• ISSN 1008-505X
  • CN 11-3996/S
HU Ming-ming, LI Zhi-xin, DING Feng, CHEN Kai-rui, LIAO Qin, WU Zi-niu, XIONG Ying, FU Hao, LUO Yong-heng, CHEN Zong-kui, YANG Zhi-yuan, SUN Yong-jian, MA Jun. Effects of straw returning and precise N reduction on rice yield, N uptake and utilization and soil N content under different paddy-upland rotation patterns[J]. Journal of Plant Nutrition and Fertilizers, 2024, 30(8): 1500-1514. DOI: 10.11674/zwyf.2024101
Citation: HU Ming-ming, LI Zhi-xin, DING Feng, CHEN Kai-rui, LIAO Qin, WU Zi-niu, XIONG Ying, FU Hao, LUO Yong-heng, CHEN Zong-kui, YANG Zhi-yuan, SUN Yong-jian, MA Jun. Effects of straw returning and precise N reduction on rice yield, N uptake and utilization and soil N content under different paddy-upland rotation patterns[J]. Journal of Plant Nutrition and Fertilizers, 2024, 30(8): 1500-1514. DOI: 10.11674/zwyf.2024101

Effects of straw returning and precise N reduction on rice yield, N uptake and utilization and soil N content under different paddy-upland rotation patterns

More Information
  • Received Date: March 11, 2024
  • Accepted Date: June 01, 2024
  • Available Online: August 07, 2024
  • Objective 

    Paddy-upland rotation systems have different soil nitrogen residue, and the nitrogen brought into soil with the upland crop straw returning is different as well, leading to varied nitrogen supply for the following rice season. The precise nitrogen reduction rate was studied, considering the straw returned nitrogen amount, in order to fully use the straw nitrogen resources and advantages of rotation patterns.

    Method 

    Using the main promoted variety ‘F You 498’ in Sichuan as the material, a large field split-zone experiment was carried out in the Modernized Agricultural Research Park of Sichuan Agricultural University in 2018 and 2019. The main plots were three paddy-upland rotation patterns, rape-rice rotation (RR), wheat-rice rotation (WR), and cabbage-rice rotation (CR); the subplots were three nitrogen application rates: no N application (N0), traditional N application rate (N1), and precise N reduction (N2), and the upland crop straw were all returned to field. By calculation, the N application rate in the N2 treatment of RR, CR, and WR was 120, 145, and 140 kg/hm2, with N reduction rate over N1 (150 kg/hm2) of 20.00%, 3.33% and 6.67%, respectively. At jointing, heading and maturity stages, rice plant samples were collected to investigate the accumulation of dry matter and N, and the yield and its components at maturity stage. Soil samples at 0—20 cm layer were collected after upland crop and rice harvest for the measurement of total N and alkali-hydrolyzed N content.

    Result 

    Compared with CR and WR, RR increased the average rice yield by 3.85% and 13.06% in 2018, and by 14.01% and 2.57% in 2019, due to the higher effective panicles and 1000-grain weight; the average accumulation of dry matter increased by 1.84% and 23.50% in 2018, and by 12.87% and 4.19% in 2019; the average total N accumulation increased by 17.29% and 14.59% in 2018, and by 10.50% and 5.00% in 2019; enhanced the partial factor productivity of N by 11.43% and 17.08% in 2018, and by 25.57% and 11.42% in 2019. In 2018 and 2019, the soil total N content after rice harvest in RR was 16.67% and 9.25% higher than that in CR and WR in 2018, and 14.69% and 2.01% higher in 2019; the alkaline-hydrolyzed N contents were 13.90% and 9.80% higher in 2018, and 17.76% and 8.48% higher in 2019. Under the same rotation pattern, N2 and N1 treatment were recorded similar rice yield, dry matter accumulation, N uptake, and soil total and available N content. However, the partial factor productivity of N and physiological N use efficiency were mostly expressed as N2>N1. N2 significant increase the partial factor productivity of N by 23.50% under RR mode compared to N1 treatment in 2018, and by 20.89% in 2019. Comprehensive evaluation showed that the comprehensive ranking of rice productivity was RR>CR>WR, with the highest score in treatment RR+N1, followed by RR+N2.

    Conclusion 

    Rape–rice rotation pattern has the highest soil total and available nutrient content after harvest of upland crops, and the rape straw contains higher amount of nitrogen than other crops, so the nitrogen reduction in rice season is as high as 20%. Under the precised nitrogen reduction rate, the rice yields in all the three rotation systems are not significantly affected. Comprehensively, rape–rice rotation is the best system in precision N reduction, rice yield and nitrogen fertilizer use efficiency, and in maintaining soil fertility.

  • [1]
    曹涛, 王淘, 周高子, 等. 川西平原五种水旱轮作模式旱作季杂草群落特征[J]. 生态学报, 2024, 44(3): 1273−1283.

    Cao T, Wang T, Zhou G Z, et al. Weed community characteristics during upland crop season under five paddy−upland rotations in the western Sichuan Plain[J]. Acta Ecologica Sinica, 2024, 44(3): 1273−1283.
    [2]
    张鹏, 钟川, 周泉, 等. 不同冬种模式对稻田土壤碳库管理指数的影响[J]. 中国生态农业学报(中英文), 2019, 27(8): 1163−1171.

    Zhang P, Zhong C, Zhou Q, et al. Effects of different winter planting patterns on carbon management index of paddy field[J]. Chinese Journal of Eco-Agriculture, 2019, 27(8): 1163−1171.
    [3]
    Fang Y T, Ren T, Zhang S T, et al. Rotation with oilseed rape as the winter crop enhances rice yield and improves soil indigenous nutrient supply[J]. Soil and Tillage Research, 2021, 212: 105065. DOI: 10.1016/j.still.2021.105065
    [4]
    Yin H J, Zhao W Q, Li T, et al. Balancing straw returning and chemical fertilizers in China: Role of straw nutrient resources[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 2695−2702. DOI: 10.1016/j.rser.2017.06.076
    [5]
    Zhang S P, Deng M G, Shan M, et al. Energy and environmental impact assessment of straw return and substitution of straw briquettesfor heating coal in rural China[J]. Energy Policy, 2019, 128: 654−664. DOI: 10.1016/j.enpol.2019.01.038
    [6]
    Huang T T, Yang N, Lu C, et al. Soil organic carbon, total nitrogen, available nutrients, and yield under different straw returning methods[J]. Soil and Tillage Research, 2021, 214: 105171. DOI: 10.1016/j.still.2021.105171
    [7]
    Berhane M, Xu M, Liang Z Y, et al. Effects of long-term straw return on soil organic carbon storage and sequestration rate in North China upland crops: A meta-analysis[J]. Global Change Biology, 2020, 26(4): 2686−2701. DOI: 10.1111/gcb.15018
    [8]
    Cui Z L, Zhang H Y, Chen X P, et al. Pursuing sustainable productivity with millions of smallholder farmers[J]. Nature, 2018, 555: 363−366. DOI: 10.1038/nature25785
    [9]
    游来勇, 李冰, 王昌全, 等. 秸秆还田量对麦—稻轮作体系作物产量、氮素吸收利用效率的影响[J]. 核农学报, 2015, 29(12): 2394−2401. DOI: 10.11869/j.issn.100-8551.2015.12.2394

    You L Y, Li B, Wang C Q, et al. Effects of different amount of straw incorporation on grain yield, nitrogen uptake and use efficiency in wheat-rice rotation system[J]. Journal of Nuclear Agricultural Sciences, 2015, 29(12): 2394−2401. DOI: 10.11869/j.issn.100-8551.2015.12.2394
    [10]
    陈国徽, 赵小敏, 谢国强, 等. 油稻轮作下秸秆还田对土壤化学性质及作物产量的影响[J]. 江西农业大学学报, 2022, 44(4): 813−824.

    Chen G H, Zhao X M, Xie G Q, et al. Effect of straw return on soil chemical properties and crop yield in rice-rape rotation[J]. Acta Agriculturae Universitatis Jiangxiensis, 2022, 44(4): 813−824.
    [11]
    武际, 郭熙盛, 鲁剑巍, 等. 水旱轮作制下连续秸秆覆盖对土壤理化性质和作物产量的影响[J]. 植物营养与肥料学报, 2012, 18(3): 587−594. DOI: 10.11674/zwyf.2012.11304

    Wu J, Guo X S, Lu J W, et al. Effects of continuous straw mulching on soil physical and chemical properties and crop yields in paddy-upland rotation system[J]. Journal of Plant Nutrition and Fertilizers, 2012, 18(3): 587−594. DOI: 10.11674/zwyf.2012.11304
    [12]
    袁晓娟, 孙知白, 杨永刚, 等. 3种复种模式下秸秆还田对机插杂交籼稻产量形成及品质的影响[J]. 四川农业大学学报, 2022, 40(3): 319−330.

    Yuan X J, Sun Z B, Yang Y G, et al. Effects of straw returning on yield formation and quality of machine transplanted hybrid indica rice under three multiple cropping patterns[J]. Journal of Sichuan Agricultural University, 2022, 40(3): 319−330.
    [13]
    林郸, 李郁, 孙永健, 等. 不同轮作模式下秸秆还田与氮肥运筹对杂交籼稻产量及米质的影响[J]. 中国生态农业学报(中英文), 2020, 28(10): 1581−1590.

    Lin D, Li Y, Sun Y J, et al. Effects of straw returning and nitrogen application on yield and quality of hybrid indica rice under different rotation patterns[J]. Chinese Journal of Eco-Agriculture, 2020, 28(10): 1581−1590.
    [14]
    戴相林, 刘雅辉, 孙建平, 等. 秸秆还田和氮肥减施对滨海盐渍土稻田温室气体排放及氮肥利用率的影响[J]. 应用与环境生物学报, 2023, 29(4): 994−1005.

    Dai X L, Liu Y H, Sun J P, et al. Combined effects of straw return and reduced nitrogen fertilizer application on greenhouse gas emissions and nitrogen use efficiency in a coastal saline paddy field[J]. Chinese Journal of Applied and Environmental Biology, 2023, 29(4): 994−1005.
    [15]
    晏军, 王伟义, 李斌, 等. 秸秆还田下化肥减施对苏北地区水稻产量与氮素吸收利用的影响[J]. 中国土壤与肥料, 2021, (5): 74−82. DOI: 10.11838/sfsc.1673-6257.20298

    Yan J, Wang W Y, Li B, et al. Effects of straw returning and fertilizer reduction on rice yield, nitrogen uptake and utilization in northern Jiangsu[J]. Soil and Fertilizer Sciences in China, 2021, (5): 74−82. DOI: 10.11838/sfsc.1673-6257.20298
    [16]
    凌启鸿, 张洪程, 戴其根, 等. 水稻精确定量施氮研究[J]. 中国农业科学, 2005, 38(12): 2457−2467. DOI: 10.3321/j.issn:0578-1752.2005.12.014

    Ling Q H, Zhang H C, Dai Q G, et al. Study on precise and quantitative N application in rice[J]. Scientia Agricultura Sinica, 2005, 38(12): 2457−2467 . DOI: 10.3321/j.issn:0578-1752.2005.12.014
    [17]
    宋旭东, 朱广龙, 张舒钰, 等. 长江中下游地区糯玉米花期耐热性鉴定及评价指标筛选[J]. 作物学报, 2024, 50(1): 172−186.

    Song X D, Zhu G L, Zhang S Y, et al. Identification of heat tolerance of waxy maizes at flowering stage and screening of evaluation indexes in the middle and lower reaches of Yangtze River region[J]. Acta Agronomica Sinica, 2024, 50(1): 172−186.
    [18]
    肖克, 唐静, 李继福, 等. 长期水稻—冬油菜轮作模式下钾肥的适宜用量[J]. 作物学报, 2017, 43(8): 1226−1233. DOI: 10.3724/SP.J.1006.2017.01226

    Xiao K, Tang J, Li J F, et al. Optimum amount of potassium fertilizer applied under continuous rice−rapeseed rotation[J]. Acta Agronomica Sinica, 2017, 43(8): 1226−1233. DOI: 10.3724/SP.J.1006.2017.01226
    [19]
    钟川, 杨滨娟, 张鹏, 等. 基于冬种不同作物的水旱轮作模式对水稻产量及稻田CH4、N2O排放的影响[J]. 核农学报, 2019, 33(2): 379−388. DOI: 10.11869/j.issn.100-8551.2019.02.0379

    Zhong C, Yang B J, Zhang P, et al. Effect of paddy-upland rotation with different winter corps on rice yield and CH4 and N2O emissions in paddy fields[J]. Journal of Nuclear Agricultural Sciences, 2019, 33(2): 379−388. DOI: 10.11869/j.issn.100-8551.2019.02.0379
    [20]
    Cheng W G, Padre A T, Sato C, et al. Changes in the soil C and N contents, C decomposition and N mineralization potentials in a rice paddy after long-term application of inorganic fertilizers and organic matter[J]. Soil Science and Plant Nutrition, 2016, 62(2): 212−219. DOI: 10.1080/00380768.2016.1155169
    [21]
    刘禹池, 曾祥忠, 冯文强, 等. 稻—油轮作下长期秸秆还田与施肥对作物产量和土壤理化性状的影响[J]. 植物营养与肥料学报, 2014, 20(6): 1450−1459. DOI: 10.11674/zwyf.2014.0615

    Liu Y C, Zeng X Z, Feng W Q, et al. Effects of long-term straw mulch and fertilization on crop yields and soil physical and chemical properties under rice−rapeseed rotation[J]. Journal of Plant Nutrition and Fertilizers, 2014, 20(6): 1450−1459. DOI: 10.11674/zwyf.2014.0615
    [22]
    刘晓伟. 冬油菜养分吸收规律及不同养分效率品种特征比较研究[D]. 湖北武汉: 华中农业大学硕士学位论文, 2011.

    Liu X W. Study on nutrient absorption of oilseed rape (Brassica napus L. ) and characteristics compare in different nutrient efficiency types[D]. Wuhan, Hubei: MS Thesis of Huazhong Agricultural University, 2011.
    [23]
    Álvaro-Fuentes J, Morell F, Madejón E, et al. Soil biochemical properties in a semiarid mediterranean agroecosystem as affected by long-term tillage and N fertilization[J]. Soil and Tillage Research, 2013, 129: 69−74. DOI: 10.1016/j.still.2013.01.005
    [24]
    张维乐, 戴志刚, 任涛, 等. 不同水旱轮作体系秸秆还田与氮肥运筹对作物产量及养分吸收利用的影响[J]. 中国农业科学, 2016, 49(7): 1254−1266. DOI: 10.3864/j.issn.0578-1752.2016.07.004

    Zhang W L, Dai Z G, Ren T, et al. Effects of nitrogen fertilization managements with residues incorporation on crops yield and nutrients uptake under different paddy−upland rotation systems[J]. Scientia Agricultura Sinica, 2016, 49(7): 1254−1266. DOI: 10.3864/j.issn.0578-1752.2016.07.004
    [25]
    朱莉, 李贵勇, 周伟, 等. 不同生态条件下氮高效水稻品种干物质积累和产量特性[J]. 植物营养与肥料学报, 2022, 28(6): 1015−1028. DOI: 10.11674/zwyf.2021542

    Zhu L, Li G Y, Zhou W, et al. Dry matter accumulation and yield characteristics of high-nitrogen efficient rice cultivars under different ecological conditions[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(6): 1015−1028. DOI: 10.11674/zwyf.2021542
    [26]
    胡雅杰, 朱大伟, 邢志鹏, 等. 改进施氮运筹对水稻产量和氮素吸收利用的影响[J]. 植物营养与肥料学报, 2015, 21(1): 12−22. DOI: 10.11674/zwyf.2015.0102

    Hu Y J, Zhu D W, Xing Z P, et al. Modifying nitrogen fertilization ratio to increase the yield and nitrogen uptake of super japonica rice[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(1): 12−22. DOI: 10.11674/zwyf.2015.0102
    [27]
    蔡影, 付思伟, 张博睿, 等. 秸秆连续还田配施化肥对稻—油轮作土壤碳库及作物产量的影响[J]. 环境科学, 2022, 43(10): 4716−4724.

    Cai Y, Fu S W, Zhang B R, et al. Effects of continuous straw returning with chemical fertilizer on the carbon pool and crop yield of rice−rape rotation soils[J]. Environmental Science, 2022, 43(10): 4716−4724.
    [28]
    严奉君, 孙永健, 马均, 等. 秸秆覆盖与氮肥运筹对杂交稻根系生长及氮素利用的影响[J]. 植物营养与肥料学报, 2015, 21(1): 23−35. DOI: 10.11674/zwyf.2015.0103

    Yan F J, Sun Y J, Ma J, et al. Effects of straw mulch and nitrogen management on root growth and nitrogen utilization characteristics of hybrid rice[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(1): 23−35. DOI: 10.11674/zwyf.2015.0103
    [29]
    龙瑞平, 张朝钟, 戈芹英, 等. 不同轮作模式下基于机插粳稻稳产和氮肥高效的氮肥运筹方式[J]. 植物营养与肥料学报, 2020, 26(4): 646−656. DOI: 10.11674/zwyf.19183

    Long R P, Zhang C Z, Ge Q Y, et al. Nitrogen management in machinery transplanted japonica rice under different rotation systems for stable grain yield and higher nitrogen use efficiency[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(4): 646−656. DOI: 10.11674/zwyf.19183
    [30]
    周永进, 吴文革, 许有尊, 等. 油菜秸秆还田培肥土壤的效应及对后作水稻产量的影响[J]. 扬州大学学报(农业与生命科学版), 2015, 36(1): 53−58.

    Zhou Y J, Wu W G, Xu Y Z, et al. Effects of returned rapeseed straw on soil fertility and yield of subsequent rice[J]. Journal of Yangzhou University (Agricultural and Life Science Edition), 2015, 36(1): 53−58.
    [31]
    李娜, 杨志远, 代邹, 等. 不同氮效率水稻根系形态和氮素吸收利用与产量的关系[J]. 中国农业科学, 2017, 50(14): 2683−2695. DOI: 10.3864/j.issn.0578-1752.2017.14.005

    Li N, Yang Z Y, Dai Z, et al. The relationships between root morphology, N absorption and utilization and grain yield in rice with different N use efficiencies[J]. Scientia Agricultura Sinica, 2017, 50(14): 2683−2695. DOI: 10.3864/j.issn.0578-1752.2017.14.005
    [32]
    Wang X C, Samo N, Zhao C K, et al. Negative and positive impacts of rape straw returning on the roots growth of hybrid rice in the Sichuan Basin Area[J]. Agronomy, 2019, 9(11): 690. DOI: 10.3390/agronomy9110690
    [33]
    张媛媛, 李建林, 王春宏, 姜佰文. 氮素和生物腐解剂调控下稻草还田对水稻氮素积累及产量的影响[J]. 土壤通报, 2012, 43(2): 435−438.

    Zhang Y Y, Li J L, Wang C H, Jiang B W. Effects of rice-straw return to field on nitrogen accumulation and yield of rice under the nitrogen manipulation and biological decomposing[J]. Chinese Journal of Soil Science, 2012, 43(2): 435−438.
    [34]
    张斯梅, 顾克军, 张传辉, 等. 麦秸全量还田下减氮施肥对粳稻产量形成和氮素吸收利用的影响[J]. 江苏农业学报, 2023, 39(2): 360−367. DOI: 10.3969/j.issn.1000-4440.2023.02.008

    Zhang S M, Gu K J, Zhang C H, et al. Effects of reduced nitrogen fertilization on yield formation and nitrogen uptake and utilization of japonica rice under total wheat straw returning[J]. Jiangsu Journal of Agricultural Science, 2023, 39(2): 360−367. DOI: 10.3969/j.issn.1000-4440.2023.02.008
    [35]
    陈香碧, 胡亚军, 秦红灵, 等. 稻作系统有机肥替代部分化肥的土壤氮循环特征及增产机制[J]. 应用生态学报, 2020, 31(3): 1033−1042.

    Chen X B, Hu Y J, Qin H L, et al. Characteristics of soil nitrogen cycle and mechanisms underlying the increase in rice yield with partial substitution of mineral fertilizers with organic manure in a paddy ecosystem: A review[J]. Chinese Journal of Applied Ecology, 2020, 31(3): 1033−1042.
    [36]
    Cao Y S, Sun H F, Zhang J N, et al. Effects of wheat straw addition on dynamics and fate of nitrogen applied to paddy soils[J]. Soil and Tillage Research, 2018, 178: 92−98. DOI: 10.1016/j.still.2017.12.023
    [37]
    Zhang S J, Zhang G, Wang D J, et al. Investigation into runoff nitrogen loss variations due to different crop residue retention modes and nitrogen fertilizer rates in rice−wheat cropping systems[J]. Agricultural Water Management, 2021, 247: 106729. DOI: 10.1016/j.agwat.2020.106729
    [38]
    Fan H S, Jia S Q, Yu M, et al. Long-term straw return increases biological nitrogen fixation by increasing soil organic carbon and decreasing available nitrogen in rice−rape rotation[J]. Plant and Soil, 2022, 479(1): 267−279.
    [39]
    彭志芸, 向开宏, 杨志远, 等. 麦/油—稻轮作下秸秆还田与氮肥管理对直播杂交稻氮素利用特征的影响[J]. 中国水稻科学, 2020, 34(1): 57−68.

    Peng Z Y, Xiang K H, Yang Z Y, et al. Effects of straw returning to paddy field and nitrogen fertilizer management on nitrogen utilization characteristics of direct seeded hybrid rice under wheat/rape−rice rotation[J]. Chinese Journal of Rice Science, 2020, 34(1): 57−68.
    [40]
    戴竞雄, 王飞. 长期施肥对南方黄泥田水稻养分吸收利用的影响[J]. 中国土壤与肥料, 2020, (6): 189−196. DOI: 10.11838/sfsc.1673-6257.19468

    Dai J X, Wang F. Effects of long-term fertilization on nutrient uptake and utilization of rice in yellow-mud paddy soils in southern China[J]. [J]. Soil and Fertilizer Sciences in China, 2020, (6): 189−196. DOI: 10.11838/sfsc.1673-6257.19468
    [41]
    薛斌, 殷志遥, 肖琼, 等. 稻—油轮作条件下长期秸秆还田对土壤肥力的影响[J]. 中国农学通报, 2017, 33(7): 134−141. DOI: 10.11924/j.issn.1000-6850.casb16050028

    Xue B, Yin Z Y, Xiao Q, et al. Effects of long-term straw returning on soil fertility under rice rape rotation system[J]. Chinese Agricultural Science Bulletin, 2017, 33(7): 134−141. DOI: 10.11924/j.issn.1000-6850.casb16050028
    [42]
    Shan J, Yan X Y. Effects of crop residue returning on nitrous oxide emissions in agricultural soils[J]. Atmospheric Environment, 2013, 71: 170−175. DOI: 10.1016/j.atmosenv.2013.02.009

Catalog

    Article views (333) PDF downloads (90) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return