[J]. Journal of Agricultural Science, 1998, 130: 17–27. DOI: 10.1017/S0021859697005017
|
[39] |
牛耀芳, 宗晓波, 都韶婷, 等. 大气CO2浓度升高对植物根系形态的影响及其调控机理[J]. 植物营养与肥料学报, 2011, 17(1): 240–246. Niu Y F, Zong X B, Du S T, et al. Effect of elevated CO2 on morphology change of plant roots and its regulatory mechanism[J]. Journal of Plant Nutrition and Fertilizers, 2011, 17(1): 240–246.
Niu Y F, Zong X B, Du S T, et al. Effect of elevated CO2 on morphology change of plant roots and its regulatory mechanism[J]. Plant Nutrition and Fertilizer Science, 2011, 17(1): 240-246.
|
[40] |
徐振锋, 胡庭兴, 张力, 等. 模拟增温对川西亚高山林线交错带绵穗柳生长、叶物候和叶性状的影响[J]. 应用生态学报, 2009, 20(1): 7–12. Xu Z F, Hu T X, Zhang L, et al. Effects of simulated warming on the growth, leaf phenology, and leaf traits of Salix eriostachya in sub-alpine timberline ecotone of Western Sichuan, China[J]. Chinese Journal of Applied Ecology, 2009, 20(1): 7–12. DOI: 10.13287/j.1001-9332.2009.0001
Xu Z F, Hu T X, Zhang L, et al. Effects of simulated warming on the growth, leaf phenology, and leaf traits of Salix eriostachya in sub-alpine timberline ecotone of Western Sichuan, China[J]. Chinese Journal of Applied Ecology, 2009, 20(1): 7-12. DOI: 10.13287/j.1001-9332.2009.0001
|
[41] |
Rachmilevitch S, Cousins A B, Bloom A J. Nitrate assimilation in plant shoots depends on photorespiration[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(31): 11506–11510. DOI: 10.1073/pnas.0404388101
|
[42] |
Volder A, Gifford R M, Evans J R. Effects of elevated atmospheric CO2 concentrations, clipping regimen and differential day/night atmospheric warming on tissue nitrogen concentrations of a perennial pasture grass[J]. AoB Plants, 2015, 7: 1–15.
|
[43] |
Shavrukov Y, Kurishbayev A, Jatayev S, et al. Early flowering as a drought escape mechanism in plants: How can it aid wheat production?[J]. Frontiers in Plant Science, 2017, 8: 1950. DOI: 10.3389/fpls.2017.01950
|
[44] |
Hartmann H, Ziegler W, Kolle O, Trumbore S. Thirst beats hunger - declining hydration during drought prevents carbon starvation in Norway spruce saplings[J]. New Phytologist, 2013, 200(2): 340–349. DOI: 10.1111/nph.12331
|
[45] |
Chapin F S, Autumn K, Pugnaire F. Evolution of suites of traits in response to environmental-stress[J]. American Naturalist, 1993, 142: S78–S92. DOI: 10.1086/285524
|
[46] |
许振柱, 王崇爱, 李晖. 土壤干旱对小麦叶片光合和氮素水平及其转运效率的影响[J]. 干旱地区农业研究, 2004, 22(4): 75–79,91. Xu Z Z, Wang C A, Li H. Effects of soil drought on photosynthesis, nitrogen and nitrogen translocation efficiency in wheat leaves[J]. Agricultural Research in the Arid Areas, 2004, 22(4): 75–79,91. DOI: 10.3321/j.issn:1000-7601.2004.04.014
Xu Z Z, Wang C A, Li H. Effects of soil drought on photosynthesis, nitrogen and nitrogen translocation efficiency in wheat leaves[J]. Agricultural Research in the Arid Areas, 2004, 22(4): 75-79, 91. DOI: 10.3321/j.issn:1000-7601.2004.04.014
|
[47] |
Griffin K L, Turnbull M, Murthy R, et al. Leaf respiration is differentially affected by leaf vs. stand-level nigh-time warming[J]. Global Change Biology, 2002, 8(5): 479–485. DOI: 10.1046/j.1365-2486.2002.00487.x
|
[48] |
Wan S Q, Norby R J, Pregitzer K S, et al. CO2 enrichment and warming of the atmosphere enhance both productivity and mortality of maple tree fine roots[J]. New Phytologist, 2004, 162(2): 437–446. DOI: 10.1111/j.1469-8137.2004.01034.x
|
[49] |
Zhou X, Ge Z M, Kellomäki S, et al. Effects of elevated CO2 and temperature on leaf characteristics, photosynthesis and carbon storage in aboveground biomass of a boreal bioenergy crop (Phalaris arundinacea L. ) under varying water regimes[J]. Global Change Biology Bioenergy, 2011, 3: 223–234. DOI: 10.1111/j.1757-1707.2010.01075.x
|
[50] |
Arndal M F, Schmidt I K, Kongstad J, et al. Root growth and N dynamics in response to multi-year experimental warming, summer drought and elevated CO2 in a mixed heathland-grass ecosystem[J]. Functional Plant Biology, 2014, 41(1): 1–10. DOI: 10.1071/FP13117
|
[51] |
Cai C, Yin X Y, He S Q, et al. Responses of wheat and rice to factorial combinations of ambient and elevated CO2 and temperature in FACE experiments[J]. Global Change Biology, 2016, 22(2): 856–874. DOI: 10.1111/gcb.13065
|
[52] |
Paeens B, Manderscheid R, Pacholski A, et al. Effects of free-air CO2 enrichment and drought on root growth of field grown maize and sorghum[J]. Journal of Agronomy and Crop Science, 2019, 205(5): 477–489. DOI: 10.1111/jac.12339
|
[53] |
Xu Z Z, Shimizu H, Ito S, et al. Effects of elevated CO2, warming and precipitation change on plant growth, photosynthesis and peroxidation in dominant species from North China grassland[J]. Planta, 2014, 239(2): 421–435. DOI: 10.1007/s00425-013-1987-9
|
[54] |
Aranjuelo I, Irigoyen J J, Nogués S, Sánchez-Díaz M. Elevated CO2 and water-availability effect on gas exchange and nodule development in N-2-fixing alfalfa plants[J]. Environmental and Experimental Botany, 2009, 65(1): 18–26. DOI: 10.1016/j.envexpbot.2008.06.006
|
[55] |
Reich P B. Do plants increase resource acquisition potential in the face of resource shortfalls, and if so, how?[J]. New Phytologist, 2018, 219(4): 1142–1144. DOI: 10.1111/nph.15363
|
[56] |
Xu Z Z, Zhou G S. Effects of water stress and nocturnal temperature on carbon allocation in the perennial grass, Leymus chinensis[J]. Physiologia Plantarum, 2005, 123(3): 272–280. DOI: 10.1111/j.1399-3054.2005.00455.x
|
[57] |
Farooq M, Wahid A, Kobayashi N, et al. Plant drought stress: Effects, mechanisms and management[J]. Agronomy for Sustainable Development, 2009, 29(1): 185–212. DOI: 10.1051/agro:2008021
|
[58] |
Yang Y, Wang G X, Yang L D, Guo J Y. Effects of drought and warming on biomass, nutrient allocation, and oxidative stress in Abies fabri in Eastern Tibetan Plateau[J]. Journal of Plant Growth Regulation, 2013, 32(2): 298–306. DOI: 10.1007/s00344-012-9298-0
|
[59] |
Albert K R, Ro-Poulsen H, Mikkelsen T N, et al. Effects of elevated CO2, warming and drought episodes on plant carbon uptake in a temperate heath ecosystem are controlled by soil water status[J]. Plant, Cell & Environment, 2011, 34(7): 1207–1222.
|
[60] |
Dermody O, Weltzin J F, Engel E C, et al. How do elevated [CO2], warming, and reduced precipitation interact to affect soil moisture and LAI in an old field ecosystem?[J]. Plant and Soil, 2007, 301(1–2): 255–266. DOI: 10.1007/s11104-007-9443-x
|
[61] |
Xu Z Z, Shimizu H, Yagasaki Y, et al. Interactive effects of elevated CO2, drought, and warming on plants[J]. Journal of Plant Growth Regulation, 2013, 32(4): 692–707. DOI: 10.1007/s00344-013-9337-5
|
[62] |
Yu J J, Chen L H, Xu M, Huang B R. Effects of elevated CO2 on physiological responses of tall fescue to elevated temperature, drought stress, and the combined stresses[J]. Crop Science, 2012, 52(4): 1848–1858. DOI: 10.2135/cropsci2012.01.0030
|
[1] | ZHAN Wen-jie, LIU Jian-zhao, LIANG Yao, YUAN Jing-chao, ZHANG Hong-xi, LIU Song-tao, CAI Hong-guang, REN Jun. Effect of soil tillage modes on root morphology and nutrient uptake and translocation of maize[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(5): 817-825. DOI: 10.11674/zwyf.19324 |
[2] | BU Rong-yan, REN Tao, LIAO Shi-peng, LI Xiao-kun, CONG Ri-huan, ZHANG Yang-yang, LU Jian-wei. Difference of soil nitrogen supply and rapeseed nitrogen uptake under different rotation systems and seasonal distribution of nitrogen fertilizer[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(3): 412-420. DOI: 10.11674/zwyf.18091 |
[3] | WANG Yi, TANG Ji-hua, FU Yan-lei, XU Heng, TAN Jin-fang, HAN Yan-lai. Mapping of QTLs for root morphology and nitrogen uptake of maize under different nitrogen conditions[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(4): 942-956. DOI: 10.11674/zwyf.16461 |
[4] | CHEN Chen, GONG Hai-qing, ZHANG Jing-zhi, GAO Hong-jian. Correlation between root morphology and nitrogen uptake of rice[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(2): 333-341. DOI: 10.11674/zwyf.16149 |
[5] | QU Jia-wei, GAO Ju-lin, WANG Zhi-gang, YU Xiao-fang, HU Shu-ping, SUN Ji-ying. Effect of nitrogen rate on temporal and spatial distribution of roots and nitrogen uptake of maize with genotypes of high or low nitrogen efficiency[J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(5): 1212-1221. DOI: 10.11674/zwyf.15460 |
[6] | WANG Jun-ying, WANG Hua-qing, LIANG Xiao-dong, LIU Jing-hui. Response of root morphology and N absorption to nitrate nitrogen supply in hydroponic oats[J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(4): 1049-1055. DOI: 10.11674/zwyf.15094 |
[7] | HU Ya-jie, ZHU Da-wei, XING Zhi-peng, GONG Jin-long, ZHANG Hong-cheng, DAI Qi-gen, HUO Zhong-yang, XU Ke, WEI Hai-yan, GUO Bao-wei. Modifying nitrogen fertilization ratio to increase the yield and nitrogen uptake of super japonica rice[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(1): 12-22. DOI: 10.11674/zwyf.2015.0102 |
[8] | LIAO Dun-ping, YONG Tai-wen, LIU Xiao-ming, YANG Feng, SU Ben-ying, YANG Wen-yu. Growth and nitrogen uptake of maize relay intercropped with soybean or sweet potato[J]. Journal of Plant Nutrition and Fertilizers, 2014, 20(6): 1395-1402. DOI: 10.11674/zwyf.2014.0609 |
[9] | JIANG Lin-lin, HAN Li-si, HAN Xiao-ri, ZHAN Xiu-mei, ZUO Ren-hui, WU Zheng-chao, YUAN Cheng. Effects of nitrogen on growth, root morphological traits,nitrogen uptake and utilization efficiency of maize seedlings[J]. Journal of Plant Nutrition and Fertilizers, 2011, 17(1): 247-253. DOI: 10.11674/zwyf.2011.0134 |
[10] | TIAN Song, YIN Ting, CHEN Xue-ping, WANG Yan-hua, LUO Shuang-xia, SHEN Shu-xing. Characteristics of nitrogen uptake in eggplant genotypes with different nitrogen efficiency and their hybrid F1s[J]. Journal of Plant Nutrition and Fertilizers, 2011, 17(1): 147-153. DOI: 10.11674/zwyf.2011.0120 |
1. |
艾伟伟,魏淑红. 小麦氮素吸收利用的调控机制研究进展. 植物生理学报. 2024(05): 784-798 .
![]() | |
2. |
王金乐,张吉立,龙怀玉,王孟雪,王鹏. 干旱胁迫下负压灌溉对玉米生理特性及氮代谢的影响. 植物营养与肥料学报. 2024(12): 2410-2420 .
![]() |