• ISSN 1008-505X
  • CN 11-3996/S
MA Chang-yi, LI Shan-shan, GONG Jia-wei, LU Yan-jun, FENG Yue, GAO Nan. Mechanism of growth promotion by acetoin and Bacillus subtilis NRCB002[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(3): 582-590. DOI: 10.11674/zwyf.2022330
Citation: MA Chang-yi, LI Shan-shan, GONG Jia-wei, LU Yan-jun, FENG Yue, GAO Nan. Mechanism of growth promotion by acetoin and Bacillus subtilis NRCB002[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(3): 582-590. DOI: 10.11674/zwyf.2022330

Mechanism of growth promotion by acetoin and Bacillus subtilis NRCB002

More Information
  • Received Date: June 19, 2022
  • Accepted Date: October 29, 2022
  • Available Online: February 14, 2023
  • Objectives 

    This study was conducted to explore the promoting effect of plant growth promoting rhizobacteria and their metabolites on crop growth, and deeply understand the mechanism of their promoting crop growth, so as to provide excellent strain resources and technical support for the application of efficient microbial fertilizer.

    Methods 

    A pot experiment was carried out to clarify the growth-promoting effect of the fermentation broth components of Bacillus subtilis subsp. subtilis NRCB002. Five treatments were set up, namely fermentation medium (P), fermentation broth (F), fermentation broth supernatant (S), resuspended bacteria (G) and resuspended bacteria + acetoin (A) respectively, and the control treatment was irrigated with the same amount of deionized water (CK). Another pot experiment on the growth-promoting effect and application methods of acetoin was conducted. Two treatments of root irrigation (RI) and foliar spray (FS) with 0.1 g/L acetoin solution were set up, with the same amount of deionized water as the control (CK). Two weeks after treatment imposition in both studies, lettuce seedlings were characterized for plant height, leaf area, fresh and dry weights of shoot and root, and root index. NRCB002 was cultured under K medium with 0, 0.075, 0.375, and 1.5 g/L acetoin addition. The amount of NRCB002 biofilm formation was determined by crystal violet staining method.

    Results 

    1) Compared with CK, fresh and dry weight of shoot and root were significantly increased by the other four treatments except for the P treatment. Treatments of S, F, and A also significantly increased the plant height, leaf area, total root length, total root surface area, total root volume and number of lateral roots of lettuce seedlings. Except for average root diameter and number of lateral roots, the growth characteristics of lettuce seedlings treated with S, F, and A were similar, S, F and A treatments significantly enhanced shoot dry weight, fresh and dry weight of root compared with G treatment. 2) Compared with the control, plant height, total root length, total root surface area, total root volume, number of lateral roots, root-shoot ratio, fresh and dry weight of shoot and root of lettuce seedlings treated with root application (RI) and leaf application (FS) of acetoin were significantly increased. Except for root dry weight and root-shoot ratio, there was no significant difference between the two treatments. 3) Acetoin significantly increased the biofilm formation of NRCB002. Under three application concentrations, the biomass of NRCB002 were similar, but the biofilm formation of NRCB002 with acetion of 0.375 g/L was significantly lower than that with acetion of 0.075 and 1.5 g/L.

    Conclusions 

    Acetoin is a key promoting component of NRCB002 fermentation broth. Root irrigation and foliar spray, especially foliar spray of trace amounts of acetoin directly promotes the growth of lettuce seedlings. Acetoin significantly enhances the biofilm formation of NRCB002, which would improve the stability of NRCB002, therefore acetoin and NRCB002 have synergistical effects.

  • [1]
    邵秋雨, 董醇波, 韩燕峰, 等. 植物根际微生物组的研究进展[J]. 植物营养与肥料学报, 2021, 27(1): 144–152. DOI: 10.11674/zwyf.20203

    Shao Q Y, Dong C B, Han Y F, et al. Research progress in the rhizosphere microbiome of plants[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(1): 144–152. DOI: 10.11674/zwyf.20203
    [2]
    白由路. 植物生物刺激素[M]. 北京: 中国农业科学技术出版社, 2017.

    Bai Y L. Plant biostimulants[M]. Beijing: China Agricultural Science and Technology Press, 2017.
    [3]
    葛诚. 微生物肥料生产及其产业化[M]. 北京: 化学工业出版社, 2007.

    Ge C. Microbial fertilizer production and industrialization[M]. Beijing: Chemical Industry Press, 2007.
    [4]
    李俊, 沈德龙, 林先贵. 农业微生物研究与产业化进展[M]. 北京: 科学出版社, 2011.

    Li J, Shen D L, Lin X G. Agricultural microbiology research and industrialization progress[M]. Beijing: Science Press, 2011.
    [5]
    Fincheira P, Quiroz A, Tortella G, et al. Current advances in plant-microbe communication via volatile organic compounds as an innovative strategy to improve plant growth[J]. Microbiological Research, 2021, 247: 126726. DOI: 10.1016/j.micres.2021.126726
    [6]
    Bai N, Zhang H, Li S, et al. Effects of application rates of poly-γ-glutamic acid on vegetable growth and soil bacterial community structure[J]. Applied Soil Ecology, 2020, 147: 103405. DOI: 10.1016/j.apsoil.2019.103405
    [7]
    Bitas V, Kim H-S, Bennett J W, et al. Sniffing on microbes: Diverse roles of microbial volatile organic compounds in plant health[J]. Molecular Plant-Microbe Interactions, 2013, 26(8): 835–843. DOI: 10.1094/MPMI-10-12-0249-CR
    [8]
    Fincheira P, Quiroz A. Microbial volatiles as plant growth inducers[J]. Microbiological Research, 2018, 208: 63–75. DOI: 10.1016/j.micres.2018.01.002
    [9]
    Park Y-S, Dutta S, Ann M, et al. Promotion of plant growth by Pseudomonas fluorescens strain SS101 via novel volatile organic compounds[J]. Biochemical and Biophysical Research Communications, 2015, 461(2): 361–365. DOI: 10.1016/j.bbrc.2015.04.039
    [10]
    Ryu C M, Farag M A, Hu C H, et al. Bacterial volatiles promote growth in Arabidopsis[J]. Proceedings of the National Academy of Sciences, 2003, 100(8): 4927–4932. DOI: 10.1073/pnas.0730845100
    [11]
    Zou C, Li Z, Yu D. Bacillus megaterium strain XTBG34 promotes plant growth by producing 2-pentylfuran[J]. The Journal of Microbiology, 2010, 48(4): 460–466. DOI: 10.1007/s12275-010-0068-z
    [12]
    Velázquez-Becerra C, Macías-Rodríguez L I, López-Bucio J, et al. A volatile organic compound analysis from Arthrobacter agilis identifies dimethylhexadecylamine, an amino-containing lipid modulating bacterial growth and Medicago sativa morphogenesis in vitro[J]. Plant and Soil, 2011, 339(1): 329–340.
    [13]
    Meldau D G, Meldau S, Hoang L H, et al. Dimethyl disulfide produced by the naturally associated bacterium Bacillus sp B55 promotes Nicotiana attenuata growth by enhancing sulfur nutrition[J]. The Plant Cell, 2013, 25(7): 2731–2747. DOI: 10.1105/tpc.113.114744
    [14]
    Guo Q, Shi M, Chen L, et al. The biocontrol agent Streptomyces pactum increases Pseudomonas koreensis populations in the rhizosphere by enhancing chemotaxis and biofilm formation[J]. Soil Biology Biochemistry, 2020, 144: 107755. DOI: 10.1016/j.soilbio.2020.107755
    [15]
    Nievas F, Primo E, Foresto E, et al. Early succession of bacterial communities associated as biofilm-like structures in the rhizosphere of alfalfa[J]. Applied Soil Ecology, 2021, 157: 103755. DOI: 10.1016/j.apsoil.2020.103755
    [16]
    López D, Fischbach M A, Chu F, et al. Structurally diverse natural products that cause potassium leakage trigger multicellularity in Bacillus subtilis[J]. Proceedings of the National Academy of Sciences, 2009, 106(1): 280–285. DOI: 10.1073/pnas.0810940106
    [17]
    高南, 朱志玉, 应汉杰, 等. 一株耐盐产乙偶姻的枯草芽孢杆菌及其应用[P]. 中国专利: CN109868242A, 2019–06–11.

    Gao N, Zhu Z Y, Ying H J, et al. A salt-tolerant acetoin-producing Bacillus subtilis and its application[P]. China Patent: CN109868242A, 2019–06–11.
    [18]
    Zhu Z, Zhang H, Leng J, et al. Isolation and characterization of plant growth-promoting rhizobacteria and their effects on the growth of Medicago sativa L. under salinity conditions[J]. Antonie van Leeuwenhoek, 2020, 113(9): 1263–1278. DOI: 10.1007/s10482-020-01434-1
    [19]
    任潇, 纪晓俊, 孙世闻, 等. 肌酸比色法快速测定发酵液中 3-羟基丁酮的含量[J]. 食品科技, 2009, 34(8): 260–263.

    Ren X, Ji X J, Sun S W, et al. Creatinine colorimetric assay of acetoin in fermentation broth[J]. Food Science and Technology, 2009, 34(8): 260–263.
    [20]
    赵智颖, 李良秋, 马连营, 等. 生物膜定量分析方法研究进展[J]. 生物技术进展, 2016, 6(5): 319–327. DOI: 10.3969/j.issn.2095-2341.2016.05.03

    Zhao Z Y, Li L Q, Ma L Y, et al. Review on the quantification analysis methods of biofilm[J]. Current Biotechnology, 2016, 6(5): 319–327. DOI: 10.3969/j.issn.2095-2341.2016.05.03
    [21]
    张梦琦, 陈云云, 张熙, 等. 多功能植物根际促生菌 DD3 的功能特性及对大蒜幼苗的促生效果[J]. 植物营养与肥料学报, 2017, 23(3): 748–756. DOI: 10.11674/zwyf.16153

    Zhang M Q, Chen Y Y, Zhang X, et al. Characterizations of rhizobacteria DD3 and their growth promoting effect on garlic seedlings[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(3): 748–756. DOI: 10.11674/zwyf.16153
    [22]
    江红梅, 殷中伟, 史发超, 等. 一株耐盐溶磷真菌的筛选、鉴定及其生物肥料的应用效果[J]. 植物营养与肥料学报, 2018, 24(3): 728–742. DOI: 10.11674/zwyf.17468

    Jiang H M, Yin Z W, Shi F C, et al. Isolation and functional evaluation of phosphate-solubilizing fungi with salt-tolerant characteristics[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(3): 728–742. DOI: 10.11674/zwyf.17468
    [23]
    Fincheira P, Venthur H, Mutis A, et al. Growth promotion of Lactuca sativa in response to volatile organic compounds emitted from diverse bacterial species[J]. Microbiological Research, 2016, 193: 39–47. DOI: 10.1016/j.micres.2016.09.008
    [24]
    韩丽, 赵祥颖, 刘建军. 3-羟基丁酮的研究概况及进展[J]. 山东食品发酵, 2006, (3): 36–38.

    Han L, Zhao X Y, Liu J J. The present situation and progress in research of acetoin[J]. Shandong Food Fermentation, 2006, (3): 36–38.
    [25]
    Xiao Z, Lu J R. Generation of acetoin and its derivatives in foods[J]. Journal of Agricultural and Food Chemistry, 2014, 62(28): 6487–6497. DOI: 10.1021/jf5013902
    [26]
    陈元元, 吴岩, 刘晓光. 乙偶姻生物合成代谢调控及其应用[J]. 生物学杂志, 2014, 31(5): 76–80. DOI: 10.3969/j.issn.2095-1736.2014.05.076

    Chen Y Y, Wu Y, Liu X G. The regulation and application of acetoin biosynthesis[J]. Journal of Biology, 2014, 31(5): 76–80. DOI: 10.3969/j.issn.2095-1736.2014.05.076
    [27]
    谢能中, 石毓梅, 李检秀, 等. 生物法合成乙偶姻手性异构体的研究进展[J]. 广西科学, 2017, 24(1): 33–39. DOI: 10.13656/j.cnki.gxkx.20170119.003

    Xie N Z, Shi Y M, Li J X, et al. Research progress in biological production of chiral acetoin[J]. Guangxi Science, 2017, 24(1): 33–39. DOI: 10.13656/j.cnki.gxkx.20170119.003
    [28]
    Hahm M S, Sumayo M, Hwang Y J, et al. Biological control and plant growth promoting capacity of rhizobacteria on pepper under greenhouse and field conditions[J]. Journal of Microbiology, 2012, 50(3): 380–385. DOI: 10.1007/s12275-012-1477-y
    [29]
    Ann M N, Cho Y E, Ryu H J, et al. Growth promotion of tobacco plant by 3-hydroxy-2-butanone from Bacillus vallismortis EXTN-1[J]. The Korean Journal of Pesticide Science, 2013, 17(4): 388–393. DOI: 10.7585/kjps.2013.17.4.388
    [30]
    Rath M, Mitchell T, Gold S. Volatiles produced by Bacillus mojavensis RRC101 act as plant growth modulators and are strongly culture-dependent[J]. Microbiological Research, 2018, 208: 76–84. DOI: 10.1016/j.micres.2017.12.014
    [31]
    杜海萌, 韦还和, 余清源, 等. 水稻叶面肥研究的应用进展与展望[J]. 作物杂志, 2022, (3): 33–38. DOI: 10.16035/j.issn.1001-7283.2022.03.005

    Du H M, Wei H H, Yu Q Y, et al. Application progress and prospect of rice foliar fertilizer[J]. Crops, 2022, (3): 33–38. DOI: 10.16035/j.issn.1001-7283.2022.03.005
    [32]
    马彩珺, 吕叶, 彭贤辉, 等. 叶面肥发展现状与展望[J]. 河南化工, 2017, 34(5): 7–10. DOI: 10.14173/j.cnki.hnhg.2017.05.001

    Ma C J, Lü Y, Peng X H, et al. Present situation and prospect of foliar fertilizer[J]. Henan Chemical Industry, 2017, 34(5): 7–10. DOI: 10.14173/j.cnki.hnhg.2017.05.001
    [33]
    张敏. 叶面肥应用研究进展及营养机制[J]. 磷肥与复肥, 2014, 29(5): 25–27. DOI: 10.3969/j.issn.1007-6220.2014.05.009

    Zhang M. Research on application progress and nutrition mechanism of foliar fertilizer[J]. Phosphate & Compound Fertilizer, 2014, 29(5): 25–27. DOI: 10.3969/j.issn.1007-6220.2014.05.009
    [34]
    Lu Y, Kronzucker H J, Shi W. Stigmasterol root exudation arising from Pseudomonas inoculation of the duckweed rhizosphere enhances nitrogen removal from polluted waters[J]. Environmental Pollution, 2021, 287: 117587. DOI: 10.1016/j.envpol.2021.117587
    [35]
    Assmus B, Hutzler P, Kirchhof G, et al. In situ localization of Azospirillum brasilense in the rhizosphere of wheat with fluorescently labeled, rRNA-targeted oligonucleotide probes and scanning confocal laser microscopy[J]. Applied Environmental Microbiology, 1995, 61(3): 1013–1019. DOI: 10.1128/aem.61.3.1013-1019.1995
    [36]
    Meneses C H, Rouws L F, Simões-Araújo J L, et al. Exopolysaccharide production is required for biofilm formation and plant colonization by the nitrogen-fixing endophyte Gluconacetobacter diazotrophicus[J]. Molecular Plant-Microbe Interactions, 2011, 24(12): 1448–1458. DOI: 10.1094/MPMI-05-11-0127
    [37]
    Beauregard P B, Chai Y, Vlamakis H, et al. Bacillus subtilis biofilm induction by plant polysaccharides[J]. Proceedings of the National Academy of Sciences, 2013, 110(17): E1621–E1630.
  • Cited by

    Periodical cited type(2)

    1. 张文丽,万雨欣,徐伟慧,王志刚,陈文晶,胡云龙. 促生菌种组合提高玉米根际土壤有益微生物基因丰度及促生效应研究. 植物营养与肥料学报. 2024(02): 394-405 . 本站查看
    2. 李林梅,刘柠,马长义,胡椿,李珊珊,沈慧,高南. 枯草芽胞杆菌NRCB002发酵液的促生效应及高产乙偶姻发酵条件优化. 南京农业大学学报. 2024(06): 1105-1112 .

    Other cited types(2)

Catalog

    Article views (928) PDF downloads (74) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return