Citation: | WANG Jing-xin, ZHAO Yu, XIA Xue-yan, CUI Ji-han, WEI Zhi-min, LI Shun-guo. Research progress on the mechanisms and nutrient efficiency indicators for minor cereal crops of the Poaceae family[J]. Journal of Plant Nutrition and Fertilizers, 2024, 30(4): 786-800. DOI: 10.11674/zwyf.2023451 |
There are large area of medium- and low-yield farmlands in China, nutrient deficiency has been a key factor limiting crop production in these areas. Foxtail millet, proso millet and sorghum are the traditional minor cereal crops in China, having the properties of higher photosynthetic efficiency, drought and barren tolerance. They are more suitable to drought and nutrient deficient conditions than the main staple crops like wheat, rice, and maize. However, researches on nutrient efficiency mainly focuses on staple crops, fewer on minor cereal crops. In this paper, we systematically summarized the researches about the efficient utilization of N, P, and K in foxtail millet, proso millet and sorghum, and the screened indicators for nutrient efficiency in these minor cereal crops. The reported morphological indicators include above ground dry weight, panicle diameter, panicle weight, grass weight, yield, et al. Physiological indicators include nitrogen assimilation enzyme activity, phosphorus accumulation, photosynthetic nutrient use efficiency, etc. The main indicators for nutrient absorption efficiency include root size, root length, lateral root branching, and root diameter, as well as candidate genes, which may be involved in nutrient efficiency, NRT1, PHR1, potassium transporter HAK, and potassium channel protein Shaker. In the future, more researches should be carried out on the characteristics of high photosynthetic efficiency and drought and sterility tolerance of root systems in minor cereal crops; the interspecific and intraspecific variations of photosynthetic nutrient efficiency using transcriptomic methods, especially the mechanisms caused by nitrogen and phosphorus component variations in plants; the root morphology traits and the derivative root-microbial interactions on the nutrient absorption efficiency of minor cereal crops. These research results will provide theoretical guidance for the cultivation of nutrient-efficient grain cultivars and efficient cultivation techniques.
[1] |
贾冠清, 刁现民. 谷子(Setaria italica (L.) P. Beauv.)作为功能基因组研究模式植物的发展现状及趋势[J]. 生命科学, 2017, 29(3): 292−301.
Jia G Q, Diao X M. Current status and perspectives of researches on foxtail millet (Setaria italica (L.) P. Beauv.): A potential model of plant functional genomics studies[J]. Chinese Bulletin of Life Sciences, 2017, 29(3): 292−301.
|
[2] |
Zhang Y Y, Han H K, Zhang D Z, et al. Effects of ridging and mulching combined practices on proso millet growth and yield in semi-arid regions of China[J]. Field Crops Research, 2017, 213: 65−74. DOI: 10.1016/j.fcr.2017.06.015
|
[3] |
李顺国, 刘猛, 刘斐, 等. 中国高粱产业和种业发展现状与未来展望[J]. 中国农业科学, 2021, 54(3): 471−482.
Li S G, Liu M, Liu F, et al. Current status and future prospective of sorghum production and seed industry in China[J]. Scientia Agricultura Sinica, 2021, 54(3): 471−482.
|
[4] |
何新华, 李明启. C3和C4禾本科作物的氮素利用效率[J]. 植物学通报, 1995, 12(3): 20−27.
He X H, Li M Q. The efficiency of nitrogen utilization in C3 and C4 cereals[J]. Chinese Bulletin of Botany, 1995, 12(3): 20−27.
|
[5] |
陈二影, 杨延兵, 秦岭, 等. 谷子苗期氮高效品种筛选及相关特性分析[J]. 中国农业科学, 2016, 49(17): 3287−3297.
Chen E Y, Yang Y B, Qin L, et al. Evaluation of nitrogen efficient cultivars of foxtail millet and analysis of the related characters at seedling stage[J]. Scientia Agricultura Sinica, 2016, 49(17): 3287−3297.
|
[6] |
时丽冉, 郝洪波, 李明哲. 不同基因型谷子幼苗期对低氮胁迫的响应[J]. 作物杂志, 2014, (4): 75−79.
Shi L R, Hao H B, Li M Z. Biological response of in seedling stage different foxtail millet genotypes to low nitrogen stress[J]. Crops, 2014, (4): 75−79.
|
[7] |
黄兴东. 谷子耐低氮胁迫品种资源的筛选与鉴定[D]. 山西晋中: 山西农业大学硕士学位论文, 2017.
Huang X D. Screening and identification of resistance to low nitrogen varieties of foxtail millet[D]. Jinzhong, Shanxi: MS Thesis of Shanxi Agricultural University, 2017.
|
[8] |
梁兴萍, 冯唯欣, 秦鹏飞, 等. 谷子耐低氮品种的筛选[J]. 山西农业科学, 2016, 44(12): 1747−1750. DOI: 10.3969/j.issn.1002-2481.2016.12.01
Liang X P, Feng W X, Qin P F, et al. Screening of resistance to low nitrogen varieties of millet[J]. Journal of Shanxi Agricultural Sciences, 2016, 44(12): 1747−1750. DOI: 10.3969/j.issn.1002-2481.2016.12.01
|
[9] |
张立媛, 琦明玉, 李志光, 等. 不同谷子品种氮素吸收与利用差异的研究[J]. 东北农业科学, 2021, 46(1): 13−16.
Zhang L Y, Qi M Y, Li Z G, et al. Study on the difference of nitrogen uptake and utilization in different millet varieties[J]. Journal of Northeast Agricultural Sciences, 2021, 46(1): 13−16.
|
[10] |
秦娜, 马春业, 朱灿灿, 等. 谷子氮高效基因型筛选及相关特性分析[J]. 河南农业科学, 2019, 48(5): 22−29.
Qin N, Ma C Y, Zhu C C, et al. Screening of foxtail millet genotype with high nitrogen use efficiency and analysis of related characters[J]. Journal of Henan Agricultural Sciences., 2019, 48(5): 22−29.
|
[11] |
Soratto R P, Lima E V, Silva T R B, et al. Nitrogen fertilization of fall panicum cultivars (Panicum dichotomiflorum Michx.): biochemical and agronomical aspects[J]. Scientia Agricola, 2004, 61: 82–87.
|
[12] |
Eduardo D, Tiago R, RogÉrio P, et al. Relationship between chlorophyll meter accepted manuscript readings and total N in fall panicum leaves (Panicum miliaceum L.) as affected by nitrogen topdressing[J]. Revista Brasileira De Ciencia Do Solo, 2007, 6(2): 149−158.
|
[13] |
Gong X W, Li J, Ma H C, et al. Nitrogen deficiency induced a decrease in grain yield related to photosynthetic characteristics, carbon–nitrogen balance and nitrogen use efficiency in proso millet (Panicum miliaceum L.)[J]. Archives of Agronomy and Soil Science, 2019, 66(3): 398−413.
|
[14] |
张美俊, 杨武德, 乔治军, 等. 不同糜子品种萌发期对干旱胁迫的响应及抗旱性评价[J]. 草地学报, 2013, 21(2): 302−307.
Zhang M J, Yang W D, Qiao Z J, et al. Resistance evaluation and response of 16 millet varieties at germination stage to drought stress[J]. Acta Agrestia Sinica, 2013, 21(2): 302−307.
|
[15] |
张永清, 苗果园. 生土施肥对黍子根系生长及生理生态效应的影响[J]. 水土保持学报, 2006, 20(3): 158−161.
Zhang Y Q, Miao G Y. Effects of fertilizing in immature soil to broomcorn millet root growing and its physiological ecology[J]. Journal of Soil and Water Conservation, 2006, 20(3): 158−161.
|
[16] |
Liu C J, Yuan Y H, Liu J J, et al. Comparative transcriptome and physiological analysis unravel proso millet (Panicum miliaceum L.) source leaf adaptation to nitrogen deficiency with high nitrogen use efficiency[J]. Environmental and Experimental Botany, 2022, 199: 104891. DOI: 10.1016/j.envexpbot.2022.104891
|
[17] |
陈凌, 王君杰, 王海岗, 等. 耐低氮糜子品种的筛选及农艺性状的综合评价[J]. 中国农业科学, 2020, 53(16): 3214−3225.
Chen L, Wang J J, Wang H G, et al. Screening of broomcorn millet varieties tolerant to low nitrogen stress and the comprehensive evaluation of their agronomic traits[J]. Scientia Agricultura Sinica, 2020, 53(16): 3214−3225.
|
[18] |
张磊, 杨天育, 刘天鹏, 等. 半干旱条件下糜子氮磷积累、分配及利用效率的差异[J]. 甘肃农业大学学报, 2020, 55(3), 62−70: 77.
Zhang L, Yang T Y, Liu T P, et al. Accumulation, distribution and utilization efficiency of nitrogen and phosphorus in broomcorn millet varieties under semi-arid condition[J]. Journal of Gansu Agricultural University, 2020, 55(3): 62−70, 77.
|
[19] |
尹新华, 曹翠玉, 史瑞和. 不同施氮水平对夏高粱产量和品质的影响[J]. 南京农业大学学报, 1990, 13(4): 126−128.
Yin X H, Cao C Y, Shi R H. Effects of different nitrogen application levels on yield and quality of summer sorghum[J]. Journal of Nanjing Agricultural University, 1990, 13(4): 126−128.
|
[20] |
刘鹏, 南江宽, 平俊爱, 等. 不同基因型高粱的氮效率及对低氮胁迫的生理响应[J]. 中国农业科学, 2018, 51(16): 3074−3083.
Liu P, Nan J K, Ping J A, et al. Nitrogen use efficiency and physiological responses of different sorghum genotypes influenced by nitrogen deficiency[J]. Scientia Agricultura Sinica, 2018, 51(16): 3074−3083.
|
[21] |
杨广东. 高寒地区不同基因型高粱氮素响应机制研究[D]. 辽宁沈阳: 沈阳农业大学博士学位论文, 2020.
Yang G D. Study on nitrogen response mechanism of different genotypes of sorghum in alpine region[D]. Shenyang, Liaoning: PhD Dissertation of Shenyang Agricultural University, 2020.
|
[22] |
Maharajan T, Ceasar S A, Krishna T P A, Ignacimuthu S. Phosphate supply influenced the growth, yield and expression of PHT1 family phosphate transporters in seven millets[J]. Planta, 2019, 250: 1433−1448. DOI: 10.1007/s00425-019-03237-9
|
[23] |
Ceasar S A, Hodge A, Baker A, et al. Phosphate concentration and arbuscular mycorrhizal colonisation influence the growth, yield and expression of twelve PHT1 family phosphate transporters in foxtail millet (Setaria italica)[J]. PLoS ONE, 2014, 9(9): e108459. DOI: 10.1371/journal.pone.0108459
|
[24] |
Ceasar S A, Baker A, Ignacimuthu S. Functional characterization of the PHT1 family transporters of foxtail millet with development of a novel agrobacterium-mediated transformation procedure[J]. Scientific Report, 2017, 7(1): 14064. DOI: 10.1038/s41598-017-14447-0
|
[25] |
Ahmad Z, Nadeem F, Wang R F, et al. A larger root system is coupled with contrasting expression patterns of phosphate and nitrate transporters in foxtail millet [Setaria italica (L.) Beauv.] under phosphate limitation[J]. Frontiers in Plant Science, 2018, 9: 390355.
|
[26] |
Ceasar S A, Ramakrishnan M, Vinod K K, et al. Phenotypic responses of foxtail millet (Setaria italica) genotypes to phosphate supply under greenhouse and natural field conditions[J]. PLoS ONE, 2020, 15(6): e0233896. DOI: 10.1371/journal.pone.0233896
|
[27] |
邱双, 闫双堆, 刘利军. 不同谷子品种耐低磷能力研究[J]. 作物杂志, 2017, (2): 139−144.
Qiu S, Yan S D, Liu L J. Tolerance to low phosphorus by different foxtail millet varieties[J]. Crops, 2017, (2): 139−144.
|
[28] |
邱双, 刘利军, 闫双堆, 等. 低磷胁迫下谷子的磷吸收利用效率[J]. 山西农业科学, 2016, 44(6): 786−789.
Qiu S, Liu L J, Yan S D, et al. Study on the phosphorus absorption and utilization efficiency in millet under low phosphorus stress[J]. Journal of Shanxi Agricultural Sciences, 2016, 44(6): 786−789.
|
[29] |
邱双. 谷子不同磷效率品种筛选及其生理特性研究[D]. 山西晋中: 山西农业大学硕士学位论文, 2017.
Qiu S. Research on different phosphorus efficiency of foxtail millet screening and its physiological characters[D]. Jinzhong, Shanxi: MS Thesis of Shanxi Agricultural University, 2017.
|
[30] |
李明明. 磷水平对谷子产量及主要营养品质的影响[D]. 山西晋中: 山西农业大学硕士学位论文, 2021.
Li M M. Effects of phosphorus level on yield and main nutritional quality of foxtail millet[D]. Jinzhong, Shanxi: MS Thesis of Shanxi Agricultural University, 2021.
|
[31] |
苑乂川. 谷子苗期耐低磷种质资源挖掘及其相关性状的GWAS分析[D]. 山西晋中: 山西农业大学硕士学位论文, 2019.
Yuan Y C. Excavation of germplasm resources for low phosphorus tolerance at seedling stage and GWAS of its related traits in foxtail millet[D]. Jinzhong, Shanxi: MS Thesis of Shanxi Agricultural University, 2019.
|
[32] |
李萍. 谷子耐低磷种质的评价及其相关性状的全基因组关联分析[D]. 山西晋中: 山西农业大学硕士学位论文, 2020.
Li P. Evaluation of foxtail millet germplasm with low phosphorus tolerance and genome-wide association analysis of related characters[D]. Jinzhong, Shanxi: MS Thesis of Shanxi Agricultural University, 2021.
|
[33] |
吴年隆. 谷子苗期耐低磷种质资源的筛选及其代谢物特征分析[D]. 山西晋中: 山西农业大学硕士学位论文, 2021.
Wu N L. Screening of low phosphorus tolerant germplasm in foxtail millet at seedling stage and analysis of its metabolites[D]. Jinzhong, Shanxi: MS Thesis of Shanxi Agricultural University, 2021.
|
[34] |
Leiser W L, Rattunde H F, Weltzien E, et al. Phosphorus uptake and use efficiency of diverse West and Central African sorghum genotypes under field conditions in Mali[J]. Plant and Soil, 2014, 377: 383−394. DOI: 10.1007/s11104-013-1978-4
|
[35] |
Zhang J L, Jiang F F, Shen Y X, et al. Transcriptome analysis reveals candidate genes related to phosphorus starvation tolerance in sorghum[J]. BMC Plant Biology, 2019, 19: 306. DOI: 10.1186/s12870-019-1914-8
|
[36] |
李景琳, 苗桂珍, 李淑芬. 高粱籽粒产量和氮磷钾施用量的研究[J]. 国外农学: 杂粮作物, 1994, (5): 37−40.
Li J L, Miao G Z, Li S F. Study on the grain yield and nitrogen, phosphorus, and potassium application of sorghum[J]. Rain Fed Crops, 1994, (5): 37−40.
|
[37] |
郭有. 谈谈杂交高粱追肥[J]. 新农业, 1978, (13): 5−6.
Guo Y. Talk about fertilization of hybrid sorghum[J]. New Agriculture, 1978, (13): 5−6.
|
[38] |
马建华, 王玉国, 孙毅, 等. 低磷胁迫对不同品种高粱苗期形态及生理指标的影响[J]. 植物营养与肥料学报, 2013, 19(5): 1083−1091.
Ma J H, Wang Y G, Sun Y, et al. Effects of low phosphorous stress on the morphologies and physiological indices of different sorghum cultivars at seedling stage[J]. Journal of Plant Nutrition and Fertilizers, 2013, 19(5): 1083−1091.
|
[39] |
Wieneke J. Phosphorus efficiency and phosphorus remobilization in two sorghum (Sorghum bicolor (L.) Moench) cultivars[J]. Plant and Soil, 1990, 123: 139−145. DOI: 10.1007/BF00011259
|
[40] |
Hufnagel B, De Sousa S M, Assis L, et al. Duplicate and conquer: Multiple homologs of PHOSPHORUS-STARVATION TOLERANCE1 enhance phosphorus acquisition and sorghum performance on low-phosphorus soils[J]. Plant Physiology, 2014, 166(2): 659−677.
|
[41] |
Drouillon M, Merckx R. The role of citric acid as a phosphorus mobilization mechanism in highly P-fixing soils[J]. Gayana Botanica, 2003, 60(1): 55−62.
|
[42] |
Magalhaes J V, Liu J, Guimarães C T, et al. A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum[J]. Nature Genetics, 2007, 39(9): 1156−1161. DOI: 10.1038/ng2074
|
[43] |
Cochrane T T, Cochrane T A. The vital role of potassium in the osmotic mechanism of stomata aperture modulation and its link with potassium deficiency[J]. Plant Signaling & Behavior, 2009, 4(3): 240−243.
|
[44] |
李艳芬, 郑君岗, 尹美强, 等. 低钾胁迫对谷子幼苗叶片光合作用的影响[J]. 西北植物学报, 2022, 42(6): 1012−1021.
Li Y F, Zheng J G, Yin M Q, et al. Effect of potassium stress on leaf photosynthesis of millet seedlings[J]. Acta Botanica Boreali-Occidentalia Sinica, 2022, 42(6): 1012−1021.
|
[45] |
宋淑贤. 不同施钾量对谷子干物质及产量的影响[J]. 现代农业科技, 2015, (19): 9−10. DOI: 10.3969/j.issn.1007-5739.2015.19.001
Song S X. Effect of different potassium fertilization amount on dry material and yield of millet[J]. Modern Agricultural Science and Technology, 2015, (19): 9−10. DOI: 10.3969/j.issn.1007-5739.2015.19.001
|
[46] |
宋淑贤, 田伯红, 王建广, 等. 不同施钾量对谷子生长及产量的影响[J]. 辽宁农业科学, 2015, (6): 6−8.
Song S X, Tian B H, Wang J G, et al. Effects of different potassium application rates on the growth and yield of millet[J]. Liaoning Agricultural Sciences, 2015, (6): 6−8.
|
[47] |
万凯旋. 谷子耐低钾品种筛选及其生理生化研究[D]. 山西晋中: 山西农业大学硕士学位论文, 2020.
Wan K X. Screening of foxtail foxtail millet varieties with tolerance to low-potassium and study on its physiological and biochemical mechanis[D]. Jinzhong, Shanxi: MS Thesis of Shanxi Agricultural University, 2020.
|
[48] |
王文忠, 张珠玉. 不同施钾量对谷子吸收N P K Ca Mg Fe Mn Cu Zn的影响[J]. 山西农业大学学报(自然科学版), 1991, 11(3): 208−212.
Wang W Z, Zhang Z Y. Effect of different potassium application on the absorption of N P K Ca Mg Fe Mn Cu Zn by millet[J]. Journal of Shanxi Agricultural University (Natural Science Edition), 1991, 11(3): 208−212.
|
[49] |
张亚琦, 李淑文, 付巍, 文宏达. 施氮对杂交谷子产量与光合特性及水分利用效率的影响[J]. 植物营养与肥料学报, 2014, 20(5): 1119−1126.
Zhang Y Q, Li S W, Fu W, Wen H D. Effects of nitrogen application on yield, photosynthetic characteristics and water use efficiency of hybrid millet[J]. Journal of Plant Nutrition and Fertilizers, 2014, 20(5): 1119−1126.
|
[50] |
任月梅, 杨忠, 郭瑞锋, 等. 不同施肥水平对大同34号谷子产量的影响[J]. 北方农业学报, 2016, 44(4): 27−30.
Ren Y M, Yang Z, Guo R F, et al. Effects of different fertilization levels on yield of Datong 34 millet[J]. Journal of Northern Agriculture, 2016, 44(4): 27−30.
|
[51] |
王二辉. 谷子转录因子基因SiNAC45与SiMYB9的克隆及功能验证[D]. 陕西杨凌: 西北农林科技大学硕士学位论文, 2015.
Wang E H. The cloning and functional analysis of transcription factor gene SiNAC45 and SiMYB9 from foxtail millet[D]. Yangling, Shaanxi: MS Thesis of Northwest A&F University, 2015.
|
[52] |
Zhang H W, Xiao W, Yu W W, et al. Foxtail millet SiHAK1 excites extreme high-affinity K+ uptake to maintain K+ homeostasis under low K+ or salt stress[J]. Plant Cell Reports, 2018, 37: 1533−1546. DOI: 10.1007/s00299-018-2325-2
|
[53] |
梁诗涵. 糜子钾高效种质资源筛选评价及生理机制研究[D]. 陕西杨凌: 西北农林科技大学硕士学位论文, 2022.
Liang S H. Stress screening of potassium-efficient germplasm resources of proso millet (panicum miliaceum L.) and study on physiological mechanism[D]. Yangling, Shaanxi: MS Thesis of Northwest A&F University, 2022.
|
[54] |
安景文, 王潇. 高粱需钾特性及施钾效果研究[J]. 国外农学: 杂粮作物, 1998, 18(3): 34−36.
An J W, Wang X. Study on potassium requirement characteristics and potassium application effect of sorghum[J]. Rain Fed Crops, 1998, 18(3): 34−36.
|
[55] |
Zhu J X, Li D, Wang P, et al. Transcriptome and ionome analysis of nitrogen, phosphorus and potassium interactions in sorghum seedlings[J]. Theoretical and Experimental Plant Physiology, 2020, 32(4): 271−285. DOI: 10.1007/s40626-020-00183-w
|
[56] |
Ramakrishnan M, Ceasar S A, Vinod K K. Identification of putative QTLs for seedling stage phosphorus starvation response in finger millet (Eleusine coracana L. Gaertn.) by association mapping and cross species synteny analysis[J]. PLoS ONE, 2017, 12(8): e0183261. DOI: 10.1371/journal.pone.0183261
|
[57] |
Maharajan T, Ajeesh Krishna T P, Rakkammal K, et al. Identification of QTL associated with agro-morphological and phosphorus content traits in finger millet under differential phosphorus supply via linkage mapping[J]. Agriculture, 2023, 13(2): 262. DOI: 10.3390/agriculture13020262
|
[58] |
Gemenet D, Leiser W, Zangre R, et al. Association analysis of low-phosphorus tolerance in West African pearl millet using DArT markers[J]. Molecular Breeding, 2015, 35: 171. DOI: 10.1007/s11032-015-0361-y
|
[59] |
Bandyopadhyay T, Swarbreck S M, Jaiswal V, et al. GWAS identifies genetic loci underlying nitrogen responsiveness in the climate resilient C4 model Setaria italica (L.)[J]. Journal of Advanced Research, 2022, 42: 249−261. DOI: 10.1016/j.jare.2022.01.010
|
[60] |
Chen E Y, Qin L, Li F, et al. Physiological and transcriptomic analysis provides insights into low nitrogen stress in foxtail millet (Setaria italica L.)[J]. International Journal of Molecular Sciences. 2023, 24(22): 16321.
|
[61] |
Xing G F, Jin M S, Yue P Y, et al. Role of SiPHR1 in the response to low phosphate in foxtail millet via comparative transcriptomic and co-expression network analyses[J]. International Journal of Molecular Sciences, 2023, 24(16): 12786. DOI: 10.3390/ijms241612786
|
[62] |
Ge L H, Dou Y N, Li M M, et al. SiMYB3 in foxtail millet (Setaria italica) confers tolerance to low-nitrogen stress by regulating root growth in transgenic plants[J]. International Journal of Molecular Sciences, 2019, 20(22): 5741. DOI: 10.3390/ijms20225741
|
[63] |
方广宁, 胡利芹, 王二辉, 等. 谷子转录因子SiNF-YA6的过表达提高转基因植株对低氮胁迫的抗性[J]. 中国农业科学, 2015, 48(20): 3989−3997.
Fang G N, Hu L Q, Wang E H, et al. Overexpression of a transcription factor gene SiNF-YA6 from millet (Setaria italica) enhanced the resistance of transgenic plants to nitrogen starvation[J]. Scientia Agricultura Sinica, 2015, 48(20): 3989−3997.
|
[64] |
薛飞洋. 谷子苗期低氮胁迫转录组测序及蛋白磷酸酶2C (PP2C) 基因家族的特性分析[D]. 陕西杨凌: 西北农林科技大学硕士学位论文, 2013.
Xue F Y. Transcriptome sequencing of seedling foxtail millet response to low nitrogen stress and characteristics analysis of protein phosphatase 2C (PP2C) gene family in foxtail millet[D]. Yangling, Shaanxi: MS Thesis of Northwest A&F University, 2013.
|
[65] |
Li W W, Chen M, Wang E H, et al. Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice[J]. Genomics, 2016, 17: 797.
|
[66] |
Ma X Q, Khan N U, Dai S T, et al. Transcriptome analysis and identification of the low potassium stress-responsive gene SiSnRK2.6 in foxtail millet (Setaria italica L.)[J]. 2024, 137(1): 22.
|
[67] |
Rajput S G, Santra D K, Schnable J. Mapping QTLs for morpho-agronomic traits in proso millet (Panicum miliaceum L.)[J]. Molecular Breeding, 2016, 36: 37. DOI: 10.1007/s11032-016-0460-4
|
[68] |
Gelli M, Mitchell S E, Liu K, et al. Mapping QTLs and association of differentially expressed gene transcripts for multiple agronomic traits under different nitrogen levels in sorghum[J]. BMC Plant Biology, 2016, 16: 16. DOI: 10.1186/s12870-015-0696-x
|
[69] |
Gelli M, Konda A R, Liu K, et al. Validation of QTL mapping and transcriptome profiling for identification of candidate genes associated with nitrogen stress tolerance in sorghum[J]. BMC Plant Biology, 2017, 17(1): 123. DOI: 10.1186/s12870-017-1064-9
|
[70] |
Gladman N P, Hufnagel B, Regulski M, et al. Sorghum root epigenetic landscape during limiting phosphorus conditions[M]. New York: Cold Spring Harbor Laboratory Press, 2021.
|
[71] |
Gelli M, Duo Y C, Konda A R, et al. Identification of differentially expressed genes between sorghum genotypes with contrasting nitrogen stress tolerance by genome-wide transcriptional profiling[J]. BMC Genomics, 2014, 15: 179. DOI: 10.1186/1471-2164-15-179
|
[72] |
马建华. 高粱低磷低氮形态生理特征及低氮响应的microRNA研究[D]. 山西晋中: 山西农业大学博士学位论文, 2014.
Ma J H. The morphological and physiological characteristics under low phosphorus of sorghum and the study of sorghum MicroRNA under low nitrogen stress[D]. Jinzhong, Shanxi: PhD Dissertation of Shanxi Agricultural University, 2014.
|
[73] |
Amiour N, Imbaud S, Clement G, et al. The use of metabolomics integrated with transcriptomic and proteomic studies for identifying key steps involved in the control of nitrogen metabolism in crops such as maize[J]. Journal of Experimental Botany, 2012, 63(14): 5017−5033. DOI: 10.1093/jxb/ers186
|
[74] |
Meng X D, Wang X C, Zhang Z Y, et al. Transcriptomic, proteomic, and physiological studies reveal key players in wheat nitrogen use efficiency under both high and low nitrogen supply[J]. Journal of Experimental Botany, 2021, 72(12): 4435−4456. DOI: 10.1093/jxb/erab153
|
[75] |
He K H, Xu S T, Zhang X H, et al. Mining of candidate genes for nitrogen use efficiency in maize based on genome-wide association study[J]. Molecular Breeding, 2020, 40: 83. DOI: 10.1007/s11032-020-01163-3
|
[76] |
Zhang H Y, Wang J Y, Wang J, et al. Integrated lipidomic and transcriptomic analysis reveals lipid metabolism in foxtail millet (setaria italica)[J]. Frontiers in Genetics, 2021, 12: 758003. DOI: 10.3389/fgene.2021.758003
|
[77] |
Chen Y L, Xiao C X, Chen X C, et al. Characterization of the plant traits contributed to high grain yield and high grain nitrogen concentration in maize[J]. Field Crops Research, 2014, 159: 1−9. DOI: 10.1016/j.fcr.2014.01.002
|
[78] |
Chen Y L, Xiao C X, Wu D L, et al. Effects of nitrogen application rate on grain yield and grain nitrogen concentration in two maize hybrids with contrasting nitrogen remobilization efficiency[J]. European Journal of Agronomy, 2015, 62: 79−89. DOI: 10.1016/j.eja.2014.09.008
|
[79] |
Mu X H, Chen Q W, Chen F J, et al. Dynamic remobilization of leaf nitrogen components in relation to photosynthetic rate during grain filling in maize[J]. Plant Physiology and Biochemistry, 2018, 129: 27−34. DOI: 10.1016/j.plaphy.2018.05.020
|
[80] |
Moon M, Kang K S, Park I K, et al. Effects of leaf nitrogen allocation on the photosynthetic nitrogen-use efficiency of seedlings of three tropical species in Indonesia[J]. Journal of the Korean Society for Applied Biological Chemistry, 2015, 58: 511−519. DOI: 10.1007/s13765-015-0074-2
|
[81] |
Pons T L, Westbeek M H M. Analysis of differences in photosynthetic nitrogen-use efficiency between four contrasting species[J]. Physiologia Plantarum, 2004, 122(1): 68−78. DOI: 10.1111/j.1399-3054.2004.00380.x
|
[82] |
Makino A, Sakuma H, Sudo E, Mae T. Differences between maize and rice in N-use efficiency for photosynthesis and protein allocation[J]. Plant and Cell Physiology, 2003, 44(9): 952−956. DOI: 10.1093/pcp/pcg113
|
[83] |
Hanba Y T, Miyazawa S I, Terashima I. The influence of leaf thickness on the CO2 transfer conductance and leaf stable carbon isotope ratio for some evergreen tree species in Japanese warm-temperate forests[J]. Functional Ecology, 1999, 13(5): 632−639. DOI: 10.1046/j.1365-2435.1999.00364.x
|
[84] |
Hidaka A, Kitayama K. Divergent patterns of photosynthetic phosphorus-use efficiency versus nitrogen-use efficiency of tree leaves along nutrient-availability gradients[J]. Journal of Ecology, 2009, 97(5): 984−991. DOI: 10.1111/j.1365-2745.2009.01540.x
|
[85] |
Pons T L, van der Werf A, Lambers H. Photosynthetic nitrogen use efficiency of inherently low- and fast-growing species: Possible explanations for observed differences[M]. A whole plant perspective on carbon–nitrogen interactions. New York: SPB Academic Publishing, 1994.
|
[86] |
Meinzer F C, Zhu J. Nitrogen stress reduces the efficiency of the C4 CO2 concentrating system, and therefore quantum yield, in Saccharum (sugarcane) species[J]. Journal of Experimental Botany, 1998, 49: 1227−1234.
|
[87] |
Tian Z, Chai H, Guo H, et al. Genetic improvement of photosynthetic nitrogen use efficiency of winter wheat in the Yangtze River Basin of China[J]. Field Crops Research, 2024, 305: 109199. DOI: 10.1016/j.fcr.2023.109199
|
[88] |
薛盈文, 苗兴芬, 王玉凤. 施氮对谷子光合特性及产量和品质的影响[J]. 黑龙江八一农垦大学学报, 2019, 31(4): 1−7.
Xue Y W, Miao X F, Wang Y F. Effects of nitrogen application on photosynthetic, yield and quality of foxtail millet[J]. Journal of Heilongjiang Bayi Agricultural University, 2019, 31(4): 1−7.
|
[89] |
王君杰, 王海岗, 陈凌, 等. 谷子EMS矮秆突变体的产量性状分析[J]. 核农学报, 2022, 36(12): 2330−2337.
Wang J J, Wang H G, Chen L, et al. Analysis of yield characters of EMS dwarf mutant in foxtail millet[J]. Journal of Nuclear Agricultural Sciences, 2022, 36(12): 2330−2337.
|
[90] |
王佳旭, 张旷野, 张飞, 等. 施氮方式及用量改善高粱光合特性及土壤微生物群落特征[J]. 山西农业大学学报(自然科学版), 2022, 42(5): 17−26.
Wang J X, Zhang K Y, Zhang F, et al. Effects of nitrogen application methods and amounts on photosynthetic characteristics and soil microbial community characteristics of sorghum[J]. Journal of Shanxi Agricultural University (Natural Science Edition), 2022, 42(5): 17−26.
|
[91] |
刘春娟. 糜子对低氮胁迫的响应及耐低氮基因挖掘研究[D]. 陕西杨凌: 西北农林科技大学博士学位论文, 2021.
Liu C J. Response of proso millet to low nitrogen stress and excavation of low nitrogen tolerant genes[D]. Yangling, Shaanxi: PhD Dissertation of Northwest A&F University, 2021.
|
[92] |
田倩. 施氮量对甜高粱叶片氮分配及其干物质生产的影响[D]. 江苏南京: 南京农业大学硕士学位论文, 2019.
Tian Q. Effects of nitrogen application on leaf nitrogen partioning and dry matter production in sweet sorghum[D]. Nanjing, Jiangsu: MS Thesis of Nanjing Agricultural University, 2019.
|
[93] |
Lambers H, Poorter H. Inherent variation in growth rate between higher plants: A search for physiological causes and ecological consequences[J]. Advances in Ecological Research, 1992, 23: 187−261.
|
[94] |
Ghannoum O, Paul M J, Ward J L, et al. The sensitivity of photosynthesis to phosphorus deficiency differs between C3 and C4 tropical grass[J]. Functional Plant Biology, 2008, 35(3): 213−221. DOI: 10.1071/FP07256
|
[95] |
Guilherme Pereira C, Clode P L, Oliveira R S, Lambers H. Eudicots from severely phosphorus-impoverished environments preferentially allocate phosphorus to their mesophyll[J]. New Phytologist, 2018, 218(3): 959−973. DOI: 10.1111/nph.15043
|
[96] |
Warren C R. How does P affect photosynthesis and metabolite profiles of Eucalyptus globulus?[J]. Tree Physiology, 2011, 31(7): 727−739. DOI: 10.1093/treephys/tpr064
|
[97] |
Hidaka A, Kitayama K. Relationship between photosynthetic phosphorus-use efficiency and foliar phosphorus fractions in tropical tree species[J]. Ecology and Evolution, 2013, 3(15): 4872−4880. DOI: 10.1002/ece3.861
|
[98] |
Han Y, Hong W T, Xiong C Y, et al. Combining analyses of metabolite profiles and phosphorus fractions to explore high phosphorus utilization efficiency in maize[J]. Journal of Experimental Botany, 2022, 73(12): 4184−4203. DOI: 10.1093/jxb/erac117
|
[99] |
Lambers H, Finnegan P M, Jost R, et al. Phosphorus nutrition in Proteaceae and beyond[J]. Nature Plants, 2015, 1(8): 15109. DOI: 10.1038/nplants.2015.109
|
[100] |
Karley A J, Leigh R A, Sanders D. Differential ion accumulation and ion fluxes in the mesophyll and epidermis of barley[J]. Plant Physiology, 2000, 122(3): 835−844. DOI: 10.1104/pp.122.3.835
|
[101] |
Conn S, Gilliham M. Comparative physiology of elemental distributions in plants[J]. Annals of Botany, 2010, 105(7): 1081−1102. DOI: 10.1093/aob/mcq027
|
[102] |
Hayes P E, Adem G D, Pariasca-Tanaka J, et al. Leaf phosphorus fractionation in rice to understand internal phosphorus-use efficiency[J]. Annals of Botany, 2022, 129(3): 287−302. DOI: 10.1093/aob/mcab138
|
[103] |
Wen Z H, Pang J Y, Wang X, et al. Differences in foliar phosphorus fractions, rather than in cell-specific phosphorus allocation, underlie contrasting photosynthetic phosphorus use efficiency among chickpea genotypes[J]. Journal of Experimental Botany, 2023, 74(6): 1974−1989. DOI: 10.1093/jxb/erac519
|
[104] |
霍剑锋, 车文春, 孟宪瑞. 栽培措施对谷子叶片光合效率的影响[J]. 内蒙古农牧学院学报, 1993, 14(2): 43−49.
Huo J F, Che W C, Meng X R. Effects of agronomic practices on leaf net photosynthetic assimilation rate of leaves of millet (Setaria italica Beauv)[J]. Journal of Inner Mongola Institute of Agriculture and Animal Husbandry, 1993, 14(2): 43−49.
|
[105] |
杨艳君, 赵红梅, 曹玉风, 李洪燕. 施肥和密度对张杂谷5号叶绿素荧光特性的影响[J]. 华北农学报, 2015, 30(6): 201−208.
Yang Y J, Zhao H M, Cao Y F, Li H Y. Effects of fertilizer and density on chlorophyll fluorescence characteristics in foxtail millet hybrid Zhangzagu 5[J]. Acta Agriculturae Boreali-Sinica, 2015, 30(6): 201−208.
|
[106] |
Yang X E, Liu J X, Wang W M, et al. Potassium internal use efficiency relative to growth vigor, potassium distribution and carbohydrate allocation in rice genotypes[J]. Journal of Plant Nutrition, 2004, 27(5): 837−852. DOI: 10.1081/PLN-120030674
|
[107] |
Gupta S A, Berkowitz G A, Pier P A. Maintenance of photosynthesis at low leaf water potential in wheat: role of potassium status and irrigation history[J]. Plant Physiology, 1989, 89(4): 1358−1365. DOI: 10.1104/pp.89.4.1358
|
[108] |
Tsonev T, Velikova V, Yildiz-Aktas L, et al. Effect of water deficit and potassium fertilization on photosynthetic activity in cotton plants[J]. Plant Biosystems, 2011, 145(4): 841−847. DOI: 10.1080/11263504.2011.560199
|
[109] |
Lu Z F, Lu J W, Pan Y H, et al. Genotypic variation in photosynthetic limitation responses to K deficiency of Brassica napus is associated with potassium utilisation efficiency[J]. Functional Plant Biology, 2016, 43(9): 880−891. DOI: 10.1071/FP16098
|
[110] |
Gerardeaux E, Saur E, Constantin J, et al. Effect of carbon assimilation on dry weight production and partitioning during vegetative growth[J]. Plant and Soil, 2009, 324: 329−343. DOI: 10.1007/s11104-009-9950-z
|
[111] |
Vijayalakshmi D, Raveendran M. Physiological analysis of C3 rice [Oryza sativa (L.)] and C4 millet [Setaria italica (L.)] to identify photosynthetically efficient plants[J]. Indian Journal of Plant Physiology, 2018, 23: 193−200. DOI: 10.1007/s40502-018-0373-9
|
[112] |
再吐尼古丽·库尔班, 吐尔逊·吐尔洪, 涂振东, 艾克拜尔·伊拉洪. 不同施肥对干旱区高粱叶片光合特性及产量的影响[J]. 华北农学报, 2021, 36(2): 127−134.
Zaituniguli K, Tuerxun T, Tu Z D, Aikebaier Y. Effects of different fertilizers on photosynthetic characteristics and yield of Sorghum leaves in Arid areas[J]. Acta Agricuture Boreali-Sinica, 2021, 36(2): 127−134.
|
[113] |
唐玉劼, 郭容秋, 王鼐, 等. 高粱光合特性、水分利用效率鉴定及产量综合性分析[J]. 分子植物育种, 2023, 21(13): 4486−4494.
Tang Y J, Guo R Q, Wang N, et al. Identification of photosynthetic characteristics, water use efficiency and comprehensive analysis of yield in Sorghum[J]. Molecular Plant Breeding, 2023, 21(13): 4486−4494.
|
[114] |
冯国郡, 章建新, 李宏琪, 等. 甜高粱高光效种质的筛选和生理生化指标的比较[J]. 吉林农业大学学报, 2013, 35(3): 260−268.
Feng G J, Zhang J X, Li H Q, et al. Selection of high photosynthetic efficiency germplasm and comparative analysis of physiological indexes of sweet sorghum[J]. Journal of Jilin Agricultural University, 2013, 35(3): 260−268.
|
[115] |
Luo M Z, Zhang S, Tang C J, et al. Screening of mutants related to the C4 photosynthetic Kranz structure in foxtail millet[J]. Frontiers in Plant Science, 2018, 9: 335280.
|
[116] |
Tang C J, Luo M Z, Zhang S, et al. Variations in chlorophyll content, stomatal conductance and photosynthesis in Setaria EMS mutants[J]. Journal of Integrative Agriculture, 2023, 22(6): 1618−1630. DOI: 10.1016/j.jia.2022.10.014
|
[117] |
Ding Z S, Huang S H, Zhou B Y, et al. Over-expression of phosphoenolpyruvate carboxylase cDNA from C4 millet (Seteria italica) increase rice photosynthesis and yield under upland condition but not in wetland fields[J]. Plant Biotechnology Reports, 2013, 7: 155−163. DOI: 10.1007/s11816-012-0244-1
|
[118] |
代修茹. 利用多维组学数据解析C4光合途径相关基因转录调控机制[D]. 山东泰安: 山东农业大学博士学位论文, 2022.
Dai X R. Deciphering the transcriptional regulatory mechanisms of C4 photosynthetic genes using multidimensional omics data[D]. Tai’an, Shandong: PhD Dissertation of Shandong Agricultural University, 2022.
|
[119] |
刘为红, 孙黛珍, 卢布, 白丽仙. 谷子根系生长发育规律及环境条件对其影响的研究[J]. 干旱地区农业研究, 1996, 14(2): 20−25.
Liu W H, Sun D Z, Lu B, Bai L X. Research on laws or growth and development of millet root system and the enviornmental effects[J]. Agricultural Research in the Arid Areas, 1996, 14(2): 20−25.
|
[120] |
籍贵苏, 杜瑞恒, 张喜英. 高秆矮秆谷子根的遗传、分布差异及根与产量有关性状的相关研究[J]. 华北农学报, 1999, 2(14): 42−47.
Ji G S, Du R H, Zhang X Y. Root inheritance and distribution in high and short plant types of foxtail millet and correlation of root characters with yield related characters[J]. Acta Agriculturae Boreali-Sinica, 1999, 14(2): 42−47.
|
[121] |
杨丽雯, 张永清. 4种旱作谷类作物根系发育规律的研究[J]. 中国农业科学, 2011, 44(11): 2244−2251.
Yang L W, Zhang Y Q. Developing patterns of root systems of four cereal crops planted in dryland areas[J]. Scientia Agricultura Sinica, 2011, 44(11): 2244−2251.
|
[122] |
张文英, 智慧, 柳斌辉, 等. 豫谷1号和青狗尾草RIL群体根系变异和垂直分布[J]. 作物学报, 2014, 40(10): 1717−1724. DOI: 10.3724/SP.J.1006.2014.01717
Zhang W Y, Zhi H, Liu B H, et al. Phenotype variation and vertical distribution of foxtail millet root system in RIL from a cross of Yugu1 × wild green Foxtail W53[J]. Acta Agronomica Sinica, 2014, 40(10): 1717−1724. DOI: 10.3724/SP.J.1006.2014.01717
|
[123] |
Mollier A, Pellerin S. Maize root system growth and development as influenced by phosphorus deficiency[J]. Journal of Experimental Botany, 1999, 50: 487−497. DOI: 10.1093/jxb/50.333.487
|
[124] |
Williamson L C, Ribrioux S P C P, Fitter A H, Leyser H M O. Phosphate availability regulates root system architecture in Arabidopsis[J]. Plant Physiology, 2001, 126(2): 875−882. DOI: 10.1104/pp.126.2.875
|
[125] |
Reymond M, Svistoonoff S, Loudet O, et al. Identification of QTL controlling root growth response to phosphate starvation in Arabidopsis thaliana[J]. Plant Cell and Environment, 2006, 29(1): 115−125. DOI: 10.1111/j.1365-3040.2005.01405.x
|
[126] |
Ma J F, Goto S, Tamai K, Ichii M. Role of root hairs and lateral roots in silicon uptake by rice[J]. Plant Physiology, 2001, 127(4): 1773−1780. DOI: 10.1104/pp.010271
|
[127] |
Lynch J P. Root phenes for enhanced soil exploration and phosphorus acquisition: Tools for future crops[J]. Plant Physiology, 2011, 156(3): 1041−1049. DOI: 10.1104/pp.111.175414
|
[128] |
Shen J B, Yuan L X, Zhang J L, et al. Phosphorus dynamics: From soil to plant[J]. Plant Physiology, 2011, 156(3): 997−1005. DOI: 10.1104/pp.111.175232
|
[129] |
Lynch J P. Root phenotypes for improved nutrient capture: An underexploited opportunity for global agriculture[J]. New Phytologist, 2019, 223(2): 548−564. DOI: 10.1111/nph.15738
|
[130] |
Johnson J F, Vance C P, Allan D L. Phosphorus deficiency in Lupinus albus. Altered lateral root development and enhanced expression of phosphoenolpyruvate carboxylase[J]. Plant Physiology, 1996, 112(1): 31−41. DOI: 10.1104/pp.112.1.31
|
[131] |
Hinsinger P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: A review[J]. Plant and Soil, 2001, 237(2): 173−195. DOI: 10.1023/A:1013351617532
|
[132] |
Brinch-Pedersen H, Sørensen L D, Holm P B. Engineering crop plants: Getting a handle on phosphate[J]. Trends in Plant Science, 2002, 7(3): 118−125. DOI: 10.1016/S1360-1385(01)02222-1
|
[133] |
Lyu Y, Tang H L, Li H G, et al. Major crop species show differential balance between root morphological and physiological responses to variable phosphorus supply[J]. Frontiers in Plant Science, 2016, 7: 235088.
|
[134] |
Wen Z H, Li H B, Shen Q, et al. Tradeoffs among root morphology, exudation and mycorrhizal symbioses for phosphorus-acquisition strategies of 16 crop species[J]. New Phytologist, 2019, 223(2): 882−895. DOI: 10.1111/nph.15833
|
[135] |
Schnepf A, Leitner D, Klepsch S, et al. Modelling phosphorus dynamics in the soil–plant system[M]. Phosphorus in action: Biological processes in soil phosphorus cycling. Berlin: Springer Science & Business Media, 2011.
|
[136] |
Smith S E, Jakobsen I, Gronlund M, Smith F A. Roles of arbuscular mycorrhizas in plant phosphorus nutrition: Interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition[J]. Plant Physiology, 2011, 156(3): 1050−1057. DOI: 10.1104/pp.111.174581
|
[137] |
Ryan M H, Kidd D R, Sandral G A, et al. High variation in the percentage of root length colonised by arbuscular mycorrhizal fungi among 139 lines representing the species subterranean clover (Trifolium subterraneum)[J]. Applied Soil Ecology, 2016, 98: 221−232. DOI: 10.1016/j.apsoil.2015.10.019
|
[138] |
Liu B T, Li H B, Zhu B, et al. Complementarity in nutrient foraging strategies of absorptive fine roots and arbuscular mycorrhizal fungi across 14 coexisting subtropical tree species[J]. New Phytologist, 2015, 208(1): 125−136. DOI: 10.1111/nph.13434
|
[139] |
Li H B, Liu B T, McCormack M L, et al. Diverse belowground resource strategies underlie plant species coexistence and spatial distribution in three grasslands along a precipitation gradient[J]. New Phytologist, 2017, 216(4): 1140−1150. DOI: 10.1111/nph.14710
|
[140] |
Tian Q Y, Chen F J, Zhang F S, Mi G H. Genotypic difference in nitrogen acquisition ability in maize plants is related to the coordination of leaf and root growth[J]. Journal of Plant Nutrition, 2006, 29(2): 317−330. DOI: 10.1080/01904160500476905
|
[141] |
Tian Q Y, Sun P, Zhang W H. Ethylene is involved in nitrate dependent root growth and branching in Arabidopsis thaliana[J]. New Phytologist, 2009, 184(4): 918−931. DOI: 10.1111/j.1469-8137.2009.03004.x
|
[142] |
Gao K, Chen F J, Yuan L X, et al. A comprehensive analysis of root morphological changes and nitrogen allocation in maize in response to low nitrogen stress[J]. Plant Cell & Environment, 2015, 38(4): 740−750.
|
[143] |
Sun X C, Chen F J, Yuan L X, Mi G H. The physiological mechanism underlying root elongation in response to nitrogen deficiency in crop plants[J]. Planta, 2020, 251: 1−14. DOI: 10.1007/s00425-019-03297-x
|
[144] |
王宇珅, 张敏, 孟晓伟, 韩渊怀. 低氮胁迫对谷子苗期光合指标及生理性能的影响[J]. 山西农业科学, 2021, 49(12): 1483−1490.
Wang Y S, Zhang M, Meng X W, Han Y H. Effects of low nitrogen stress on photosynthesis indexes and physiological performance of foxtail millet at seedling stage[J]. Journal of Shanxi Agricultural Sciences, 2021, 49(12): 1483−1490.
|
[145] |
李邦, 刘春娟, 郭俊杰, 等. 低氮胁迫下外源色氨酸对高粱幼苗根系伸长的调控作用[J]. 作物学报, 2023, 49(5): 1372−1385.
Li B, Liu C J, Guo J J, et al. Effects of exogenous tryptophan on root elongation of sorghum seedlings under low nitrogen stress[J]. Acta Agronomica Sinica, 2023, 49(5): 1372−1385.
|
[146] |
Postma J A, Dathe A, Lynch J P. The optimal lateral root branching density for maize depends on nitrogen and phosphorus availability[J]. Plant Physiology, 2014, 166(2): 590−602. DOI: 10.1104/pp.113.233916
|
[147] |
Garnett T P, Rebetzke G J. Improving crop nitrogen use in dryland farming[M]. Rengel Z. Improving water and nutrient-use efficiency in food production systems. Chichester, UK: John Wiley and Sons, Inc, 2013.
|
[148] |
Forde B G. Nitrate transporters in plants: Structure, function and regulation[J]. BBA-Biomembranes, 2000, 1465(1/): 219−235.
|
[149] |
Tsay Y F, Chiu C C, Tsai C B, et al. Nitrate transporters and peptide transporters[J]. FEBS Letters, 2007, 581(12): 2290−2300. DOI: 10.1016/j.febslet.2007.04.047
|
[150] |
Cheng J J, Tan H L, Shan M, et al. Genome-wide identification and characterization of the NPF genes provide new insight into low nitrogen tolerance in Setaria[J]. Frontiers in Plant Science, 2022, 13: 1043832. DOI: 10.3389/fpls.2022.1043832
|
[151] |
Høgh-Jensen H, Pedersen M B. Morphological plasticity by crop plants and their potassium use efficiency[J]. Journal of Plant Nutrition, 2003, 26(5): 969−984. DOI: 10.1081/PLN-120020069
|
[152] |
于海秋, 夏乐, 郭焕茹, 等. 玉米耐低钾的根系吸收机制初探[J]. 安徽农业科学, 2007, 35(33): 10603−10604.
Yu H Q, Xia L, Guo H R, et al. Preliminary study on root absorption mechanism of low-potassium tolerance in maize[J]. Journal of Anhui Agricultural Sciences, 2007, 35(33): 10603−10604.
|
[153] |
Daras G, Rigas S, Tsitsekian D, et al. Potassium transporter TRH1 subunits assemble regulating root-hair elongation autonomously from the cell fate determination pathway[J]. Plant Science, 2015, 231: 131−147. DOI: 10.1016/j.plantsci.2014.11.017
|
[154] |
Pilot G, Pratelli R, Gaymard F, et al. Five-group distribution of the Shaker-like K+ channel family in higher plants[J]. Journal of Molecular Evolution, 2003, 56(4): 418−434. DOI: 10.1007/s00239-002-2413-2
|
[155] |
代书桃, 朱灿灿, 马小倩, 等. 谷子HAK/KUP/KT钾转运蛋白家族全基因组鉴定及其对低钾和高盐胁迫的响应[J]. 作物学报, 2023, 49(8): 2105−2121.
Dai S T, Zhu C C, Ma X Q, et al. Genome-wide identification of the HAK/KUP/KT potassium transporter family in foxtail millet and its response to K+ deficiency and high salt stress[J]. Acta Agronomica Sinica, 2023, 49(8): 2105−2121.
|
[156] |
欧阳浩, 蒋君梅, 杜巧丽, 等. 高粱钾离子通道Shaker蛋白家族的鉴定及生物信息学分析[J]. 山地农业生物学报, 2021, 40(5): 1−9.
Ouyang H, Jiang J M, Du Q L, et al. Identification and bioinformatics analysis of shaker protein family of potassium channels in Sorghum[J]. Journal of Mountain Agriculture and Biology, 2021, 40(5): 1−9.
|
[157] |
裴冬, 张喜英, 王峻. 高粱、谷子根系发育及其抗旱性研究[J]. 中国生态农业学报, 2002, 10(4): 28−30.
Pei D, Zhang X Y, Wang J. Study on root development and drought resistance of sorghum and millet[J]. Chinese Journal of Ecol-Agriculture, 2002, 10(4): 28−30.
|
[158] |
张永清. 几种谷类作物根土系统的研究[D]. 山西晋中: 山西农业大学博士学位论文, 2005.
Zhang Y Q. Study on root soil system of several cereal crops[D]. Jinzhong, Shanxi: PhD Dissertation of Shanxi Agricultural University, 2015.
|