Citation: | PANG Min-hui, LI Li-xia, DONG Shu-qi, LIU Dong-sheng, LI Hong-yan, LIANG Li-na. Research progress on nano-materials application in slow/controlled-release fertilizers[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(9): 1708-1719. DOI: 10.11674/zwyf.2022131 |
Slow/controlled-release fertilizers refer to those fertilizers which are modified by physical, chemical, or physico-chemical methods to slow or control nutrients release. Slow/controlled-release fertilizers have been proved of better meeting the nutrient requirements of plants, improving the utilization efficiencies of nutrients, and reducing environmental risks, so their application is an important way to the attainment of agricultural green development. Nano-materials have the characteristics of small size, large surface area and significant interfacial effect, so as to be used for slow/controlled-release fertilizers. We separately overviewed the research and application of slow/controlled-release fertilizers containing nano-oxide, nano-cellulose, nano-carbon and nano-clay, etc. Physical blending, chemical grafting and impregnation-adsorption are the main methods for producing slow/controlled-release fertilizers containing nano-materials. The important functions of nano-materials are hydrophobicity, adsorption, water retention, environmental responsiveness, and self-repair in slow/controlled-release fertilizer. Abundant functional groups, physical cross-linking points and micro/nano bulges of nano-materials are the key factors to improve the slow/controlled-release effect. Developing low-cost natural organic nano-materials, exploring simple and efficient modification methods, and clarifying performance regulation mechanism of nano-materials are still needed in the future.
[1] |
Tilman D, Cassman K G, Matson P A, et al. Agricultural sustainability and intensive production practices[J]. Nature, 2002, 418: 671–677. DOI: 10.1038/nature01014
|
[2] |
Shen Y M, Wang H, Li W K, et al. Synthesis and characterization of double-network hydrogels based on sodium alginate and halloysite for slow release fertilizers[J]. International Journal of Biological Macromolecules, 2020, 164: 557–565. DOI: 10.1016/j.ijbiomac.2020.07.154
|
[3] |
李慧, 陈少雄. 包膜控释肥及其包膜材料研究进展[J]. 桉树科技, 2012, 29(4): 45–51. Li H, Chen S X. A review of controlled release fertilizer and fertilizer coating materials[J]. Eucalypt Science & Technology, 2012, 29(4): 45–51. DOI: 10.3969/j.issn.1674-3172.2012.04.010
Li H, Chen S X. A review of controlled release fertilizer and fertilizer coating materials [J]. Eucalypt Science & Technology, 2012, 29(4): 45-51. DOI: 10.3969/j.issn.1674-3172.2012.04.010
|
[4] |
Li T, Lu S Y, Yan J, et al. An environment-friendly fertilizer prepared by layer-by-layer self-assembly for pH-responsive nutrient release[J]. ACS Applied Materials & Interfaces, 2019, 11: 10941–10950.
|
[5] |
Majeed Z, Ramli N K, Mansor N, et al. A comprehensive review on biodegradable polymers and their blends used in controlled-release fertilizer processes[J]. Reviews in Chemical Engineering, 2015, 31(1): 69–96.
|
[6] |
Volpi I, Laville P, Bonari E, et al. Improving the management of mineral fertilizers for nitrous oxide mitigation: The effect of nitrogen fertilizer type, urease and nitrification inhibitors in two different textured soils[J]. Geoderma, 2017, 307: 181–188. DOI: 10.1016/j.geoderma.2017.08.018
|
[7] |
Yang X D, Jiang R F, Lin Y Z, et al. Nitrogen release characteristics of polyethylene-coated controlled-release fertilizers and their dependence on membrance pore structure[J]. Particuology, 2018, 36: 158–164. DOI: 10.1016/j.partic.2017.05.002
|
[8] |
Rudmin M, Banerjee S, Yakich T, et al. Formulation of a slow-release fertilizer by mechanical activation of smectite/glauconite and urea mixtures[J]. Applied Clay Science, 2020, 196: 105775. DOI: 10.1016/j.clay.2020.105775
|
[9] |
Zhao X H, Qi X, Chen Q L, et al. Sulfur-modified coated slow-release fertilizer based on castor oil: Synthesis and a controlled-release model[J]. ACS Sustainable Chemistry & Engineering, 2020, 8: 18044–18053.
|
[10] |
Liu J L, Yang Y C, Gao B, et al. Bio-based elastic polyurethane for controlled-release urea fertilizer: Fabrication, properties, swelling and nitrogen release characteristics[J]. Journal of Cleaner Production, 2019, 209: 528–537. DOI: 10.1016/j.jclepro.2018.10.263
|
[11] |
薛琴琴, 韩贝贝, 吴雪晴, 等. 纳米材料在农作物领域的应用及展望[J]. 生物技术进展, 2020, 10(6): 655–660. Xue Q Q, Han B B, Wu X Q, et al. Application and prospective of nanomaterials in crop research[J]. Current Biotechnology, 2020, 10(6): 655–660. DOI: 10.19586/j.2095-2341.2020.0118
Xue Q Q, Han B B, Wu X Q, et al. Application and prospective of nanomaterials in crop research [J]. Current Biotechnology, 2020, 10 (6): 655-660. DOI: 10.19586/j.2095-2341.2020.0118
|
[12] |
汪玉洁, 陈日远, 刘厚诚, 等. 纳米材料在农业上的应用及其对植物生长和发育的影响[J]. 植物生理学报, 2017, 53(6): 933–942. Wang Y J, Chen R Y, Liu H C, et al. Applications of nanomaterials in agriculture and its effects on the growth and development of plants[J]. Journal of Plant Physiology, 2017, 53(6): 933–942. DOI: 10.13592/j.cnki.ppj.2016.0546
Wang Y J, Chen R, Liu H C, et al. Applications of nanomaterials in agriculture and its effects on the growth and development of plants [J]. Journal of Plant Physiology, 2017, 53(6): 933-942. DOI: 10.13592/j.cnki.ppj.2016.0546
|
[13] |
Hu Q, Li H, Wang L, et al. DNA nanotechnology-enabled drug delivery systems[J]. Chemical Reviews, 2018, 119(10): 6459–6506.
|
[14] |
孙长娇, 崔海信, 王琰, 等. 纳米材料与技术在农业上的应用研究进展[J]. 中国农业科技导报, 2016, 18(1): 18–25. Sun C J, Cui H X, Wang Y, et al. Studies on applications of nanomaterial and nanotechnology in agriculture[J]. Journal of Agricultural Science and Technology, 2016, 18(1): 18–25. DOI: 10.13304/j.nykjdb.2015.240
Sun C J, Cui X H, Wang Y, et al. Studies on applications of nanomaterial and nanotechnology in agriculture [J]. Journal of Agricultural Science and Technology, 2016, 18 (1): 18-25. DOI: 10.13304/j.nykjdb.2015.240
|
[15] |
徐曼. 铁氧化物及其复合纳米材料的制备与性质研究[D]. 吉林长春: 吉林大学博士学位论文, 2014.
Xu M. Synthesis and properties of iron oxide and its hybrid nanostructures[D]. Changchun, Jilin: PhD Dissertation of Jilin University, 2014.
|
[16] |
Wang X Z, Zhao Z B, Qu J Y, et al. Shape-control and characterization of magnetite prepared via a one-step solvothermal rote[J]. Crystal Growth & Design, 2010, 10(7): 2863–2869.
|
[17] |
张永兴. 金属氧化物微纳米结构材料制备及其在水处理中的应用研究[D]. 北京: 中国科学技术大学博士学位论文, 2012.
Zhang Y X. Synthesis of micro/nanostructured metal oxide materials and application in water treatment [D]. Beijing: PhD Dissertation of University of Science and Technology of China, 2012.
|
[18] |
陈博, 陈学琴, 任军, 等. 纳米二氧化硅表面改性研究进展[J]. 有机硅材料, 2017, 31(5): 396–400. Chen B, Chen X Q, Ren J, et al. Progress in surface modification of nano-silica[J]. Organic Silicon Materials, 2017, 31(5): 396–400.
Chen B, Chen X Q, Ren J, et al. Progress in surface modification of nano-silica [J]. Organic silicon materials, 2017, 31(5): 396-400.
|
[19] |
何淑婷, 刘宝春. 纳米二氧化硅改性及其应用研究进展[J]. 材料研究与应用, 2016, 10(2): 71–74. He S T, Liu B C. The research progress of modification and application of nano-silica[J]. Materials Research and Application, 2016, 10(2): 71–74. DOI: 10.3969/j.issn.1673-9981.2016.02.001
He S T, Liu B C. The research progress of modification and application of nano-silica [J]. Materials Research and Application, 2016, 10(2): 71-74. DOI: 10.3969/j.issn.1673-9981.2016.02.001
|
[20] |
陈 芝, 杨相东, 王娜, 等. 肥料缓释用改性 SiO2/PU复合涂层的制备与表征[J]. 化工新型材料, 2020, 48(10): 146–150. Chen Z, Yang X D, Wang N, et al. Preparation and characterization of modified SiO2/PU composite coating for controlled-release fertilizer[J]. New Chemical Materials, 2020, 48(10): 146–150.
Chen Z, Yang X D, Wang N, et al. Preparation and characterization of modified SiO2/PU composite coating for controlled-release fertilizer [J]. New Chemical Materials, 2020, 48(10): 146-150.
|
[21] |
Zhang S G, Yang Y C, Gao B, et al. Superhydrophobic controlled-release fertilizers coated with bio-based polymers with organosilicon and nano-silica modifications[J]. Journal of Materials Chemistry, 2017, 11: 19943–19953.
|
[22] |
Zhang S G, Shen T L, Yang Y C, et al. Novel environment-friendly superhydrophobic bio-based polymer derived from liquefied corncob for controlled-released fertilizer[J]. Progress in Organic Coatings, 2021, 151: 106018. DOI: 10.1016/j.porgcoat.2020.106018
|
[23] |
Zhang S G, Yang Y C, Tong Z H, et al. Self-assembly of hydrophobic and self-healing bio-nanocomposite-coated controlled release fertilizer[J]. ACS Applied Materials & Interfaces, 2020, 12(24): 27598–27606.
|
[24] |
Chen S L, Han Y Y, Yang M, et al. Hydrophobically modified water-based polymer for slow-release urea formulation[J]. Progress in Organic Coatings, 2020, 149: 105964. DOI: 10.1016/j.porgcoat.2020.105964
|
[25] |
Shen Y Z, Zhou J M, Du C W, et al. Hydrophobic modification of waterborne polymer slows urea release and improves nitrogen use efficiency in rice[J]. Science of the Total Environment, 2021, 794: 148612. DOI: 10.1016/j.scitotenv.2021.148612
|
[26] |
Pang M H, Li L X, Cao B, et al. Understanding the role of silane-coupling agent in bio-based polyurethane nanocomposite-coated fertilizer[J]. ACS Omega, 2021, 6: 32663–32670. DOI: 10.1021/acsomega.1c04348
|
[27] |
Fereidoon A, Menarian S, Albooyeh A, et al. Influence of mesoporous silica and hydroxyapatite nanoparticles on the mechanical and morphological properties of polypropylene[J]. Materials & Design, 2014, 57: 201–210.
|
[28] |
Li Y, Bastakoti B P, Abe H, et al. A dual soft-template synthesis of hollow mesoporous silica spheres decorated with Pt nanoparticles as a CO oxidation catalyst[J]. RSC Advance, 2015, 5: 97928–97933. DOI: 10.1039/C5RA17340J
|
[29] |
Malgras V, Ji Q, Kamachi Y, et al. Templated synthesis for nanoarchitectured porous materials[J]. Bulletin of the Chemical Society of Japan, 2015, 88(9): 1171. DOI: 10.1246/bcsj.20150143
|
[30] |
Li L X, Sun Y M, Cao B, et al. Preparation and performance of polyurethane/mesoporous silica composites for coated urea[J]. Materials and Design, 2016, 99: 21–25. DOI: 10.1016/j.matdes.2016.03.043
|
[31] |
Li L X, Cao B, Sun Y M, et al. Effect of filler treatment on the release properties of coating on urea granules[J]. Polymer-Plastics Technology and Materials, 2019, 58(1): 77–82. DOI: 10.1080/03602559.2018.1466164
|
[32] |
李丽霞, 曹兵, 李鸿雁, 等. 纳米TiO2-LDE复合材料包膜控释肥残膜的降解特性[J]. 复合材料学报, 2016, 10(2): 1423–1427. Li L X, Cao B, Li H Y, et al. Degradation behavior of residual films of controlled release fertilizers with nano-TiO2-LDPE composites[J]. Acta Materiae Compositae Sinica, 2016, 10(2): 1423–1427.
Li L X, Cao B, Li H Y, et al. Degradation behavior of residual films of controlled release fertilizers with nano-TiO2-LDPE composites [J]. Acta Materiae Compositae Sinica, 2016, 10(2): 1423-1427.
|
[33] |
王新海, 马瑾. 稀土掺杂纳米二氧化钛光催化剂的研究进展[J]. 化学工程, 2019, (8): 54–59. Wang X H, Ma J. Recent progress on rare earth elements doped nano-titanium dioxide photocatalysts[J]. Chemical Engineering, 2019, (8): 54–59.
Wang X H, Ma J. Recent progress on rare earth elements doped nano-titanium dioxide photocatalysts [J]. Chemical Engineer, 2019, (8): 54-59.
|
[34] |
Larumbe S, Monge M, Gomez-Polo C. Comparative study of (N, Fe) doped TiO2 photocatalysts[J]. Applied Surface Science, 2015, 327: 490–497. DOI: 10.1016/j.apsusc.2014.11.137
|
[35] |
马千里, 董相廷, 王进贤, 等. 纳米四氧化三铁的化学制备方法研究进展[J]. 化工进展, 2012, 31(3): 562–573. Ma Q L, Dong X T, Wang J X, et al. Chemical preparation methods of ferriferrous oxide nanomaterials[J]. Chemical Industry and Engineering Progress, 2012, 31(3): 562–573. DOI: 10.16085/j.issn.1000-6613.2012.03.033
Ma Q L, Dong X T, Wang J X, et al. Chemical preparation methods of ferriferrous oxide nanomaterials[J]. Chemical Industry and Engineering Progress, 2012, 31(3): 562-573. DOI: 10.16085/j.issn.1000-6613.2012.03.033
|
[36] |
Xie J Z, Yang Y C, Gao B, et al. Magnetic-sensitive nanoparticle self-assembled superhydrophobic biopolymer-coated slow-release fertilizer: Fabrication, enhanced performance, and mechanism[J]. ACS Nano, 2019, 13(3): 3320–3333. DOI: 10.1021/acsnano.8b09197
|
[37] |
杨陈, 林燕萍, 李永贵. 纳米纤维素材料研究进展[J]. 化工新型材料, 2020, 48(10): 232–235. Yang C, Lin Y P, Li Y G. Research on advance in nanocellulose material[J]. New Chemical Materials, 2020, 48(10): 232–235. DOI: 10.19817/j.cnki.issn1006-3536.20200805.001
Yang C, Lin Y P, Li Y G. Research on advance in nanocellulose material [J]. New Chemical Materials, 2020, 48(10): 232-235. DOI: 10.19817/j.cnki.issn1006-3536.20200805.001
|
[38] |
林凤采, 卢麒麟, 卢贝丽, 等. 纳米纤维素及其聚合物纳米复合材料的研究进展[J]. 化工进展, 2018, 37(9): 3454–3469. Lin F C, Lu Q L, Lu B L, et al. Research progress of nanocellulose and its polymer nanocomposites[J]. Chemical Industry and Engineering Progress, 2018, 37(9): 3454–3469. DOI: 10.16085/j.issn.1000-6613.2017-2152
Lin F C, Lu Q L, Lu B L, et al. Research progress of nanocellulose and its polymer nanocomposites [J]. Chemical Industry and Engineering Progress, 2018, 37(9): 3454-3469. DOI: 10.16085/j.issn.1000-6613.2017-2152
|
[39] |
张夫道. 纳米级磺化木质素混聚物肥料包膜胶结剂生产技术[P]. 中国: CN 1417173A, 2003-05-14.
Zhang F D. Production technology of coating and cementing agent for nano-sulfonated lignin polymer fertilizer[P]. China: CN 1417173A, 2003-05-14.
|
[40] |
Demitr C, Scalera F, Madaghiele M, et al. Potential of cellulose-based superabsorbent hydrogels as water reservoir in agriculture[J]. International Journal of Polymer Science, 2013, 1: 435073.
|
[41] |
Mohammadi K S, Moghadam P N, Fareghi A R, et al. Synthesis of a cellulose-based hydrogel network: characterization and study of urea fertilizer slow release[J]. Journal of Applied Polymer Science, 2016, 133(5): 42935.
|
[42] |
Rop K, Mbui D, Njomo N, et al. Biodegradable water hyacinth cellulose-graft-poly (ammonium acrylate-co-acrylic acid) polymer hydrogel for potential agricultural application[J]. Heliyon, 2019, 5(3): e01416. DOI: 10.1016/j.heliyon.2019.e01416
|
[43] |
Kassem I, Ablouh E, Bouchtaoui F E, et al. Cellulose nanocrystals-filled poly (vinyl alcohol) nanocomposites as waterborne coating materials of NPK fertilizer with slow release and water retention properties[J]. International Journal of Biological Macromolecules, 2020, 189: 1029–1042.
|
[44] |
洪枫. 一种纳米纤维素凝胶基保水缓释肥料及其制备方法[P]. 中国: 111533613 A, 2020-08-14.
Hong F. Preparation of a nanocellulose gel-based water retention slow-release fertilizer [P]. China: 111533613 A, 2020-08-14.
|
[45] |
Guo L Z, Wang Y Q, Wang M, et al. Synthesis of bio-based MIL-100(Fe)@CNF-SA composite hydrogel and its application in slow-release N-fertilizer[J]. Journal of Cleaner Production, 2021, 324: 129274. DOI: 10.1016/j.jclepro.2021.129274
|
[46] |
Lin X Y, Xu X, Liu H. A TEMPO-oxidized cellulose nanofibers/MOFs hydrogel with temperature and pH responsiveness for fertilizers slow-release[J]. International Journal of Biological Macromolecules, 2021, 191: 483–491. DOI: 10.1016/j.ijbiomac.2021.09.075
|
[47] |
李亚男, 何文军, 杨为民. 新型纳米碳材料的应用新进展[J]. 化工新型材料, 2014, 42(3): 179–182. Li Y N, He W J, Yang W M. Recent research and applications of carbon nanomaterials in advanced materials[J]. New Chemical Materials, 2014, 42(3): 179–182.
Li Y N, He W J, Yang W M. Recent research and applications carbon nanomaterials in advanced materials [J]. New Chemical Materials, 2014, 42(3): 179-182.
|
[48] |
孙英纯, 吴燕. 纳米碳材料对水性涂料的改性研究现状[J]. 涂料工业, 2019, 49(11): 82–87. Sun Y C, Wu Y. Research and development on modification of waterborne coatings with nanocarbon materials[J]. Paint & Coating Industry, 2019, 49(11): 82–87. DOI: 10.12020/j.issn.0253-4312.2019.11.82
Sun Y C, Wu Y. Research and development on modification of waterborne coatings with nanocarbon materials [J]. Paint & Coating Industry, 2019, 49(11): 82-87. DOI: 10.12020/j.issn.0253-4312.2019.11.82
|
[49] |
沈秀丽, 柳思远, 沈玉君, 等. 不同粒径生物炭包膜尿素缓释肥性能及缓释效果[J]. 农业工程学报, 2020, 36(15): 159–165. Shen X L, Liu S Y, Shen Y J, et al. Property and slow-release effect of coated urea with different particle-size biochar[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(15): 159–165. DOI: 10.11975/j.issn.1002-6819.2020.15.020
Shen X L, Liu S Y, Shen Y J, et al. Property and slow-release effect of coated urea with different particle-size biochar [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(15): 159-165. DOI: 10.11975/j.issn.1002-6819.2020.15.020
|
[50] |
Tian R, Li C, Xie S, et al. Preparation of biochar via pyrolysis at laboratory and pilot scales to remove antibiotics and immobilize heavy metals in livestock feces[J]. Journal of Soils and Sediments, 2019, 19(7): 2891–2902. DOI: 10.1007/s11368-019-02350-2
|
[51] |
Li R, Wang J, Lewis A, et al. An overview of carbon thermal synthesis of metal-biochar composites for the removal of oxyanion contaminants from aqueous solution[J]. Carbon, 2018, 129: 674–687. DOI: 10.1016/j.carbon.2017.12.070
|
[52] |
Zhou Y, Liu X, Xiang Y, et al. Modification of biochar derived from sawdust and its application in removal of tetracycline and copper from aqueous solution: Adsorption mechanism and modelling[J]. Bioresource Technology, 2017, 245(1): 266–273.
|
[53] |
Dina M, Salama M E, Abdel-azia M E, et al. Synthesis of an eco-friendly nanocomposite fertilizer for common bean based on carbon nanoparticles from agricultural waste biochar[J]. Pedosphere, 2021, 31(6): 923–933. DOI: 10.1016/S1002-0160(21)60024-3
|
[54] |
An X F, Wu Z S, Qin H H, et al. Integrated co-pyrolysis and coating for the synthesis of a new coated biochar-based fertilizer with enhanced slow-release performance[J]. Journal of Cleaner Production, 2021, 283: 124642. DOI: 10.1016/j.jclepro.2020.124642
|
[55] |
Khan A H, Naqvi S R, Mehran M T, et al. A performance evaluation study of nano-biochar as a potential slow-release nano-fertilizer from wheat straw residue for sustainable agriculture[J]. Chemosphere, 2021, 285: 131382. DOI: 10.1016/j.chemosphere.2021.131382
|
[56] |
Salimi M, Motamedi E, Motesharezedeh B, et al. Starch-g-poly (acrylic acid-co-acrylamide) composites reinforced with natural char nanoparticles toward environmentally benign slow-release urea fertilizers[J]. Journal of Environmental Chemical Engineering, 2020, 8(3): 103765. DOI: 10.1016/j.jece.2020.103765
|
[57] |
常玉. 一种黄腐酸螯合纳米元素增效尿素及其制备方法[P]. 中国: 101891549 A, 2010-11-24.
Chang Y. Preparation of a fulvic acid chelated nano-element synergistic urea[P]. China: 101891549 A, 2010-11-24.
|
[58] |
杜杰, 杜昌文, 申亚珍, 等. 碳纳米管/聚合物复合材料及其在包膜控释肥料中的应用[J]. 材料保护, 2013, 46(增刊2): 125–128. Du J, Du C W, Shen Y Z, et al. Carbon nanotubes-polymer composites and the application in coated controlled release fertilizer[J]. Materials Protection, 2013, 46(Suppl.2): 125–128. DOI: 10.16577/j.cnki.42-1215/tb.2013.s2.039
Du J, Du C W, Shen Y Z, et al. Carbon nanotubes-polymer composites and the application in coated controlled release fertilizer [J]. Materials protection, 2013, 46 (Suppl. 2): 125-128. DOI: 10.16577/j.cnki.42-1215/tb.2013.s2.039
|
[59] |
杜杰, 杜昌文, 申亚珍, 等. 碳纳米管/水基聚合物纳米复合材料包膜控释尿素的研制[J]. 功能材料, 2015, 46(19): 19148–19152. Du J, Du C W, Shen Y Z, et al. Preparation of multiwalled carbon nanotubes/waterborne polyacrylate nanocomposites for coated controlled release urea[J]. Journal of Functional Materials, 2015, 46(19): 19148–19152. DOI: 10.3969/j.issn.1001-9731.2015.19.032
Du J, Du C W, Shen Y Z, et al. Preparation of multiwalled carbon nanotubes/waterborne polyacrylate nanocomposites for coated controlled release urea [J]. Journal of Functional Materials, 2015, 46(19): 19148-19152. DOI: 10.3969/j.issn.1001-9731.2015.19.032
|
[60] |
杨越超. 一种纳米改性可降解树脂包膜控释肥料及其制备方法[P]. 中国: 106748126 A, 2017-05-31.
Yang Y C. Preparation of a nano-modified degradable resin coated controlled release fertilizer[P]. China: 106748126 A, 2017-05-31.
|
[61] |
陆银平, 张玉德, 刘钦甫, 等. 纳米粘土的制备及应用研究进展[J]. 化工新型材料, 2009, 37(10): 8–10. Lu Y P, Zhang Y D, Liu Q F, et al. Research progress in preparation and application of nanoclay[J]. New Chemical Materials, 2009, 37(10): 8–10.
Lu Y P, Zhang Y D, Liu Q F, et al. Research progress in preparation and application of nanoclay [J]. New Chemical Materials, 2009, 37(10): 8-10.
|
[62] |
谌志鹏, 潘显智, 易依林. 改性纳米粘土/天然胶乳复合材料的制备与性能研究[J]. 橡胶工业, 2020, 67(8): 580–583. Shen Z P, Pan X Z, Yi Y L. Preparation and properties of modified nanoclay/natural latex composites[J]. Rubber Industry, 2020, 67(8): 580–583.
Shen Z P, Pan X Z, Yi Y L. Preparation and properties of modified nanoclay/natural latex composites [J]. Rubber Industry, 2020, 67(8): 580-583.
|
[63] |
王晶, 魏文珑, 李丽霞, 等. 蒙脱土对保水型复合包膜材料结构与性能的影响[J]. 现代化工, 2017, 37(2): 112–115. Wang J, Wei W L, Li L X, et al. Effect of montmorillonite on the structure and properties of the water-retaining composite coating material[J]. Modern Chemical Industry, 2017, 37(2): 112–115. DOI: 10.16606/j.cnki.issn0253-4320.2017.02.025
Wang J, Wei W L, Li L X, et al. Effect of montmorillonite on the structure and properties of the water-retaining composite coating material [J]. Modern Chemical Industry, 2017, 37(2): 112-115. DOI: 10.16606/j.cnki.issn0253-4320.2017.02.025
|
[64] |
贾传秀. 聚氨酯基纳米复合材料包膜肥料的研制与性能研究[D]. 山东泰安: 山东农业大学硕士学位论文, 2019.
Jia C X. Studies on preparation and properties of polyurethane-based nanocomposite coated fertilizers [D]. Tai’an, Shandong: MS Thesis of Shandong Agricultural University, 2019.
|
[65] |
谢友利, 张猛, 周永红. 蒙脱土的有机改性研究进展[J]. 化工进展, 2012, 31(4): 844–851. Xie Y L, Zhang M, Zhou Y H. Progress in the organic modification of montmorillonite[J]. Chemical Industry and Engineering Progress, 2012, 31(4): 844–851. DOI: 10.16085/j.issn.1000-6613.2012.04.033
Xie Y L, Zhang M, Zhou Y H. Progress in the organic modification of montmorillonite [J]. Chemical Industry and Engineering Progress, 2012, 31(4): 844-851. DOI: 10.16085/j.issn.1000-6613.2012.04.033
|
[66] |
张晓鹏, 耿阳阳, 赵贵哲, 等. 蒙脱土改性尿素醛肥料的制备及性能研究[J]. 广东农业科学, 2021, 48(1): 104–110. Zhang X P, Geng Y Y, Zhao G Z, et al. Research on preparation and properties of urea-formaldehyde fertilizer modified by montmorillonite[J]. Guangdong Agricultural Sciences, 2021, 48(1): 104–110. DOI: 10.16768/j.issn.1004-874X.2021.01.013
Zhang X P, Geng Y Y, Zhao G Z, et al. Research on preparation and properties of urea-formaldehyde fertilizer modified by montmorillonite [J]. Guangdong Agricultural Sciences, 2021, 48(1): 104-110. DOI: 10.16768/j.issn.1004-874X.2021.01.013
|
[67] |
伍贤东, 王孟, 钱嘉帆, 等. 聚氨酯/蒙脱土复合控释肥膜材的制备与性能[J]. 植物营养与肥料学报, 2019, 25(12): 2053–2060. Wu X D, Wang M, Qian J F, et al. Preparation and properties of polyurethane/montmorillonite composite films for controlled-release fertilizer[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(12): 2053–2060.
Wu X D, Wang M, Qian J F, et al. Preparation and properties of polyurethane/montmorillonite composite films for controlled-release fertilizer [J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(12): 2053-2060.
|
[68] |
Arjona J D C, Silva-Valenzuela M D G, Wang S H, et al. Biodegradable nanocomposite microcapsules for controlled release of urea[J]. Polymers, 2021, 13(5): 722. DOI: 10.3390/polym13050722
|
[69] |
Bortoletto-Santos R, Plotegher F, Majaron V F, et al. Polyurethane nanocomposites can increase the release control in granulated fertilizers by controlling nutrient diffusion[J]. Applied Clay Science, 2020, 199: 105874. DOI: 10.1016/j.clay.2020.105874
|
[70] |
李旭. 淀粉-聚乙烯醇-膨润土包膜尿素缓释肥料的制备及性能研究[D]. 吉林长春: 吉林大学硕士学位论文, 2016.
Li X. Preparation and properties of starch-polyvinyl alcohol-bentonite coated urea slow-release fertilizer [D]. Changchun, Jilin: MS Thesis of Jilin University, 2016.
|
[71] |
Bruno M, Tavares M I B, Motta L M, et al. Evaluation of PHB/clay nanocomposite by spin-lattice relaxation time[J]. Materials Research, 2010, 11(4): 483–485.
|
[72] |
El-Hadi A M. Investigation of the effect of nano-clay type on the non-isothermal crystallization kinetics and morphology of poly (3(R)-hydroxybutyrate) PHB/clay nanocomposites[J]. Polymer Bulletin, 2014, 71(6): 1449–1470. DOI: 10.1007/s00289-014-1135-0
|
[73] |
Manikandan A, Subramanian K. Evaluation of zeolite based nitrogen nano-fertilizers on maize growth, yield and quality on inceptisols and alfisols[J]. International Journal of Plant & Soil Science, 2016, 9(4): 1–9.
|
[74] |
Nakhli S A A, Delkash M, Bakhshayesh B E, et al. Application of zeolites for sustainable agriculture: A review on water and nutrient retention[J]. Water, Air and Soil Pollution, 2017, 228(12): 1–34.
|
[75] |
Khan M Z H, Islam N, Nahar M R, et al. Synthesis and characterization of nanozeolite based composite fertilizer for sustainable release and use efficiency of nutrients[J]. Heliyon, 2021, 7(1): e06091. DOI: 10.1016/j.heliyon.2021.e06091
|
[76] |
王兴刚. 有机–无机复合型多功能缓控释肥料的制备及其性能研究[D]. 甘肃兰州: 兰州大学博士学位论文, 2015.
Wang X G. Preparation and properties of organic-inorganic compound multifunctional slow/controlled release fertilizer[D]. Lanzhou, Gansu: phD Dissertation of Lanzhou University, 2015.
|
[77] |
Wang C, Song S H, Yang Z M, et al. Hydrophobic modification of castor oil-based polyurethane coated fertilizer to improve the controlled release of nutrient with polysiloxane and halloysite[J]. Progress in Organic Coatings, 2022, 165: 106756. DOI: 10.1016/j.porgcoat.2022.106756
|
[78] |
Lohmousavi S M, Abad H H S, Noormohammadi G, et al. Synthesis and characterization of a novel controlled release nitrogen-phosphorus fertilizer hybrid nanocomposite based on banana peel cellulose and layered double hydroxides nanosheets[J]. Arabian Journal of Chemistry, 2020, 13(9): 6977–6985. DOI: 10.1016/j.arabjc.2020.06.042
|
[79] |
Ghermezcheshme H, Mohseni M, Yahyaei H. Use of nanoindentation and nanoscratch experiments to reveal the mechanical behavior of POSS containing polyurethane nanocomposite coatings: The role of functionality[J]. Tribology International, 2015, 88: 66–75. DOI: 10.1016/j.triboint.2015.02.023
|
[80] |
Li L X, Wang M, Wu X D, et al. Bio-based polyurethane nanocomposite thin coatings from two comparable POSS with eight same vertex groups for controlled release urea[J]. Scientific Reports, 2021, 11(1): 9917. DOI: 10.1038/s41598-021-89254-9
|
[81] |
Anbinder P S, Peruzzo P J, Siervo A D, et al. Surface, thermal, and mechanical properties of composites and nanocomposites of polyurethane/PTFE nanoparticles[J]. Journal of Nanoparticle Research, 2014, 16(8): 1–11.
|
[1] | LI Juan, YANG Xiang-dong. Temperature sensitivity, nutrient release performance, and temperature sensitive mechanism of temperature-sensitive slow/controlled-release fertilizers: A comprehensive research review[J]. Journal of Plant Nutrition and Fertilizers, 2024, 30(9): 1812-1822. DOI: 10.11674/zwyf.2024050 |
[2] | WANG Mao-ying, QI Zeng-lian, DAI Xing-long, HE Ming-rong, DONG Yuan-jie. Effects of different slow/controlled release urea on wheat growth and nitrogen utilization[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(4): 643-653. DOI: 10.11674/zwyf.20443 |
[3] | LI Ze-li, LIU Zhi-guang, ZHANG Min, CHEN Qi, ZOU Peng, YANG Mao-feng. Effects of controlled release urea combined with fulvic acid on wheat yield and soil physical and chemical properties[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(4): 959-968. DOI: 10.11674/zwyf.17426 |
[4] | WANG Xiao-wei, KUAI Jia-lin, YU Ji-hua, LIU Xiao-jing. Effects of controlled/slow-released nitrogen fertilizers on physiological characteristics and quality of melon under substrate cultivation[J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(3): 847-854. DOI: 10.11674/zwyf.14505 |
[5] | PENG Yu, MA Jun*, JIANG Ming-jin, YAN Feng-jun, SUN Yong-jian, YANG Zhi-yuan. Effects of slow/controlled release fertilizers on root morphological and physiological characteristics of rice[J]. Journal of Plant Nutrition and Fertilizers, 2013, 19(5): 1048-1057. DOI: 10.11674/zwyf.2013.0503 |
[6] | LU Yan-li, BAI You-lu, WANG Lei, WANG He, DU Jun, WANG Zhi-yong. Efficiency analysis of slow/controlled release fertilizer on wheat-maize in North China[J]. Journal of Plant Nutrition and Fertilizers, 2011, 17(1): 209-215. DOI: 10.11674/zwyf.2011.0129 |
[7] | XIAO Qiang, ZHANG Fu-dao, Wang Yu-jun, ZHANG Jian-feng, ZHANG Shu-qing. Effects of slow/controlled release fertilizers felted and coated by nano–materials on crop yield and quality[J]. Journal of Plant Nutrition and Fertilizers, 2008, 14(5): 951-955. DOI: 10.11674/zwyf.2008.0521 |
[8] | NAN Chun-bo. Inappropriate units in chemical industry standard: Slow/controlled release fertilizer[J]. Journal of Plant Nutrition and Fertilizers, 2008, 14(4): 819-820. DOI: 10.11674/zwyf.2008.0432 |
[9] | Xiao Qiang, Zhang Fu-dao, Wang Yu-jun, Zhang Jian-feng, Zhang Shu-qing. Effects of slow/controlled release fertilizers felted and coated by Nano-materials on nitrogen recovery and loss of crops[J]. Journal of Plant Nutrition and Fertilizers, 2008, 14(4): 779-785. DOI: 10.11674/zwyf.2008.0425 |
[10] | ZHANG Yufeng, CAO Yiping, CHEN Kai. The effect of coated materials and its structure on the release properties of controlled release fertilizers[J]. Journal of Plant Nutrition and Fertilizers, 2003, 9(2): 170-173. DOI: 10.11674/zwyf.2003.0207 |
1. |
牧仁,乔俊,徐光甫,韩进夫,俞潇,孔垂玖,李新乐. 石墨烯添加对干旱区牧草生长及土壤养分的影响. 中国沙漠. 2025(02): 155-165 .
![]() | |
2. |
马静,韩四满,程岚. 包膜尿素配施有机肥对春玉米氮素吸收、产量及土壤团聚体稳定性的影响. 江苏农业科学. 2024(05): 94-102 .
![]() | |
3. |
孙宇虎,盛昕,冯国禄. 改性聚丙烯酸酯制备包膜缓释肥性能研究. 中国土壤与肥料. 2024(02): 201-209 .
![]() | |
4. |
汤建伟,毛克路,史敏,刘咏,王保明,汪洋,刘鹏飞. 植物油基聚氨酯包膜肥料研究进展. 植物营养与肥料学报. 2024(04): 768-785 .
![]() | |
5. |
安志装,索琳娜,刘宝存. 我国农业面源污染研究与展望. 植物营养与肥料学报. 2024(07): 1422-1436 .
![]() | |
6. |
冯兆滨,吕真真,冀建华,侯红乾,蓝贤瑾,刘益仁,刘淑珍,刘秀梅. 缓控释肥硅基膜材的制备与表征. 江西农业学报. 2024(06): 55-60 .
![]() | |
7. |
杨晨曦,王健,孙婴婴,贺普春. 控释尿素的制备材料与方法及其研究进展. 现代化工. 2024(09): 69-74 .
![]() | |
8. |
陈启军,赵雪净. 基于专利数据的包膜缓/控释肥料技术发展态势与我国发展对策研究. 中国发明与专利. 2024(S2): 32-40 .
![]() | |
9. |
庞敏晖,董淑祺,邹国元,李鸿雁,梁丽娜,郭旋,李丽霞. 棕榈油基可降解包膜材料的制备及性能研究. 植物营养与肥料学报. 2023(10): 1966-1976 .
![]() |