Citation: | DING Wen-cheng, HE Ping, ZHOU Wei. Development strategies of the new-type fertilizer industry in China[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(2): 201-219. DOI: 10.11674/zwyf.2022669 |
[1] |
Food and Agriculture Organization of the United Nations (FAO). FAOSTAT database collections[DB/OL]. https://www.fao.org/faostat/en/#data/RFN, 2020–12–11.
|
[2] |
Food and Agriculture Organization of the United Nations (FAO). FAO statistical pocketbook: World food and agriculture 2015[R]. https://www.fao.org/3/i4691e/i4691e.pdf, 2016−03−05.
|
[3] |
Food and Agriculture Organization of the United Nations (FAO). The state of food security and nutrition in the world 2021: The world is at a critical juncture[EB/OL]. https://www.fao.org/state-of-food-security-nutrition/en/, 2021−12−12.
|
[4] |
国家统计局. 年度统计数据[DB/OL]. https://data.stats.gov.cn/easyquery.htm?cn=C01, 2020−05−06.
National Bureau of Statistics. Annual statistics[DB/OL]. https://data.stats.gov.cn/easyquery.htm?cn=C01, 2020−05−06.
|
[5] |
中国农业科学院土壤肥料研究所. 中国化肥区划[M]. 北京: 中国农业科学技术出版社, 1986.
Institute of Soils and Fertilizers, Chinese Academy of Agricultural Sciences. Regional planning of Chinese chemical fertilizers[M]. Beijing: China Agricultural Science and Technology Press, 1986.
|
[6] |
Guo J H, Liu X J, Zhang Y, et al. Significant acidification in major Chinese croplands[J]. Science, 2010, 327: 1008–1010. DOI: 10.1126/science.1182570
|
[7] |
Suding K N, Collins S L, Gough L, et al. Functional-and abundance-based mechanisms explain diversity loss due to N fertilization[J]. Proceedings of the National Academy of Sciences, 2005, 102(12): 4387–4392. DOI: 10.1073/pnas.0408648102
|
[8] |
Gu B, Sutton M A, Chang S X, et al. Agricultural ammonia emissions contribute to China’s urban air pollution[J]. Frontiers in Ecology and the Environment, 2014, 12(5): 265–266. DOI: 10.1890/14.WB.007
|
[9] |
Le C, Zha Y, Li Y, et al. Eutrophication of lake waters in China: Cost, causes, and control[J]. Environmental Management, 2010, 45(4): 662–668. DOI: 10.1007/s00267-010-9440-3
|
[10] |
Stocker T F, Qin D, Plattner G. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Climate change 2013: The physical science basis[M]. New York: Cambridge University Press, 2013.
|
[11] |
Behera S N, Sharma M, Aneja V P, et al. Ammonia in the atmosphere: A review on emission sources, atmospheric chemistry and deposition on terrestrial bodies[J]. Environmental Science and Pollution Research, 2013, 20(11): 8092–8131. DOI: 10.1007/s11356-013-2051-9
|
[12] |
赵秉强, 袁亮. 化肥产品创新驱动产业转型升级[J]. 植物营养与肥料学报, 2022, 28(4): 726–731. Zhao B Q, Yuan L. Innovation in chemical fertilizer products driving industrial transformation and evolution[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(4): 726–731. DOI: 10.11674/zwyf.2021579
|
[13] |
Li T Y, Zhang W F, Yin J, et al. Enhanced-efficiency fertilizers are not a panacea for resolving the nitrogen problem[J]. Global Change Biology, 2018, 24(2): e511–e521. DOI: 10.1111/gcb.13918
|
[14] |
Rose M T, Patti A F, Little K R, et al. A meta-analysis and review of plant-growth response to humic substances: Practical implications for agriculture[J]. Advances in Agronomy, 2014, 124: 37–89.
|
[15] |
Zhang X Y, Fang Q C, Zhang T, et al. Benefits and trade-offs of replacing synthetic fertilizers by animal manures in crop production in China: A meta-analysis[J]. Global Change Biology, 2020, 26(2): 888–900. DOI: 10.1111/gcb.14826
|
[16] |
Schütz L, Gattinger A, Meier M, et al. Improving crop yield and nutrient use efficiency via biofertilization—A global meta-analysis[J]. Frontiers in Plant Science, 2018, 8: 2204. DOI: 10.3389/fpls.2017.02204
|
[17] |
Quan Z, Zhang X, Fang Y T, et al. Different quantification approaches for nitrogen use efficiency lead to divergent estimates with varying advantages[J]. Nature Food, 2021, 2(4): 241–245. DOI: 10.1038/s43016-021-00263-3
|
[18] |
冯媛媛. 主要粮食作物磷肥利用率与土壤有效磷含量的定量关系分析[D]. 湖北荆州: 长江大学硕士学位论文, 2019.
Feng Y Y. An analysis of the relationship between phosphorus use efficiency and soil Olsen-P in the wheat, rice, corn land[D]. Jingzhou, Hubei: MS Thesis of Yangtze University, 2019.
|
[19] |
赵玉芬, 赵秉强, 侯翠红, 等. 适应农业新需求, 构建我国肥料领域创新体系——中国科学院学部咨询报告[J]. 植物营养与肥料学报, 2018, 24(2): 561–568. Zhao Y F, Zhao B Q, Hou C H, et al. Adapting to the new demand of agriculture and constructing the innovation system of fertilizer field in China—Academician consulting report of the Chinese Academy of Sciences[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(2): 561–568. DOI: 10.11674/zwyf.18027
|
[20] |
生态环境部. 第二次全国污染源普查公报[R]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk01/202006/t20200610_783547.html, 2020−06−09.
Ministry of Ecology and Environment of the People’s Republic of China. Bulletin of the second national survey of pollution sources[R]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk01/202006/t20200610_783547.html, 2020−06−09.
|
[21] |
Liu W W, Zhang G, Wang X K, et al. Carbon footprint of main crop production in China: Magnitude, spatial-temporal pattern and attribution[J]. Science of the Total Environment, 2018, 645: 1296–1308. DOI: 10.1016/j.scitotenv.2018.07.104
|
[22] |
Aliyu G, Luo J F, Di H J, et al. Nitrous oxide emissions from China's croplands based on regional and crop-specific emission factors deviate from IPCC 2006 estimates[J]. Science of the Total Environment, 2019, 669: 547–558. DOI: 10.1016/j.scitotenv.2019.03.142
|
[23] |
Gao S S, Xu P, Zhou F, et al. Quantifying nitrogen leaching response to fertilizer additions in China's cropland[J]. Environmental Pollution, 2016, 211: 241–251. DOI: 10.1016/j.envpol.2016.01.010
|
[24] |
Hou X K, Zhan X Y, Zhou F, et al. Detection and attribution of nitrogen runoff trend in China’s croplands[J]. Environmental Pollution, 2018, 234: 270–278. DOI: 10.1016/j.envpol.2017.11.052
|
[25] |
Ma R Y, Zou J W, Han Z Q, et al. Global soil-derived ammonia emissions from agricultural nitrogen fertilizer application: A refinement based on regional and crop-specific emission factors[J]. Global Change Biology, 2021, 27(13): 855–867.
|
[26] |
Geng J B, Sun Y B, Zhang M, et al. Long-term effects of controlled release urea application on crop yields and soil fertility under rice-oilseed rape rotation system[J]. Field Crops Research, 2015, 184: 65–73. DOI: 10.1016/j.fcr.2015.09.003
|
[27] |
赵秉强, 袁亮, 李燕婷, 等. 增值肥料概论[M]. 北京: 中国农业科学技术出版社, 2020.
Zhao B Q, Yuan L, Li Y T, et al. Overview of value-added fertilizer [M]. Beijing: China Agricultural Science and Technology Press, 2020.
|
[28] |
金波. 水溶肥发展现状和存在问题的研究[J]. 盐科学与化工, 2020, 49(11): 1−2.
Jin B. Development status and existing problems of water soluble fertilizer[J]. Journal of Salt Science and Chemical Industry, 2020, 49(11): 1−2.
|
[29] |
杜为研, 唐杉, 汪洪. 我国有机肥资源及产业发展现状[J]. 中国土壤与肥料, 2020, (3): 210–219. Du W Y, Tang S, Wang H. The status of organic fertilizer industry and organic fertilizer resources in China[J]. Soil and Fertilizer Sciences in China, 2020, (3): 210–219. DOI: 10.11838/sfsc.1673-6257.19190
|
[30] |
周法永, 卢布, 顾金刚, 等. 我国微生物肥料的发展阶段及第三代产品特征探讨[J]. 中国土壤与肥料, 2015, (1): 12–17. Zhou F Y, Lu B, Gu J G, et al. Chinese microbial fertilizer features in its developmental stages and a discuss on the third-generation product innovation[J]. Soil and Fertilizer Sciences in China, 2015, (1): 12–17.
|
[31] |
Xia L L, Lam S K, Chen D L, et al. Can knowledge-based N management produce more staple grain with lower greenhouse gas emission and reactive nitrogen pollution? A meta-analysis[J]. Global Change Biology, 2017, 23(5): 1917–1925. DOI: 10.1111/gcb.13455
|
[32] |
Yang M, Zhu X Q, Bai Y, et al. Coated controlled-release urea creates a win-win scenario for producing more staple grains and resolving N loss dilemma worldwide[J]. Journal of Cleaner Production, 2021, 288: 125660. DOI: 10.1016/j.jclepro.2020.125660
|
[33] |
Sha Z P, Liu H J, Wang J X, et al. Improved soil-crop system management aids in NH3 emission mitigation in China[J]. Environmental Pollution, 2021, 289: 117844. DOI: 10.1016/j.envpol.2021.117844
|
[34] |
郝胜磊, 蔡廷瑶, 冯小杰, 等. 新型肥料对全球三大粮食作物产量和土壤生物学活性影响的meta分析[J]. 植物营养与肥料学报, 2021, 27(9): 1496–1505. Hao S L, Cai T Y, Feng X J, et al. Effects of new fertilizers on the yield and soil biological activity of three major food crops: A global meta-analysis[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(9): 1496–1505. DOI: 10.11674/zwyf.2021062
|
[35] |
赵蒙, 曾科, 姚元林, 等. 聚脲甲醛缓释肥对太湖稻麦轮作体系氨挥发及产量的影响[J]. 植物营养与肥料学报, 2019, 25(1): 55–63. Zhao M, Zeng K, Yao Y L, et al. Effects of polyurea-formaldehyde on ammonia volatilization and yields under rice-wheat rotation in Taihu region[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(1): 55–63. DOI: 10.11674/zwyf.18028
|
[36] |
姜珊珊, 庞炳坤, 张敬沙, 等. 减氮及不同肥料配施对稻田CH4和N2O排放的影响[J]. 中国环境科学, 2017, 37(5): 1741–1750. Jiang S S, Pang B K, Zhang J S, et al. Effects of reduced nitrogen and combined application of different fertilizers on CH4 and N2O emissions in paddy fields[J]. China Environmental Science, 2017, 37(5): 1741–1750. DOI: 10.3969/j.issn.1000-6923.2017.05.017
|
[37] |
周华敏, 陈宝成, 王晓琪, 等. 脲醛缓释肥不同配比对小麦生长及土壤氮素养分的影响[J]. 水土保持学报, 2017, 31(1): 179–185. Zhou H M, Chen B C, Wang X Q, et al. Effect of different proportions of urea formaldehyde slow-release nitrogen fertilizer on wheat growth and soil nitrogen nutrients[J]. Journal of Soil and Water Conservation, 2017, 31(1): 179–185. DOI: 10.13870/j.cnki.stbcxb.2017.01.030
|
[38] |
韩蔚娟, 王寅, 陈海潇, 等. 黑土区玉米施用新型肥料的效果和环境效应[J]. 水土保持学报, 2016, 30(2): 307–311. Han W J, Wang Y, Yang H X, et al. Study on the effect of new-type fertilizer application on spring maize production and its environmental impact on black soil area[J]. Journal of Soil and Water Conservation, 2016, 30(2): 307–311. DOI: 10.13870/j.cnki.stbcxb.2016.02.053
|
[39] |
倪露, 白由路, 杨俐苹, 等. 不同组分脲甲醛缓释肥的夏玉米肥料效应研究[J]. 中国农业科学, 2016, 49(17): 3370–3379. Ni L, Bai Y L, Yang L P, et al. The effect of urea-formaldehyde fertilizer under different components by summer maize[J]. Scientia Agricultura Sinica, 2016, 49(17): 3370–3379. DOI: 10.3864/j.issn.0578-1752.2016.17.011
|
[40] |
周丽平, 杨俐苹, 白由路, 等. 不同氮肥缓释化处理对夏玉米田间氨挥发和氮素利用的影响[J]. 植物营养与肥料学报, 2016, 22(6): 1449–1457. Zhou L P, Yang L P, Bai Y L, et al. Comparison of several slow-released nitrogen fertilizers in ammonia volatilization and nitrogen utilization in summer maize field[J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(6): 1449–1457. DOI: 10.11674/zwyf.16039
|
[41] |
Fan D J, He W T, Smith W N, et al. Global evaluation of inhibitor impacts on ammonia and nitrous oxide emissions from agricultural soils: A meta-analysis[J]. Global Change Biology, 2022, 28(17): 5121–5141. DOI: 10.1111/gcb.16294
|
[42] |
张蕾, 王玲莉, 房娜娜, 等. 稳定性肥料在中国不同区域的施用效果及施用量[J]. 植物营养与肥料学报, 2021, 27(2): 215–230. Zhang L, Wang L L, Fang N N, et al. Effect of stabilized fertilizer in different regions of China and the suitable application rate[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(2): 215–230. DOI: 10.11674/zwyf.20272
|
[43] |
Verlinden G, Pycke B, Mertens J, et al. Application of humic substances results in consistent increases in crop yield and nutrient uptake[J]. Journal of Plant Nutrition, 2009, 32(9): 1407–1426. DOI: 10.1080/01904160903092630
|
[44] |
张祥, 梁济, 李接励, 等. 腐殖酸肥料对小麦氮素吸收利用的影响[J]. 化肥工业, 2019, 46(3): 61–66. Zhang X, Liang J, Li J L, et al. Effect of humic acid fertilizer on nitrogen absorption and utilization of wheat[J]. Chemical Fertilizer Industry, 2019, 46(3): 61–66. DOI: 10.3969/j.issn.1006-7779.2019.03.016
|
[45] |
朱荣, 柳丽丽, 齐永波, 等. 稻田氨挥发和水稻产量对增效复合肥减氮施用的响应[J]. 农业环境科学学报, 2021, 40(9): 1935–1943. Zhu R, Liu L L, Qi Y B, et al. Responses of ammonia volatilization and grain yield to nitrogen reduction with synergistic compound fertilizer in a paddy field[J]. Journal of Agro-Environment Science, 2021, 40(9): 1935–1943. DOI: 10.11654/jaes.2021-0104
|
[46] |
李金鑫, 李絮花, 刘敏, 等. 海藻酸增效复混肥料在冬小麦上的施用效果[J]. 中国土壤与肥料, 2020, (1): 153–159. Li J X, Li X H, Liu M, et al. Effect of alginate compound fertilizer on growth and yield of winter wheat[J]. Soil and Fertilizer Sciences in China, 2020, (1): 153–159. DOI: 10.11838/sfsc.1673-6257.19087
|
[47] |
周勇明, 商照聪, 宝德俊, 等. 海藻酸尿素对夏玉米产量和氮肥利用率的影响[J]. 中国土壤与肥料, 2014, (3): 23–26. Zhou Y M, Shang Z C, Bao D J, et al. Effect of applying alginic acid urea on summer maize yield and N use efficiency[J]. Soil and Fertilizer Sciences in China, 2014, (3): 23–26. DOI: 10.11838/sfsc.20140305
|
[48] |
李传哲, 许仙菊, 马洪波, 等. 水肥一体化技术提高水肥利用效率研究进展[J]. 江苏农业学报, 2017, 33(2): 469–475. Li C Z, Xu X J, Ma H B, et al. Research advances in fertigation technology improving water and fertilizer use efficiency[J]. Jiangsu Journal of Agricultural Sciences, 2017, 33(2): 469–475. DOI: 10.3969/j.issn.1000-4440.2017.02.036
|
[49] |
Ding W C, He P, Zhang J J, et al. Optimizing rates and sources of nutrient input to mitigate nitrogen, phosphorus, and carbon losses from rice paddies[J]. Journal of Cleaner Production, 2020, 256: 120603. DOI: 10.1016/j.jclepro.2020.120603
|
[50] |
Ding W C, Xu X P, He P, et al. Improving yield and nitrogen use efficiency through alternative fertilization options for rice in China: A meta-analysis[J]. Field Crops Research, 2018, 227: 11–18. DOI: 10.1016/j.fcr.2018.08.001
|
[51] |
Wei Z B, Ying H, Guo X W, et al. Substitution of mineral fertilizer with organic fertilizer in maize systems: A meta-analysis of reduced nitrogen and carbon emissions[J]. Agronomy, 2020, 10(8): 1149. DOI: 10.3390/agronomy10081149
|
[52] |
Schmidt J E, Gaudin A C M. What is the agronomic potential of biofertilizers for maize? A meta-analysis[J]. FEMS Microbiology Ecology, 2018, 94(7): 1–9.
|
[53] |
Trenkel M E. Slow- and controlled-release and stabilized fertilizers: An option for enhancing nutrient efficiency in agriculture (2nd edition)[M]. Paris: International Fertilizer Industry Association, 2010.
|
[54] |
Tennesse Valley Authority. Production of slow release nitrogen fertilizers by improved method of coating urea with sulfur[P]. The United States: US3903333A. 1975−09−02.
|
[55] |
刘宝存, 徐秋明, 邹国元, 等. 缓控释肥料理论与实践[M]. 北京: 中国农业科学技术出版社, 2009.
Liu B C, Xu Q M, Zou G Y, et al. The theory and practice of the slow/controlled fertilizers[M]. Beijing: China Agricultural Science and Technology Press, 2009.
|
[56] |
陈冠霖, 赵其国, Danso P O, 等. 包膜型缓/控释肥料研究现状及其在功能农业中的应用展望[J]. 肥料与健康, 2021, 48(3): 1–6. Chen G L, Zhao Q G, Danso P O, et al. A review of coated slow/controlled release fertilizer and its application in functional agriculture[J]. Fertilizer & Health, 2021, 48(3): 1–6.
|
[57] |
高璐阳, 王怀利, 王晓飞, 等. 我国发展缓控释肥的意义及前景[J]. 磷肥与复肥, 2015, 30(4): 14–17. Gao L Y, Wang H L, Wang X F, et al. The significance and prospect of slow/controlled release fertilizer development in China[J]. Phosphate & Compound Fertilizer, 2015, 30(4): 14–17. DOI: 10.3969/j.issn.1007-6220.2015.04.007
|
[58] |
Modolo L V, De Souza A X, Horta L P, et al. An overview on the potential of natural products as ureases inhibitors: A review[J]. Journal of Advanced Research, 2015, 6(1): 35–44. DOI: 10.1016/j.jare.2014.09.001
|
[59] |
Zerulla W, Barth T, Dressel J, et al. 3, 4-Dimethylpyrazole phosphate (DMPP)-a new nitrification inhibitor for agriculture and horticulture—An introduction[J]. Biology and Fertility of Soils, 2001, 34(2): 79–84. DOI: 10.1007/s003740100380
|
[60] |
周鹂, 鲁剑巍, 李小坤, 等. 我国大量元素水溶肥料产业发展现状[J]. 现代化工, 2013, 33(4): 9–14. Zhou L, Lu J W, Li X K, et al. Development of water-soluble fertilizers containing nitrogen, phosphorus and potassium industry in China[J]. Modern Chemical Industry, 2013, 33(4): 9–14. DOI: 10.3969/j.issn.0253-4320.2013.04.003
|
[61] |
张瑞福, 颜春荣, 张楠, 等. 微生物肥料研究及其在耕地质量提升中的应用前景[J]. 中国农业科技导报, 2013, 15(5): 8–16. Zhang R F, Yan C R, Zhang N, et al. Studies on microbial fertilizer and its application prospects in improving arable land quality[J]. Journal of Agricultural Science and Technology, 2013, 15(5): 8–16. DOI: 10.3969/j.issn.1008-0864.2013.05.02
|
[62] |
郑立伟, 闫洪波, 张丽, 等. 微生物肥料发展及作用机理综述[J]. 河北省科学院学报, 2020, 37(1): 61–67. Zheng L W, Yan H B, Zhang L, et al. A review on development and mechanism of microbial fertilizer[J]. Journal of the Hebei Academy of Sciences, 2020, 37(1): 61–67. DOI: 10.16191/j.cnki.hbkx.2020.01.011
|
[63] |
刘兆辉, 吴小宾, 谭德水, 等. 一次性施肥在我国主要粮食作物中的应用与环境效应[J]. 中国农业科学, 2018, 51(20): 3827–3839. Liu Z H, Wu X B, Tan D S, et al. Application and environmental effects of one-off fertilization technique in major cereal crops in China[J]. Scientia Agricultura Sinica, 2018, 51(20): 3827–3839. DOI: 10.3864/j.issn.0578-1752.2018.20.002
|
[64] |
刘宁, 孙振涛, 韩晓日, 等. 缓/控释肥料的研究进展及存在问题[J]. 土壤通报, 2010, 41(4): 1005–1009. Liu N, Sun Z T, Han X R, et al. Research progress and existing problems on slow/controlled release fertilizers[J]. Chinese Journal of Soil Science, 2010, 41(4): 1005–1009. DOI: 10.19336/j.cnki.trtb.2010.04.047
|
[65] |
范东升, 赵彦梁, 燕子红. 缓控释肥有机包膜材料的研究进展与趋势[J]. 喀什大学学报, 2020, 41(6): 37–41. Fan D S, Zhao Y L, Yan Z H. Research progress and trend of organic envelop materials of sustained release fertilizer[J]. Journal of Kashi University, 2020, 41(6): 37–41.
|
[66] |
许秀成, 李菂萍, 王好斌. 包裹型缓释/控制释放肥料专题报告第一报: 概念区分及评判标准[J]. 磷肥与复肥, 2000, 15(3): 1–6. Xu X C, Li D P, Wang H B. A special report on coated slow/controlled release fertilizer—Part 1: Definitions and evaluation[J]. Phosphate & Compound Fertilizer, 2000, 15(3): 1–6. DOI: 10.3969/j.issn.1007-6220.2000.03.001
|
[67] |
Xie J Z, Yang Y C, Gao B, et al. Magnetic-sensitive nanoparticle self-assembled superhydrophobic biopolymer coated slow-release fertilizer: Fabrication, enhanced performance, and mechanism[J]. ACS Nano, 2019, 13(3): 3320–3333. DOI: 10.1021/acsnano.8b09197
|
[68] |
武志杰, 石元亮, 李东坡, 等. 稳定性肥料发展与展望[J]. 植物营养与肥料学报, 2017, 23(6): 1614–1621. Wu Z J, Shi Y L, Li D P, et al. The development and outlook of stabilized fertilizers[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(6): 1614–1621. DOI: 10.11674/zwyf.17303
|
[69] |
史云峰, 张摇帆, 徐小雄, 等. 30种芳香植物水浸提液对尿素水解和硝化作用的抑制效果[J]. 生态学杂志, 2014, 33(12): 3440–3446. Shi Y F, Zhang Y F, Xu X X, et al. Inhibitory effects of aqueous extracts of thirty aromatic plants on urea hydrolysis and nitrification[J]. Chinese Journal of Ecology, 2014, 33(12): 3440–3446. DOI: 10.13292/j.1000-4890.2014.0311
|
[70] |
Sun L, Lu Y F, Yu F W, et al. Biological nitrification inhibition by rice root exudates and its relationship with nitrogen-use efficiency[J]. New Phytologist, 2016, 212(3): 646–656. DOI: 10.1111/nph.14057
|
[71] |
杨志福. 腐植酸有效施用条件和施用方法[A]. 郑平. 煤炭腐植酸的生产和应用[M]. 北京: 化学工业出版社, 1991: 287−288.
Yang Z F. Conditions and methods of effective application of humic acid[A]. Zheng P. Production and application of coal humic acid[M]. Beijing: Chemical Industry Press, 1991: 287−288.
|
[72] |
梁太波, 王振林, 刘兰兰, 等, 腐植酸尿素对生姜产量及氮素吸收、同化和品质的影响[J]. 植物营养与肥料学报, 2007, 13(5): 903−909.
Liang T B, Wang Z L, Liu L L, et al. Effects of humic acid urea on yield and nitrogen absorption, assimilation and quality of ginger[J]. Journal of Plant Nutrition and Fertilizers, 2007, 13(5): 903−909.
|
[73] |
赵秉强. 新型肥料[M]. 北京: 科学出版社, 2013.
Zhao B Q. New fertilizers[M]. Beijing: Science Press, 2013.
|
[74] |
赵秉强. 传统化肥增效改性提升产品性能与功能[J]. 植物营养与肥料学报, 2016, 22(1): 1–7. Zhao B Q. Modification of conventional fertilizers for enhanced property and function[J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(1): 1–7.
|
[75] |
张水勤, 袁亮, 李伟, 等. 腐植酸尿素对玉米产量及肥料氮去向的影响[J]. 植物营养与肥料学报, 2017, 23(5): 1207–1214. Zhang S Q, Yuan L, Li W, et al. Effects of humic acid urea on maize yield and the fate of fertilizer nitrogen[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(5): 1207–1214. DOI: 10.11674/zwyf.17046
|
[76] |
周丽平, 袁亮, 赵秉强, 等. 不同用量风化煤腐殖酸对玉米根系的影响[J]. 中国农业科学, 2019, 52(2): 285–292. Zhou L P, Yuan L, Zhao B Q, et al. Response of maize roots to different additive amounts of weathered coal humic acids[J]. Scientia Agricultura Sinica, 2019, 52(2): 285–292. DOI: 10.3864/j.issn.0578-1752.2019.02.008
|
[77] |
马明坤, 袁亮, 李燕婷, 等. 不同磺化腐殖酸磷肥提高冬小麦产量和磷素吸收利用的效应研究[J]. 植物营养与肥料学报, 2019, 25(3): 362–369. Ma M K, Yuan L, Li Y T, et al. The effect of sulfonated humus acid phosphate fertilizer on enhancing grain yield and phosphorus uptake and utilization in winter wheat[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(3): 362–369. DOI: 10.11674/zwyf.18461
|
[78] |
冯先明, 王保明, 彭全, 等. 我国水溶肥的发展概况与建议[J]. 现代化工, 2018, 38(1): 6–11. Feng X M, Wang B M, Peng Q, et al. Development situation and suggestions on China's water-soluble fertilizer[J]. Modern Chemical Industry, 2018, 38(1): 6–11. DOI: 10.16606/j.cnki.issn0253-4320.2018.01.002
|
[79] |
傅送保, 李代红, 王洪波, 等. 水溶性肥料生产技术发展[J]. 磷肥与复肥, 2013, 28(5): 46–50. Fu S B, Li D H, Wang H B, et al. Development of production technology of water-soluble fertilizer[J]. Phosphate & Compound Fertilizer, 2013, 28(5): 46–50. DOI: 10.3969/j.issn.1007-6220.2013.05.017
|
[80] |
张从军, 曹广峰. 含海藻酸水溶肥生产技术[J]. 化肥工业, 2015, 42(5): 18–19, 24. Zhang C J, Cao G F. Production technology of water soluble fertilizer containing alginic acid[J]. Chemical Fertilizer Industry, 2015, 42(5): 18–19, 24. DOI: 10.3969/j.issn.1006-7779.2015.05.006
|
[81] |
豆亚妮, 张院萍, 崔刚. 利用糠醛渣制备含腐植酸螯合态水溶肥料的技术[J]. 安徽农业科学, 2015, 43(29): 41–43. Dou Y N, Zhang Y P, Cui G. Study on preparation of humic acid soluble fertilizer by using furfural residue[J]. Journal of Anhui Agricultural Sciences, 2015, 43(29): 41–43. DOI: 10.3969/j.issn.0517-6611.2015.29.017
|
[82] |
宋大利, 侯胜鹏, 王秀斌, 等. 中国畜禽粪尿中养分资源数量及利用潜力[J]. 植物营养与肥料学报, 2018, 24(5): 1131–1148. Song D L, Hou S P, Wang X B, et al. Nutrient resource quantity of animal manure and its utilization potential in China[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(5): 1131–1148. DOI: 10.11674/zwyf.17415
|
[83] |
刘珊珊, 夏萌, 胡夏茹, 等. 石灰碳铵熏蒸联合生物有机肥对香蕉枯萎病和细菌群落的影响[J]. 应用生态学报, 2020, 31(12): 4189–4196. Liu S S, Xia M, Hu X R, et al. Effects of lime and ammonium carbonate fumigation coupled with bio-organic fertilizer application on banana fusarium wilt and bacterial community[J]. Chinese Journal of Applied Ecology, 2020, 31(12): 4189–4196.
|
[84] |
沈宗专, 孙莉, 王东升, 等. 石灰碳铵熏蒸与施用生物有机肥对连作黄瓜和西瓜枯萎病及生物量的影响[J]. 应用生态学报, 2017, 28(10): 3351–3359. Shen Z Z, Sun L, Wang D S, et al. Effects of lime-ammonium bicarbonate fumigation and biofertilizer application on Fusarium wilt and biomass of continuous cropping cucumber and watermelon[J]. Chinese Journal of Applied Ecology, 2017, 28(10): 3351–3359.
|
[85] |
刘善江, 薛文涛, 苗万有, 等. 有机肥料行业的特点与发展趋势[J]. 蔬菜, 2018, (12): 26–29. Liu S J, Xue W T, Miao W Y, et al. Characteristics and development trend of organic fertilizer industry[J]. Vegetables, 2018, (12): 26–29. DOI: 10.3969/j.issn.1001-8336.2018.12.006
|
[86] |
Yuan Q, Druzhinina I S, Pan X, et al. Microbially mediated plant salt tolerance and microbiome-based solutions for saline agriculture[J]. Biotechnology Advances, 2016, 34(7): 1245–1259. DOI: 10.1016/j.biotechadv.2016.08.005
|
[87] |
Itelima J U, Bang W J, Sila M D, et al. A review: Biofertilizer-A key player in enhancing soil fertility and crop productivity[J]. Microbiology and Biotechnology Reports, 2018, 2(1): 22–28.
|
[88] |
Mayak S, Tirosh T, Glick B R. Plant growth-promoting bacteria confer resistance in tomato plants to salt stress[J]. Plant Physiology & Biochemistry, 2004, 42(6): 565–572.
|
[89] |
Etesami H, Maheshwari D K. Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects[J]. Ecotoxicology and Environmental Safety, 2018, 156: 225–246. DOI: 10.1016/j.ecoenv.2018.03.013
|
[90] |
李俊, 姜昕, 马鸣超, 等. 我国微生物肥料产业需求与技术创新[J]. 中国土壤与肥料, 2019, (2): 1–5. Li J, Jiang X, Ma M C, et al. Development demand and technical innovation for bio-fertilizer industry in China[J]. Soil and Fertilizer Sciences in China, 2019, (2): 1–5. DOI: 10.11838/sfsc.1673-6257.19029
|
[91] |
Sahoo R K, Ansari M W, Dangar T K, et al. Phenotypic and molecular characterisation of efficient nitrogen-fixing Azotobacter strains from rice fields for crop improvement[J]. Protoplasma, 2014, 251: 511–523. DOI: 10.1007/s00709-013-0547-2
|
[92] |
Ahmadi-Rad S, Gholamhoseini M, Ghalavand A, et al. Foliar application of nitrogen fixing bacteria increases growth and yield of canola grown under different nitrogen regimes[J]. Rhizosphere, 2016, 2: 34–37. DOI: 10.1016/j.rhisph.2016.08.006
|
[93] |
Chen Y P, Rekha P D, Arun A B, et al. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities[J]. Applied Soil Ecology, 2006, 34(1): 33–41. DOI: 10.1016/j.apsoil.2005.12.002
|
[94] |
Laheurte F, Berthelin J. Effect of a phosphate solubilizing bacteria on maize growth and root exudation over four levels of labile phosphorus[J]. Plant and Soil, 1988, 105(1): 11–17. DOI: 10.1007/BF02371137
|
[95] |
Shanware A S, Kalkar S A, Trivedi M M. Potassium solublisers: Occurrence, mechanism and their role as competent biofertilizers[J]. International Journal of Current Microbiology and Applied Sciences, 2014, 3: 622–629.
|
[96] |
林启美, 饶正华, 孙焱鑫, 等. 硅酸盐细菌的筛选及其对番茄营养的影响[J]. 中国农业科学, 2002, 35(1): 59–62. Lin Q M, Rao Z H, Sun Y X, et al. Identification of a silicate-dissolving bacterium and its effect on tomato[J]. Scientia Agricultura Sinica, 2002, 35(1): 59–62. DOI: 10.3321/j.issn:0578-1752.2002.01.012
|
[97] |
Indumathi D. Microbial conversion of vegetable wastes for biofertilizer production[J]. Journal of Biotechnology and Biochemistry, 2017, 3(2): 43–47.
|
[98] |
陈文新, 汪恩涛. 中国根瘤菌[M]. 北京: 科学出版社, 2011.
Chen W X, Wang E T. Chinese rhizobia[M]. Beijing: Science Press, 2011.
|
[99] |
李俊, 姜昕, 马鸣超. 新形势下微生物肥料产业运行状况及发展方向[J]. 植物营养与肥料学报, 2020, 26(12): 2108–2114. Li J, Jiang X, Ma M C, et al. Situation and development direction for microbial fertilizer industry in the near future of China[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(12): 2108–2114.
|
[100] |
翟彩娇, 崔士友, 张蛟, 等. 缓/控释肥发展现状及在农业生产中的应用前景[J]. 农学学报, 2022, 12(1): 22–27. Zhai C J, Cui S Y, Zhang J, et al. Development status of slow/controlled release fertilizers and their application prospects in agricultural production[J]. Journal of Agriculture, 2022, 12(1): 22–27. DOI: 10.11923/j.issn.2095-4050.cjas2020-0028
|
[101] |
仝倩倩, 祝英, 崔得领, 等. 我国微生物肥料发展现状及在蔬菜生产中的应用[J]. 中国土壤与肥料, 2022, (4): 259–266. Tong Q Q, Zhu Y, Cui D L, et al. The development status of microbial fertilizer in China and its application in vegetable planting[J]. Soil and Fertilizer Sciences in China, 2022, (4): 259–266. DOI: 10.11838/sfsc.1673-6257.21014
|
[102] |
王景超, 于晓菲, 商姗姗. 我国微生物肥料研究现状及其在作物上的应用进展[J]. 农业与技术, 2022, 42(1): 34–37. Wang J C, Yu X F, Shang S S. A review of biofertilizer study and its application on crops in China[J]. Agriculture and Technology, 2022, 42(1): 34–37. DOI: 10.19754/j.nyyjs.20220115010
|
[103] |
张卫峰, 李增源, 李婷玉, 等. 化肥零增长: 呼吁肥料产业链革新[J]. 蔬菜, 2018, (5): 1–9. Zhang W F, Li Z Y, Li T Y, et al. Zero increase of chemical fertilizers: Calling on reformation of fertilizer industry chain[J]. Vegetables, 2018, (5): 1–9. DOI: 10.3969/j.issn.1001-8336.2018.05.001
|
[104] |
何萍, 徐新朋, 周卫, 等. 肥料养分推荐原理及应用[M]. 北京: 科学出版社, 2021.
He P, Xu X P, Zhou W, et al. Principles and application of fertilizer nutrient recommendation[M]. Beijing: Science Press, 2021.
|
[105] |
白由路, 杨俐苹, 金继运. 测土配方施肥原理与实践[M]. 北京: 中国农业出版社, 2007.
Bai Y L, Yang L P, Jin J Y. Principles and practices of soil test and fertilizer formula[M]. Beijing: China Agriculture Press, 2007.
|
[106] |
白由路. 精准施肥实施技术[M]. 北京: 中国农业科学技术出版社, 2020.
Bai Y L. Precision fertilization implementation technology[M]. Beijing: China Agricultural Science and Technology Press, 2020.
|
[107] |
付宇超, 袁文胜, 张文毅, 等. 我国施肥机械化技术现状及问题分析[J]. 农机化研究, 2017, 39(1): 251–255. Fu Y C, Yuan W S, Zhang W Y, et al. Present situation and problem analysis of the technology of fertilizer mechanization in China[J]. Journal of Mechanization Research, 2017, 39(1): 251–255. DOI: 10.3969/j.issn.1003-188X.2017.01.049
|
[108] |
王秀, 赵春江, 孟志军, 等. 精准变量施肥机的研制与试验[J]. 农业工程学报, 2004, 20(5): 114–117. Wang X, Zhao C J, Meng Z J, et al. Design and experiment of variable rate fertilizer applicator[J]. Transactions of the Chinese Society of Agricultural Engineering, 2004, 20(5): 114–117. DOI: 10.3321/j.issn:1002-6819.2004.05.024
|
[109] |
陈广大, 王悦刚, 陈思睿, 等. 基于ARM的精确变量施肥控制系统的设计[J]. 中国农机化学报, 2013, 34(4): 130–133. Chen G D, Wang Y G, Chen S R, et al. The design of precise variable rate fertilizer control system based on ARM[J]. Journal of Chinese Agricultural Mechanization, 2013, 34(4): 130–133. DOI: 10.3969/j.issn.2095-5553.2013.04.031
|
[110] |
李洁, 吴明亮, 汤远菊, 等. 有机肥施肥机械的研究现状与发展趋势[J]. 湖南农业大学学报, 2013, 39(1): 97–100. Li J, Wu M L, Tang Y J, et al. Research status and development trend of organic fertilizer applicators[J]. Journal of Hunan Agricultural University, 2013, 39(1): 97–100.
|
[111] |
白由路. 国内外施肥机械的发展概况及需求分析[J]. 中国土壤与肥料, 2016, (3): 1–4. Bai Y L. Analysis of the development and the demands of fertilization machinery[J]. Soil and Fertilizer Sciences in China, 2016, (3): 1–4. DOI: 10.11838/sfsc.20160301
|
[112] |
王甲辰, 田有国, 李季, 等. 全国7个区域商品有机肥质量现状分析及启示[J]. 中国土壤与肥料, 2022, (2): 175–180. Wang J C, Tian Y G, Li J, et al. Analysis on the quality and enlightenment of commodity organic fertilizer in different regions of China[J]. Soil and Fertilizer Sciences in China, 2022, (2): 175–180. DOI: 10.11838/sfsc.1673-6257.20643
|
[113] |
白由路. 我国肥料产业面临的挑战与发展机遇[J]. 植物营养与肥料学报, 2017, 23(1): 1–8. Bai Y L. Challenges and opportunities of fertilizer industry in China[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(1): 1–8. DOI: 10.11674/zwyf.16460
|
[114] |
赵秉强. 化肥有效养分高效化产品创新的技术趋势[J]. 磷肥与复肥, 2020, 35(6): 刊首语.
Zhao B Q. The technological development trend of innovative fertilizer products by enhancing effective nutrients[J]. Phosphate & Compound Fertilizer, 2020, 35(6): prelusion.
|
[115] |
刘铮. 我国土壤中锌含量的分布规律[J]. 中国农业科学, 1994, 27(1): 30–37. Liu Z. Regularities of content and distribution of zinc in soils of China[J]. Scientia Agricutura Sinica, 1994, 27(1): 30–37.
|
[116] |
Wang Z, Hassan M U, Nadeem F, et al. Magnesium fertilization improves crop yield in most production systems: A meta-analysis[J]. Frontiers in Plant Science, 2020, 10: 1727. DOI: 10.3389/fpls.2019.01727
|
[117] |
冯尚善, 崔荣政, 王臣. 我国新型肥料产业发展现状及展望[J]. 磷肥与复肥, 2020, 35(10): 1–3. Feng S S, Cui R Z, Wang C. Development status and prospect of new-type fertilizer industry in China[J]. Phosphate & Compound Fertilizer, 2020, 35(10): 1–3. DOI: 10.3969/j.issn.1007-6220.2020.10.002
|
[118] |
张福锁, 申建波, 危常州, 等. 绿色智能肥料: 从原理创新到产业化实现[J]. 土壤学报, 2022, 59(4): 873–887. Zhang F S, Shen J B, Wei C Z, et al. Green intelligent fertilizer: From interdisciplinary innovation to industrialization realization[J]. Acta Pedologica Sinica, 2022, 59(4): 873–887.
|
[119] |
王超, 杨子明, 焦静, 等. 包膜控释肥及其膜材的研究进展[J]. 高分子通报, 2020, (9): 37–42. Wang C, Yang Z M, Jiao J, et al. A review of controlled release fertilizer and coating materials[J]. Chinese Polymer Bulletin, 2020, (9): 37–42. DOI: 10.14028/j.cnki.1003-3726.2020.09.004
|
[120] |
Shen J B, Li C J, Mi G H, et al. Maximizing root/rhizosphere efficiency to improve crop productivity and nutrient use efficiency in intensive agriculture of China[J]. Journal of Experimental Botany, 2013, 64(5): 1181–1192. DOI: 10.1093/jxb/ers342
|
[121] |
Wen Z H, White P J, Shen J B, et al. Linking root exudation to belowground economic traits for resource acquisition[J]. New Phytologist, 2022, 233(4): 1620–1635. DOI: 10.1111/nph.17854
|
[122] |
张卫峰, 易俊杰, 张福锁. 中国肥料发展研究报告2016[M]. 北京: 中国农业大学出版社, 2017.
Zhang W F, Yi J J, Zhang F S. Annual report of China fertilizer development research 2016[M]. Beijing: China Agricultural University Press, 2017.
|
[123] |
Li T, Lv S, Yan J, et al. An environment-friendly fertilizer prepared by layer-by-layer self-assembly for pH-responsive nutrient release[J]. ACS Applied Materials & Interfaces, 2019, 11: 10941–10950.
|
[124] |
Niu Y, Ke R, Yang T. pH-responsively water-retaining controlled-release fertilizer using humic acid hydrogel and nano-silica aqueous dispersion[J]. Journal of Nanoscience and Nanotechnology, 2020, 20(4): 2286–2291. DOI: 10.1166/jnn.2020.17216
|
[125] |
Hill M R, MacKrell E J, Forsthoefel C P. Biodegradable and pH-responsive nanoparticles designed for site-specific delivery in agriculture[J]. Biomacromolecules, 2015, 16(4): 1276–1282. DOI: 10.1021/acs.biomac.5b00069
|
[126] |
管士强, 王好斌, 侯翠红, 等. 智能新型肥料研究进展[J]. 现代化工, 2022, 42(1): 46–50. Guan S Q, Wang H B, Hou C H, et al. Research progress in new smart fertilizer[J]. Modern Chemical Industry, 2022, 42(1): 46–50. DOI: 10.16606/j.cnki.issn0253-4320.2022.01.010
|
[127] |
Calabi-Floody M, Medina J, Rumpel C, et al. Smart fertilizers as a strategy for sustainable agriculture[J]. Advances in Agronomy, 2018, 147: 119–157.
|
[128] |
Katsumi N, Kusube T, Nagao S, Okochi H. Accumulation of microcapsules derived from coated fertilizer in paddy fields[J]. Chemosphere, 2021, 267: 129185. DOI: 10.1016/j.chemosphere.2020.129185
|
[129] |
隋常玲, 张民. 控释肥硫膜降解对微域土壤性质的影响[J]. 生态学杂志, 2012, 31(8): 2050–2058. Sui C L, Zhang M. Effects of sulfur-coating residual degradation of controlled-release fertilizers on the soil properties of fertilized microsite[J]. Chinese Journal of Ecology, 2012, 31(8): 2050–2058. DOI: 10.13292/j.1000-4890.2012.0251
|
[130] |
武升, 邢素林, 马凡凡, 等. 有机肥施用对土壤环境潜在风险研究进展[J]. 生态科学, 2019, 38(2): 219–224. Wu S, Xing S L, Ma F F, et al. Review on potential risk of soil environment from organic fertilizer application[J]. Ecological Science, 2019, 38(2): 219–224. DOI: 10.14108/j.cnki.1008-8873.2019.02.029
|
[131] |
杨威, 狄彩霞, 李季, 等. 我国有机肥原料及商品有机肥中四环素类抗生素的检出率及含量[J]. 植物营养与肥料学报, 2021, 27(9): 1487–1495. Yang W, Di C X, Li J, et al. Detection rate and concentration of tetracycline antibiotics in organic fertilizers raw materials and commercial products in China[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(9): 1487–1495. DOI: 10.11674/zwyf.2021061
|
[132] |
骆永明, 周倩, 章海波, 等. 重视土壤中微塑料污染研究防范生态与食物链风险[J]. 中国科学院院刊, 2018, 33(10): 1021–1030. Luo Y M, Zhou Q, Zhang H B, et al. Pay attention to research on microplastic pollution in soil for prevention of ecological and food chain risks[J]. Bulletin of the Chinese Academy of Sciences, 2018, 33(10): 1021–1030.
|
[133] |
Zhang J J, Wang X X, Xue W T, et al. Microplastics pollution in soil increases dramatically with long-term application of organic composts in a wheat–maize rotation[J]. Journal of Cleaner Production, 2022, 356: 131889. DOI: 10.1016/j.jclepro.2022.131889
|
[134] |
The Royal Society. Ammonia: Zero-carbon fertiliser, fuel and energy store[R]. https://royalsociety.org/-/media/policy/projects/green-ammonia/green-ammonia-policy-briefing.pdf. [2020].
|
[135] |
Wang F, Harindintwali J D, Yuan Z, et al. Technologies and perspectives for achieving carbon neutrality[J]. The Innovation, 2021, 2(4): 100180. DOI: 10.1016/j.xinn.2021.100180
|
[136] |
侯翠红, 许秀成, 王好斌, 等. 绿色肥料产业体系构建及其科学问题[J]. 科学通报, 2015, 60(36): 3535–3542. Hou C H, Xu X C, Wang H B, et al. Establishment of green fertilizer industrial system and its scientific problems[J]. China Science Bulletin, 2015, 60(36): 3535–3542. DOI: 10.1360/N972015-00770
|
1. |
吴华宇,吴红淼,李忠,吴文革. 水稻机插侧深施肥技术的发展及技术要点. 中国稻米. 2025(01): 94-99 .
![]() | |
2. |
安晓康,盛海彦,王生,赵凤宏,才让东周. 外源氮对湟水流域春小麦氮素吸收利用和土壤无机氮的影响. 西北农业学报. 2025(02): 191-199 .
![]() | |
3. |
解迎双,刘阿静,李乔花,赵敏,白兴斌,仲斌,王波. 施用油橄榄果渣有机肥对辣椒品质及产量的影响. 农产品加工. 2025(02): 14-17+24 .
![]() | |
4. |
李常英,安静,窦京海,丁美丽,杜娇娇. 掺混尿素配施有机肥对冬小麦氮肥利用率、产量及土壤供氮性能的影响. 山东农业科学. 2025(02): 105-113 .
![]() | |
5. |
张实玉,杨红竹,刘海林,林清火,茶正早,罗微. 保水型包膜尿素在海南砖红壤中保水缓释效果研究. 热带农业科学. 2025(01): 39-44 .
![]() | |
6. |
任艳军,赵莹,任学军,马建军. 土施腐植酸钠有效抑制油菜镉、铬的累积和转运. 植物营养与肥料学报. 2025(02): 343-352 .
![]() | |
7. |
刘世伟,王继涛,肖自斌,马建梅,刘晓娇,谢彦,张文文,蒋学勤. 不同新型功能性肥料对露地番茄生长和产量的影响. 中南农业科技. 2025(02): 265-267 .
![]() | |
8. |
李建强,魏倩倩,刘晓霞,张均华,朱春权. 优化施肥措施对水稻产量和土壤养分平衡的影响. 浙江农业学报. 2025(02): 438-446 .
![]() | |
9. |
张宇羽,王香宁,曾雪娇,官洁,张毅,李冰,蔡艳. 控释氮肥与尿素配施对川东套作春玉米氮素吸收与利用的影响. 中国农学通报. 2025(08): 25-30 .
![]() | |
10. |
吴小丹,高丽,巩天耕,孔祥凤,姜雨舟,贾桂霞. 微生物菌肥和腐植酸复合肥对百合生长和光合特性的影响. 中国农业科技导报(中英文). 2025(04): 221-229 .
![]() | |
11. |
张晶,赵超,裴雪霞,张慧芋,党建友,张定一. 氮磷配施和化肥减施对小麦生长、养分利用及产量性状的影响. 核农学报. 2024(01): 179-189 .
![]() | |
12. |
汪任山,莫新谱,罗丽娜,王伟,徐斌. 肥料中重金属元素含量测定方法的分析. 品牌与标准化. 2024(01): 11-13 .
![]() | |
13. |
范先婷,段松坡,欧阳歆,邓兰生,张立丹,沈宏. 基于项目驱动的新型肥料研制与应用课程实践教学改革. 安徽农学通报. 2024(02): 113-116 .
![]() | |
14. |
郭指君,孙信成,杨连勇,蒋万,黄琳,陈位平,张忠武,陈清. 减化增施有机肥和新型肥料对辣椒农艺性状及产量的影响. 黑龙江农业科学. 2024(02): 46-52 .
![]() | |
15. |
黄益孝,周家昊,陈照明,王强,马军伟,叶静. 化肥减量配施缓释肥对单季稻产量和氮素吸收利用的影响. 江苏农业科学. 2024(02): 57-64 .
![]() | |
16. |
许春苗,陈静,朱亚萍,康爱霞. 稳定性肥料配施微生物菌剂对红叶莴笋生长品质影响研究. 西北园艺(果树). 2024(01): 45-48 .
![]() | |
17. |
段路路,董茂忠,李接励,牛彦超. 不同功能型控释肥料质量安全评价及其对油菜生长效应的影响. 肥料与健康. 2024(01): 37-41+67 .
![]() | |
18. |
龙俐至,倪康,马立锋,杨向德,李海涛,阮建云. 2023年茶园养分管理技术研究进展. 中国茶叶. 2024(04): 1-7 .
![]() | |
19. |
王植,秦向阳. 北京市H村科技小院赋能实践探索. 现代农业科技. 2024(08): 189-193 .
![]() | |
20. |
郑金江. 基于VOSviewer无公害栽培技术的多维分析——发展、应用与新的挑战. 绿色科技. 2024(05): 161-167 .
![]() | |
21. |
汤建伟,毛克路,史敏,刘咏,王保明,汪洋,刘鹏飞. 植物油基聚氨酯包膜肥料研究进展. 植物营养与肥料学报. 2024(04): 768-785 .
![]() | |
22. |
李丽,贾文欣,徐昊,李春燕,丁锦峰,朱敏,郭文善,朱新开. 缓释肥类型及其运筹方式对弱筋小麦产量及品质的影响. 麦类作物学报. 2024(06): 758-769 .
![]() | |
23. |
李娟,王亚静,杨相东,刘艳鹏,赵冬梅,岳继生. 农业高质量发展背景下的新型肥料发展. 蔬菜. 2024(06): 1-13 .
![]() | |
24. |
代敏,向汶君. 新型肥料对水稻生长发育及产量的影响. 农技服务. 2024(07): 7-9 .
![]() | |
25. |
李隽,李笔,李抒芮. 中国化工类企业RCEP市场开拓研究——以Y公司磷酸二铵复合肥为例. 商展经济. 2024(13): 93-96 .
![]() | |
26. |
赵英杰,孟远夺,樊子风,李凡,刘少君,吴优,薛彦东,曲明山,田有国. 我国肥料标准发展现状、问题与对策. 中国土壤与肥料. 2024(05): 212-221 .
![]() | |
27. |
赵晓龙,俄胜哲,袁金华,吴步梅,邵琪,赵天鑫,路港滨,张鹏,刘雅娜. 缓释肥料养分缓释机制及研究进展. 生态产业科学与磷氟工程. 2024(07): 42-48 .
![]() | |
28. |
周卫,艾超,易可可. 新阶段植物营养学的研究重点. 植物营养与肥料学报. 2024(07): 1243-1252 .
![]() | |
29. |
王辛龙,钟艳君,许德华,杨林,杨秀山,严正娟,罗涛,张志业,钟本和. 我国磷化工产业现状、发展趋势及高质量发展路径. 生态产业科学与磷氟工程. 2024(07): 9-21 .
![]() | |
30. |
吕博,丁亮,过聪,陈锋,周海平,汪雪松,董小林,向发云. 复合微生物肥对棉田土壤养分及根际细菌群落的影响. 作物杂志. 2024(04): 209-215 .
![]() | |
31. |
冯瑞,鲁振亚,马航,商立鹏,危常州,周凌翔. 肥料产品绿色智能设计思路. 现代化工. 2024(08): 7-11 .
![]() | |
32. |
李梦妮,吴鲁洁,叶正钱. 化肥减量条件下喷施锌肥对水稻生长和稻谷锌含量的影响. 浙江农业科学. 2024(08): 1873-1878 .
![]() | |
33. |
郭保俊,卓文韬,程琳,李雪,陈舟,孙子钦,陈宝成. 控释型黄腐酸掺混肥对水稻生长及土壤养分的影响. 腐植酸. 2024(04): 31-37 .
![]() | |
34. |
李其勇,陈德西,何忠全,干雪梅,骆永亮,张益凡,徐春,卢代娟,刘欢,张鸿. 梯度比例有机肥混施复合肥对生菜生长及土壤养分的影响. 农业与技术. 2024(16): 13-17 .
![]() | |
35. |
王洋,张苗苗,吕阳,侯翠红,危常州,马文奇,张福锁,申建波. pH响应材料及其在智能肥料中的应用. 化工进展. 2024(08): 4477-4489 .
![]() | |
36. |
钮红霞. 强筋小麦在盐城市种植的适宜氮肥施用量筛选试验初报. 上海农业科技. 2024(05): 111-113 .
![]() | |
37. |
孟远夺,赵英杰,袁天佑,吴优,刘少君. 我国复合肥料质量状况分析与思考. 生态产业科学与磷氟工程. 2024(09): 6-10 .
![]() | |
38. |
杨红竹,黄艳艳,冀春花,刘海林,林清火,茶正早,罗微. 控释尿素与普通尿素配施对橡胶树叶片和胶乳养分及产量的影响. 热带作物学报. 2024(09): 1868-1876 .
![]() | |
39. |
李娟,杨相东. 温度敏感型缓/控释肥料的温度响应特征、养分释放性能与温敏机理研究进展. 植物营养与肥料学报. 2024(09): 1812-1822 .
![]() | |
40. |
杨红竹,黄艳艳,刘海林,林清火,茶正早,罗微. 控释掺混肥料一次性基施对热带地区水稻产量及氮肥利用效率的影响. 福建农业学报. 2024(07): 766-774 .
![]() | |
41. |
臧龙飞,韩国君,杨晓兵. 氨基酸肥和腐植酸肥配施尿素对土壤有效氮及辣椒产量的影响. 北方园艺. 2024(20): 55-62 .
![]() | |
42. |
申朝阳,高林广,周浩露,罗新宇,黄英惠,高小丽. 普通尿素与控释尿素配施对谷子产量及氮素利用的影响. 干旱地区农业研究. 2024(05): 63-70 .
![]() | |
43. |
侯会,苏涵,王维,张巧凤,耿晓月,董韦,吴琴燕,徐振,张学彪,庄义庆. 外源施用6-磷酸海藻糖生物制剂对甘薯营养品质和产量的影响. 江苏农业科学. 2024(18): 105-113 .
![]() | |
44. |
杨俊刚,邹国元,刘宝存. 我国新型肥料发展近十年回顾与展望. 现代化工. 2024(11): 6-11+17 .
![]() | |
45. |
李林梅,刘柠,马长义,胡椿,李珊珊,沈慧,高南. 枯草芽胞杆菌NRCB002发酵液的促生效应及高产乙偶姻发酵条件优化. 南京农业大学学报. 2024(06): 1105-1112 .
![]() | |
46. |
张耀文. 新型肥料推广对耕地质量的影响分析. 新农民. 2024(29): 79-81 .
![]() | |
47. |
张波,李江荣,郭亮娜,朱思洁,付芳伟. 有机肥添加对土壤微生物的影响研究进展. 吉林林业科技. 2024(06): 27-32 .
![]() | |
48. |
李青女,陈露,饶小琼,兰思仁,翟俊文,吴沙沙. 新型肥料耦合效应对建兰‘东方红荷’生长的影响. 北方园艺. 2024(22): 48-57 .
![]() | |
49. |
韩小双,王齐旭,李建勇,占绣萍,许士芳,俞雪美. 不同种类水溶肥在秋季樱桃番茄上的应用效果评价. 安徽农学通报. 2024(23): 27-30 .
![]() | |
50. |
赵驰鹏,武志杰,宫平,纪冰祎,张丽莉. 农业绿色发展视角下辽宁省肥料转型升级的策略研究. 农业经济. 2024(12): 16-18 .
![]() | |
51. |
邬佳宾,秦子元,郑和祥,闫浩芳,王必玉. 黄腐酸施用对砂壤土灌溉玉米产量的影响. 排灌机械工程学报. 2024(12): 1272-1279 .
![]() | |
52. |
谢宇灵,许江环,方欣,杨善,周鸿凯,莫俊杰. 有机改良剂配施化肥对水稻产量及土壤理化性质的影响. 江苏农业科学. 2024(21): 253-259 .
![]() | |
53. |
王健,张辉,沈玉君,丁京涛,周海宾,丛宏斌,沈秀丽,马双双,叶炳南,宋立秋. 中国循环农业发展实践与推进路径探究. 农业工程学报. 2024(22): 12-21 .
![]() | |
54. |
薛慧玲,曹兵,高如霞,王东,魏红,樊明寿,张子义. 聚氨酯包膜尿素对马铃薯生理特性及根际土壤无机氮的影响. 中国土壤与肥料. 2024(12): 150-158 .
![]() | |
55. |
史慧芳,彭涛,阎雄飞,刘永华. 微生物肥料在枣树种植中的研究进展. 湖北农业科学. 2024(S1): 23-30 .
![]() | |
56. |
郝艳淑,张炎,侯佳玉,李惠丽,张白鸽,吴良泉,郭延亮. 镁和人体健康的关系及镁肥在农业中的应用. 肥料与健康. 2024(06): 98-102 .
![]() | |
57. |
杨鸯鸯,郭焕茹,翁丽青,胡伋,魏杰,范雪莲. 两种不同微生物菌剂在设施番茄上的应用效果比较. 中国果菜. 2023(04): 58-61+66 .
![]() | |
58. |
徐新朋,丁文成,何萍,周卫. 基于产量反应和农学效率的水稻智能化推荐施肥方法研究. 植物营养与肥料学报. 2023(05): 802-812 .
![]() | |
59. |
邓少虹,温远光,孙冬婧,王磊,温俊,陈秋海,高惠,黄勇杰,许峻模,廖经球,周晓果. 稻鱼共作下不同有机肥对水稻养分吸收利用效率的影响. 广西科学. 2023(03): 524-531 .
![]() | |
60. |
邸佳颖,郭金秀,丁莉,安霞,张永恩,李干琼,王盛威. 2023年上半年中国化肥市场形势回顾和后期展望. 农业展望. 2023(07): 13-17 .
![]() | |
61. |
芦振华,胡俊平,苗建利,李绍伟,任丽. 肥料减施对高油酸花生农艺性状、产量及品质的影响. 安徽农学通报. 2023(15): 23-27 .
![]() | |
62. |
郭静利,尼鲁帕尔·迪力夏提,王大庆. 我国农业微生物产业发展的对策建议. 中国农业科技导报. 2023(11): 1-7 .
![]() | |
63. |
刘希港,李楠,季托,周波,魏珉,李静,杨凤娟. 微生物菌剂和玉米蛋白酵素对番茄叶片生理特性和产量的影响. 应用生态学报. 2023(11): 3039-3044 .
![]() | |
64. |
张春兰,汪灿,高杰,徐建霞,徐燕. 不同类型肥料对糯高粱产量、品质及氮肥利用率的影响. 江苏农业科学. 2023(24): 83-90 .
![]() | |
65. |
吕浩楠,周晓嘉,吴金鹏,王亚卓,杨越超,申天琳. 控释氮肥在稻麦轮作体系上应用的研究进展. 山东农业大学学报(自然科学版). 2023(06): 923-929 .
![]() |