Citation: | CHEN Ken, SUN Yan, LI Jiao-ming, LU Yu, YIN Yan, PAN Yong-peng, YANG Shang-dong. Microbial community structures in rhizosphere soil of peas intercropped with allelobiosis and allelopathy crops[J]. Journal of Plant Nutrition and Fertilizers, 2024, 30(9): 1823-1832. DOI: 10.11674/zwyf.2024112 |
The microbial community structures in rhizosphere soils of peas were determined under intercropping with mutual generation and constraining crops, to clarify the microbial mechanisms of the allelopathy phenomenon.
Pea (Pisum sativum L.) was grown under three modes, intercropping mutual generation crop (pea/tomato, PT), mutual constraining crop (pea/chives, PA), and pea monoculture (PP), and the blank soil was also used as a control in the pot experiment. The test soil was red loam. At 50 days of transplanting, whole crops were dig out, and the rhizosphere soil of peas was collected by shaking the root slightly, based on high-throughput sequencing technology, analyzing the soil microbial community structures in rhizospheres of peas.
The microbial biomass P (MBP) of intercropping pea (PT) rhizosphere was significantly higher than that of intercropping (PA) and bowl pea (PP); the combination of phased pea plants increased the number of bacteria and fungi in each species, and the bacterial diversity and richness changed significantly; intercropping induced significant changes in the composition of bacterial and fungal communities in the rhizosphere of pea plants, Saccharomonospora and Thiobacillus, which can secrete the inhibitory substances for pea growth, and the pathogenic microorganisms, such as Fusarium enriched in rhizospheres of peas could be detected under the mutual constraining intercropping system (pea/chives, PA). In contrast, although soil bacterial and fungal diversities and richness in rhizospheres of peas could not be significantly improved, but their compositions were significantly altered by intercropping with mutual generation crops (pea/tomato, PT) which compared to those of intercropping with mutual constraining crops (pea/chives, PA). Additionally, the enrichment of Olpidiom, and the decline of Fusarium in rhizospheres of peas could be found in the mutual generation intercropping system (pea/tomato, PT).
Intercropping with mutual generation crop help the enrichment of beneficial microorganisms, while intercropping with mutual constraining crop helps the enrichement of harmful and disease microorganisms in the rhizosphere soil of peas, which might be an important mechanism of the allelopathy phenomenon of peas intercropping with different crops.
[1] |
杨丽君. 豌豆栽培及病虫害综合防治技术[J]. 热带农业工程, 2020, 44(5): 22−24.
Yang L J. Cultivation of pisum sativum and integrated control of diseases and insect pests[J]. Tropical Agricultural Engineering, 2020, 44(5): 22−24.
|
[2] |
Burstin J, Kreplak J, Macas J, et al. Pisum sativum (pea)[J]. Trends in Genetics, 2020, 36(4): 312−313. DOI: 10.1016/j.tig.2019.12.009
|
[3] |
刘荣, 杨涛, 黄宇宁, 宗绪晓. 豌豆及其野生近缘种种质资源研究进展[J]. 植物遗传资源学报, 2020, 21(6): 1415−1423.
Liu R, Yang T, Huang Y N, Zong X X. Research progress of germplasm resources of pea and its wild relatives[J]. Journal of Plant Genetic Resources, 2020, 21(6): 1415−1423.
|
[4] |
丁玲, 张丽芬, 赖少娟, 陈复生. 植物蛋白在肉制品中的应用研究[J]. 食品研究与开发, 2021, 42(4): 193−197. DOI: 10.12161/j.issn.1005-6521.2021.04.033
Ding L, Zhang L F, Lai S J, Chen F S. Application of plant protein in meat products[J]. Food Research and Development, 2021, 42(4): 193−197. DOI: 10.12161/j.issn.1005-6521.2021.04.033
|
[5] |
Ertugrul U, Namli S, Tas O, et al. Pea protein properties are altered following glycation by microwave heating[J]. LWT-Food Science and Technology, 2021, 150(3): 111939.
|
[6] |
Chang C Y, Jin J D, Chang H L, et al. Antioxidative activity of soy, wheat and pea protein isolates characterized by multi-enzyme hydrolysis[J]. Nanomaterials, 2021, 11(6): 1509. DOI: 10.3390/nano11061509
|
[7] |
Zhou X G, Yu G B, Wu F Z. Effects of intercropping cucumber with onion or garlic on soil enzyme activities, microbial communities and cucumber yield[J]. European Journal of Soil Biology, 2011, 47(5): 279−287. DOI: 10.1016/j.ejsobi.2011.07.001
|
[8] |
Singh K, Mishra A K, Singh B, et al. Tillage effects on crop yield and physicochemical properties of sodic soils[J]. Land Degradation & Development, 2016, 27(2): 223−230.
|
[9] |
Li Q S, Chen J, Wu L K, et al. Belowground interactions impact the soil bacterial community, soil fertility, and crop yield in maize/peanut intercropping systems[J]. International Journal of Molecular Sciences, 2018, 19(2): 622. DOI: 10.3390/ijms19020622
|
[10] |
俞霞, 肖世豪, 李淑娟, 等. 禾本科—豆科间作模式中作物产量和氮素利用的研究进展[J]. 生态学杂志, 2021, 40(8): 2601−2609.
Yu X, Xiao S H, Li S J, et al. Review on crop yield and nitrogen utilization in cereal-legume intercropping system[J]. Chinese Journal of Ecology, 2021, 40(8): 2601−2609 .
|
[11] |
Li X F, Wang Z G, Bao X G, et al. Long-term increased grain yield and soil fertility from intercropping[J]. Nature Sustainability, 2021, 4(11): 943−950. DOI: 10.1038/s41893-021-00767-7
|
[12] |
Chadfield V G A, Hartley S E, Redeker K R. Associational resistance through intercropping reduces yield losses to soil-borne pests and diseases[J]. The New Phytologist, 2022, 235(6): 2393−2405. DOI: 10.1111/nph.18302
|
[13] |
Romaneckas K, Adamavičienė A, Šarauskis E, Balandaitė J. The impact of intercropping on soil fertility and sugar beet productivity[J]. Agronomy, 2020, 10(9): 1406. DOI: 10.3390/agronomy10091406
|
[14] |
王宇蕴, 任家兵, 张莹, 等. 小麦蚕豆间作改善蚕豆根际微生物区系与减轻蚕豆枯萎病的作用[J]. 土壤通报, 2020, 51(5): 1127−1133.
Wang Y Y, Ren J B, Zhang Y, et al. Effect of wheat and faba bean intercropping on improving rhizosphere microflora and reducing Fusarium wilt of faba bean[J]. Chinese Journal of Soil Science, 2020, 51(5): 1127−1133.
|
[15] |
孔垂华, 胡飞, 王朋. 植物化感(相生相克)作用[M]. 北京: 高等教育出版社, 2016.
Kong C H, Hu F, Wang P. Plant allelopathic effect[M]. Beijing: Higher Education Press, 2016.
|
[16] |
张静薇, 番茄相生相克植物的筛选和应用及全程有机种植物体系的实施[D]. 江苏南京: 南京农业大学硕士学位论文, 2019.
Zang J W, Screening tomato allelopathy plants and application of holistic organic planting system[D]. Nanjing, Jiangsu: MS Thesis of Nanjing Agricultural University, 2019.
|
[17] |
师小平, 陈银萍, 闫志强, 等. 植物化感作用研究进展[J]. 生物技术通报, 2020, 36(6): 215−222.
Shi X P , Chen Y P, Yan Z Q , et al. Research progress on plant allelopathy[J]. Biotechnology Bulletin, 2020, 36(6): 215−222.
|
[18] |
Gatsios A, Ntatsi G, Celi L, et al. Nitrogen nutrition optimization in organic greenhouse tomato through the use of legume plants as grecn manure or intercrops[J]. Agronomy, 2019, 9(11): 766. DOI: 10.3390/agronomy9110766
|
[19] |
张倩. 间作对辣椒疫病防治及其生长的影响[D]. 黑龙江哈尔滨: 东北农业大学硕士学位论文, 2020.
Zhang Q. Effect of intercropping on pepper phytophthora blight and its growth[D]. Harbin, Heilongjiang: MS Thesis of Northeast Agricultural University, 2020.
|
[20] |
Salgado G C, Ambrosano E J, Rossi F, et al. Yield and nutrient concentrations of organic cherry tomatoes and legumes grown in intercropping systems in rotation with maize[J]. Biological Agriculture & Horticulture, Taylor & Francis, 2022, 38(2): 94−112.
|
[21] |
Gu Y, Wei Z, Wang X Q, et al. Pathogen invasion indirectly changes the composition of soil microbiome via shifts in root exudation profile[J]. Biology and Fertility of Soils, 2016, 52(7): 997−1005. DOI: 10.1007/s00374-016-1136-2
|
[22] |
Tan S Y, Yang C L, Mei X L, et al. The effect of organic acids from tomato root exudates on rhizosphere colonization of Bacillus amyloliquefaciens T-5[J]. Applied Soil Ecology, 2013, 64(1): 15−22.
|
[23] |
Nefzi A, Abdallah R A B, Jabnoun-khiareddine H, et al. Management of fusarium crown and root rot of tomato by Solanum linnaeanum L. extracts[J]. Scientia Horticulturae, 2018, 238: 204−214. DOI: 10.1016/j.scienta.2018.04.050
|
[24] |
杨柳青. 实享葱与伴生植物协同和竞争关系[D]. 新疆乌鲁木齐: 新疆农业大学硕士学位论文, 2021.
Yang L Q. Synergistic and competitive relationships between Allium galanthum and associated plants[D]. Urumqi, Xingjiang: MS Thesis of Xingjang Agricultural University, 2021.
|
[25] |
Portales Reyes C, Van Doornik T, Schultheis E H, et al. A novel impact of a novel weapon: Allelochemicals in Alliaria petiolata disrupt the legume-rhizobia mutualism[J]. Biological Invasions, 2015, 17(9): 2779−2791. DOI: 10.1007/s10530-015-0913-4
|
[26] |
Skinner E M, Díaz-Pérez J C, Phatak S C, et al. Allelopathic effects of sunnhemp (Crotalaria juncea L.) on germination of vegetables and weeds[J]. HortScience, American Society for Horticultural Science, 2012, 47(1): 138−142.
|
[27] |
克丽比努尔·开赛尔. 实葶葱套种胡萝卜的化感潜力分析[D]. 新疆乌鲁木齐: 新疆农业大学硕士学位论文. 2023.
Kaisaier K L B N E. Analysis of allelopathic potential of Daucus carota interplanted with Allium galanthum[D]. Urumqi, Xinjiang: MS Thesis of Xingjang Agricultural University, 2023.
|
[28] |
韩旭. 大蒜秸秆腐解物化感作用研究及化感物质鉴定[D]. 西北农林科技大学博士学位论文. 2013.
Han X. Study on allelopathy of garlic stalk decomposition and identifition of allelochemicals[D]. Yangling, Shaanxi: PhD Dissertation of Northwest A&F University. 2023.
|
[29] |
陈锋, 孟永杰, 帅海威, 等. 植物化感物质对种子萌发的影响及其生态学意义[J]. 中国生态农业学报, 2017, 25(1): 36−46.
Chen F, Meng Y J, Shuai H W, et al. Effect of plant allelochemicals on seed germination and its ecological significance[J]. Chinese Journal of Eco-Agriculture, 2017, 25(1): 36−46.
|
[30] |
Farooq M, Jabran K, Cheema Z A. The role of allelopathy in agricultural pest management[J]. Pest Management Science, 2011, 67(5): 493−506. DOI: 10.1002/ps.2091
|
[31] |
吴林坤, 林向民, 林文雄. 根系分泌物介导下植物—土壤—微生物互作关系研究进展与展望[J]. 植物生态学报, 2014, 38(3): 298−310. DOI: 10.3724/SP.J.1258.2014.00027
Wu L K, Lin X M, Lin W X. Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates[J]. Chinese Journal of Plant Ecology, 2014, 38(3): 298−310. DOI: 10.3724/SP.J.1258.2014.00027
|
[32] |
刘巧丽, 陈彩慧, 钟永达, 等. 香樟凋落物对杂草萌发与生长的化感作用[J]. 江西农业大学学报, 2024, 46(1): 128−138.
Liu Q L, Chen C H, Zong Y D, et al. Allelopathic effects of Cinnamomum camphora leaf litter on weed germination and growth[J]. Acta Agriculturae Universitatis Jiangxiensis, 2024, 46(1): 128−138.
|
[33] |
王文珠, 师桂英, 苏国礼, 等. 乌头酸对尖孢镰刀菌百合专化型抑制作用分析[J]. 西北农业学报, 2022, 31(2): 224−232. DOI: 10.7606/j.issn.1004-1389.2022.02.011
Wang W Z, Shi G Y, Su G L, et al. Analysis of inhibitory effect of aconitic acid against Fusarium oxysporum f. sp. lilii[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2022, 31(2): 224−232. DOI: 10.7606/j.issn.1004-1389.2022.02.011
|
[34] |
喻景权. 蔬菜栽培学各论(南方版)(第四版)[M]. 北京: 中国农业出版社, 2020.
Theory on vegetable cultivation (southern edition) (fourth edition)[M]. Beijing: China Agriculture Press, 2020.
|
[35] |
庞师婵, 郭霜, 任奎瑜, 等. 番茄/茄子嫁接对其根际土壤生物学性状及细菌群落结构的影响[J]. 园艺学报, 2020, 47(2): 253−263.
Pang S C, Guo S, Ren K Y, et al. Impact of grafting on soil microbial properties and bacterial community structure in tomato rhizosphere[J]. Acta Horticulturae Sinica, 2020, 47(2): 253−263.
|
[36] |
Zhang W Y, Liu S, Zhang M Y, et al. Phyllostachys edulis (moso bamboo) rhizosphere increasing soil microbial activity rather than biomass[J]. Journal of Soils and Sediments, 2019, 19(7): 2913−2926.
|
[37] |
黄子粤. 苋菜平衡施肥提高苋菜红素含量的生物学机制[D]. 广西南宁: 广西大学硕士学位论文, 2022.
Hang Z Y. Biological mechanism of balanced fertilization on improving amaranthin content in amaranth[D]. Nanning, Guangxi: MS Thesis of Guangxi University, 2022.
|
[38] |
Singh J S, Gupta V K. Soil microbial biomass: A key soil driver in management of ecosystem functioning[J]. Science of the Total Environment, 2018, 634: 497−500.
|
[39] |
苟小梅, 张瑞平, 张宇羽, 等. 苗床添加微生物肥料对植烟根际土壤微生物量碳氮的影响[J]. 四川农业大学学报, 2019, 37(3): 338−342.
Gou X M, Zhang R P, Zhang Y Y, et al. Effect of microbial fertilizers added into seedbed on microbial biomass carbon and nitrogen in rhizosphere of tobacco soil[J]. Journal of Sichuan Agricultural University, 2019, 37(3): 338−342.
|
[40] |
刘放, 吴明辉, 魏培洁, 等. 疏勒河源高寒草甸土壤微生物生物量碳氮变化特征[J]. 生态学报, 2020, 40(18): 6416−6426.
Liu F, Wu M H, Wei P J, et al. Variations of soil microbial biomass carbon and nitrogen in alpine meadow of the Shule River headwater region[J]. Acta Ecologica Sinica, 2020, 40(18): 6416−6426.
|
[41] |
刘恩科, 梅旭荣, 赵秉强, 等. 长期不同施肥制度对土壤微生物生物量碳、氮、磷的影响[J]. 中国农业大学学报, 2009, 14(3): 63−68. DOI: 10.3321/j.issn:1007-4333.2009.03.012
Liu E K, Mei X R, Zhao B Q, et al. Long-term effects of different fertilizer management on microbial biomass C, N and P in a fluvo-aquic soil[J]. Journal of China Agricultural University, 2009, 14(3): 63−68. DOI: 10.3321/j.issn:1007-4333.2009.03.012
|
[42] |
王玉琴, 宋梅玲, 周睿, 等. 黄帚橐吾对退化高寒草地植物、土壤养分及微生物量的影响[J]. 草业学报, 2022, 31(12): 31−40. DOI: 10.11686/cyxb2021467
Wang Y Q, Song M L, Zhou R, et al. Effects of Ligularia virgaurea on plant and soil nutrient levels and soil microbial biomass characteristics in degraded alpine grassland[J]. Acta Prataculturae Sinica, 2022, 31(12): 31−40. DOI: 10.11686/cyxb2021467
|
[43] |
谢庆玲, 刘刚, 夏陈, 等. 青刺尖油枯的化感作用及其化感物质的分析[J]. 四川师范大学学报(自然科学版), 2023, 46(6): 804−813.
Xie Q L, Liu G, Xia C, et al. Study on allelopathy and allelopathic substance analysis of oil withered from Prinsepia utilis Royle[J]. Journal of Sichuan Normal University (Natural Science), 2023, 46(6): 804−813.
|
[44] |
Kaur H, Kaur R, Kaur S, et al. Taking ecological function seriously: Soil microbial communities can obviate allelopathic effects of released metabolites[J]. PLoS ONE, 2009, 4(3): e4700. DOI: 10.1371/journal.pone.0004700
|
[45] |
杨阳, 李海亮, 马凯丽, 等. 放线菌及其代谢产物研究进展: 基于CiteSpace可视化分析[J]. 微生物学报, 2022, 62(10): 3825−3843.
Yang Y, Li H L, Ma K L, et al. Actinomycetes and their metabolites: Visual analysis based on CiteSpace[J]. Acta Microbiologica Sinica, 2022, 62(10): 3825−3843.
|
[46] |
黄烨, 刘双江, 姜成英. 微生物腐蚀及腐蚀机理研究进展[J]. 微生物学通报, 2017, 44(7): 1699−1713.
Hang Y, Liu S J, Jiang C Y. Microbiologically influenced corrosion and mechanisms[J]. Microbiology China, 2017, 44(7): 1699−1713.
|
[47] |
Lakshmanan V, Kitto S L, Caplan J L, et al. Microbe-associated molecular patterns-triggered root responses mediate beneficial rhizobacterial recruitment in Arabidopsis[J]. Plant Physiology, 2012, 160(3): 1642−1661. DOI: 10.1104/pp.112.200386
|
[48] |
庞发虎, 李晓琦, 段莉阳, 等. 基于高通量测序和代谢组学解析重金属污染对农田微生物群落组成和功能的影响[J]. 环境科学, 2022, 43(8): 4333−4341.
Pang F H, Li X Q, Duan L Y, et al. High-throughput sequencing combined with metabonomics to analyze the effect of heavy metal contamination on farmland soil microbial community and function[J]. Environmental Science, 2022, 43(8): 4333−4341.
|
[49] |
Alexander N J, Proctor R H, McCormick S P. Genes, gene clusters, and biosynthesis of trichothecenes and fumonisins in Fusarium[J]. Toxin Reviews, Taylor & Francis, 2009, 28(2/3): 198−215.
|
[50] |
Proctor R H, Busman M, Seo J A, et al. A fumonisin biosynthetic gene cluster in Fusarium oxysporum strain 0-1890 and the genetic basis for B versus C fumonisin production[J]. Fungal Genetics and Biology, 2008, 45(6): 1016−1026. DOI: 10.1016/j.fgb.2008.02.004
|
[1] | WU Xia, HU Yi-chen, YANG Feng-jun, SU Chun-jie, WANG Xiu-zhi, WU Feng-zhi. Effects of intercropping tomato with potato onion on nitrogen absorption and rhizosphere microbial diversity of tomato[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(8): 1478-1493. DOI: 10.11674/zwyf.2021660 |
[2] | DONG Yan, ZHAO Qian, LÜ Jia-xing, DONG Kun. Synergistic effects of intercropping with wheat and inoculation with arbuscular mycorrhizal fungi on improvement of anti-Fusarium wilt and rhizosphere microbial carbon metabolic activity of faba bean[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(10): 1646-1656. DOI: 10.11674/zwyf.18400 |
[3] | WU Xia, YANG Feng-jun, ZHANG Wen-hui, JIN Ya-zhong, GAO Feng, WU Feng-zhi. Effects of intercropping on phosphorus transformability and phosphobacteria community structure in the rhizosphere of tomato and potato onion[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(8): 1422-1433. DOI: 10.11674/zwyf.18331 |
[4] | ZHANG Xiao-yun, WU Bo-zhi, WU Kai-xian, ZHANG Lei-lei, LI Yong-xian, LI Jian, WANG Chao. Effects of fertilizer placement and weed management on yield and growth of intercropped maize and potato[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(7): 1239-1246. DOI: 10.11674/zwyf.18287 |
[5] | WANG Peng, ZHU Li-xiang, CHEN Xiang-xiang, FENG Hui, SUN Wen-shuai, QIN Ning. Effects of Platycodon grandiflorum and Allium fistulosum intercropping on soil nutrients, microorganism and enzyme activity[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(3): 668-675. DOI: 10.11674/zwyf.17325 |
[6] | ZHOU Long, LÜ Yu, ZHU Qi-lin, LONG Guang-qiang, TANG Li. Effects of N application on potassium absorption and distribution of maize and potato in intercropping system[J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(6): 1485-1493. DOI: 10.11674/zwyf.15474 |
[7] | ZHANG Yi-tao, REN Tian-zhi, LIU Hong-bin, LEI Qiu-liang, ZHAI Li-mei, WANG Hong-yuan, LIU Shen, YIN Chang-bin, ZHANG Ji-zong. Effect of topdressing nitrogen of intercropped maize strip on intercropped crop yields and soil nitrate nitrogen as well as its residual effect[J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(1): 104-110. DOI: 10.11674/zwyf.14522 |
[8] | WANG Hua, WANG Hui, ZHAO Qing-Yun, ZHUANG Hui-Fa, SONG Ying-Hui, ZHU Zi-Hui, . Influence of different planting spacing of areca nut intercropping with Vanilla on soil microbes and nutrients[J]. Journal of Plant Nutrition and Fertilizers, 2013, 19(4): 988-994. DOI: 10.11674/zwyf.2013.0427 |
[9] | XIAO Yan-bo, LI Long, ZHANG Fu-suo. Nitrogen complementary use in intercropped wheat and faba bean[J]. Journal of Plant Nutrition and Fertilizers, 2003, 9(4): 396-400. DOI: 10.11674/zwyf.2003.0403 |
[10] | Zuo Yuanmei, Li Xiaolin, Cao Yiping, Zhang Fusuo, . EFFECT OF MAIZE/PEANUT INTERCROPPING ON IRON NUTRITION OF PEANUT[J]. Journal of Plant Nutrition and Fertilizers, 1997, 3(2): 153-159. DOI: 10.11674/zwyf.1997.0209 |