• ISSN 1008-505X
  • CN 11-3996/S
GAO Jie, LI Qing-feng, WANG Can, ZHANG Guo-bing, ZHOU Leng-bo, ZHAO Qiang, SHAO Ming-bo, PENG Qiu. Combination of high plant density and wide-narrow row planting enhances the yield, dry matter and nitrogen accumulation and transportation in waxy sorghum[J]. Journal of Plant Nutrition and Fertilizers, 2024, 30(12): 2342-2353. DOI: 10.11674/zwyf.2024238
Citation: GAO Jie, LI Qing-feng, WANG Can, ZHANG Guo-bing, ZHOU Leng-bo, ZHAO Qiang, SHAO Ming-bo, PENG Qiu. Combination of high plant density and wide-narrow row planting enhances the yield, dry matter and nitrogen accumulation and transportation in waxy sorghum[J]. Journal of Plant Nutrition and Fertilizers, 2024, 30(12): 2342-2353. DOI: 10.11674/zwyf.2024238

Combination of high plant density and wide-narrow row planting enhances the yield, dry matter and nitrogen accumulation and transportation in waxy sorghum

More Information
  • Received Date: May 16, 2024
  • Accepted Date: September 10, 2024
  • Available Online: November 26, 2024
  • Objectives 

    We investigated the dry matter and nitrogen (N) accumulation and transportation of waxy sorghum under different planting patterns and densities, to provide technical support for high efficient cultivation of waxy sorghum in Guizhou Province.

    Methods 

    A split plot experiment was conducted in Guizhou Agricultural University, using sorghum cultivar ‘Hongyingzi’ as test material. The main plots were two planting patterns: equal row (60 cm wide, MD), and wide-narrow row (40 cm+80 cm, MK). The subplots were planting densities: 8.25×104 plants/hm2 (D8.25), 9.75×104 plants/hm2 (D9.75), 11.25×104 plants/hm2 (D11.25), and 12.75×104 plants/hm2 (D12.75) and 14.25×104 plants/hm2 (D14.25). The dry matter and N accumulation were investigated before and after flowering stage, and the transportation rate of dry matter and N before flowering and the yield of waxy sorghum were analyzed.

    Results 

    Compared to MD, MK increased grain yield by 10.01%, dry matter accumulation before and after flowering by 10.63% and 7.59%, N accumulation before and after flowering by 12.62% and 8.78%, the total dry matter and N accumulation by 9.70% and 10.88% on average. The transfer amount of dry matter and nitrogen in MK mode was 3.00% and 17.37% higher than those in MD mode. With the increase of planting density, the waxy sorghum yield and the accumulation and transportation of dry matter and N increased first and then decreased, and all the parameters reached the maximum under D11.25 in MD and D12.75 in MK mode. Compared with MD-D11.25 treatment, MK-D12.75 increased yield by 9.40%, total dry matter accumulation before and after flowering by 12.44% and 11.76% and the total N accumulation before and after flowering by 12.08% and 13.44%, and the dry matter and nitrogen transportation by 4.42% and 18.90%, respectively. Quadratic curve fitting of yield and density showed that the maximum yield density in MK mode was 12.18×104 plants/hm2, which was higher than that in MD mode (11.75×104 plants/hm2).

    Conclusions 

    The wide-narrow row planting (MK mode) allows a higher planting density compared to the equal row planting (MD mode), which can notably augment the yield and facilitate the accumulation and transportation of dry matter and nitrogen of waxy sorghum. Based on the current experimental conditions, it is advisable to maintain a density of 12.18×104 plants/hm2 to attain a higher yield in Guizhou.

  • [1]
    李嵩博, 唐朝臣, 陈峰, 谢光辉. 中国粒用高粱改良品种的产量和品质性状时空变化[J]. 中国农业科学, 2018, 51(2): 246−256. DOI: 10.3864/j.issn.0578-1752.2018.02.005

    Li S B, Tang C C, Chen F, Xie G H. Temporal and spatial changes in yield and quality with grain sorghum variety improvement in China[J]. Scientia Agricultura Sinica, 2018, 51(2): 246−256. DOI: 10.3864/j.issn.0578-1752.2018.02.005
    [2]
    彭方丽, 汪灿, 周棱波, 等. 不同间作模式对糯高粱干物质、养分积累及产量的影响[J]. 南方农业学报, 2023, 54(1): 68−79. DOI: 10.3969/j.issn.2095-1191.2023.01.007

    Peng F L, Wang C, Zhou L B, et al. Effects of different inter-cropping patterns on dry matter, nutrient accumulation and yield of waxy sorghum[J]. Journal of Southern Agriculture, 2023, 54(1): 68−79. DOI: 10.3969/j.issn.2095-1191.2023.01.007
    [3]
    李顺国, 刘猛, 刘斐, 等. 中国高粱产业和种业发展现状与未来展望[J]. 中国农业科学, 2021, 54(3): 471−482. DOI: 10.3864/j.issn.0578-1752.2021.03.002

    Li S G, Liu M, Liu F, et al. Current status and future prospective of sorghum production and seed industry in China[J]. Scientia Agricultura Sinica, 2021, 54(3): 471−482. DOI: 10.3864/j.issn.0578-1752.2021.03.002
    [4]
    张健, 范奇高, 陆伦维, 等. 浅析酱香型白酒发展现状及趋势思考[J]. 中国酿造, 2022, 41(4): 234−238. DOI: 10.11882/j.issn.0254-5071.2022.04.040

    Zhang J, Fan Q G, Lu L W, et al. Analysis on the development status and trend of sauce-flavor Baijiu[J]. China Brewing, 2022, 41(4): 234−238. DOI: 10.11882/j.issn.0254-5071.2022.04.040
    [5]
    Duvick D N. Genetic progress in yield of United States maize (Zea mays L.)[J]. Maydica, 2005, 50(3): 193−202.
    [6]
    Tollenaar M, Lee E A. Dissection of physiological processes underlying grain yield in maize by examining genetic improvement and heterosis[J]. Maydica, 2006, 51(2): 399−408.
    [7]
    杨哲, 于胜男, 高聚林, 等. 主要栽培措施对北方春玉米产量贡献的定量评估[J]. 中国农业科学, 2020, 53(15): 3024−3035. DOI: 10.3864/j.issn.0578-1752.2020.15.004

    Yang Z, Yu S N, Gao J L, et al. Quantitative evaluation of the contribution of main management factors to grain yield of spring maize in North China[J]. Scientia Agricultura Sinica, 2020, 53(15): 3024−3035. DOI: 10.3864/j.issn.0578-1752.2020.15.004
    [8]
    陈海飞, 冯洋, 蔡红梅, 等. 氮肥与移栽密度互作对低产田水稻群体结构及产量的影响[J]. 植物营养与肥料学报, 2014, 20(6): 1319−1328. DOI: 10.11674/zwyf.2014.0601

    Chen H F, Feng Y, Cai H M, et al. Effect of the interaction of nitrogen and transplanting density on the rice population structure and grain yield in low-yield paddy fields[J]. Journal of Plant Nutrition and Fertilizers, 2014, 20(6): 1319−1328. DOI: 10.11674/zwyf.2014.0601
    [9]
    罗方, 杨恒山, 张玉芹, 等. 春玉米干物质积累及转运对种植模式和种植密度的响应[J]. 华北农学报, 2019, 34(2): 124−131. DOI: 10.7668/hbnxb.201751066

    Luo F, Yang H S, Zhang Y Q, et al. Response of dry matter accumulation and translocation to planting pattern and planting density in spring maize[J]. Acta Agriculturae Boreali-Sinica, 2019, 34(2): 124−131. DOI: 10.7668/hbnxb.201751066
    [10]
    张琳琳, 孙仕军, 陈志君, 等. 不同颜色地膜与种植密度对春玉米干物质积累和产量的影响[J]. 应用生态学报, 2018, 29(1): 113−124.

    Zhang L L, Sun S J, Chen Z J, et al. Effects of different colored plastic film mulching and planting density on dry matter accumulation and yield of spring maize[J]. Chinese Journal of Applied Ecology, 2018, 29(1): 113−124.
    [11]
    杨吉顺, 高辉远, 刘鹏, 等. 种植密度和行距配置对超高产夏玉米群体光合特性的影响[J]. 作物学报, 2010, 36(7): 1226−1233. DOI: 10.3724/SP.J.1006.2010.01226

    Yang J S, Gao H Y, Liu P, et al. Effects of planting density and row spacing on canopy apparent photosynthesis of high-yield summer corn[J]. Acta Agronomica Sinica, 2010, 36(7): 1226−1233. DOI: 10.3724/SP.J.1006.2010.01226
    [12]
    梁忠宇, 张玉芹, 杨恒山, 等. 扩行缩株种植对春玉米氮素积累、转运及产量的影响[J]. 内蒙古民族大学学报(自然科学版), 2021, 36(4): 345−349.

    Liang Z Y, Zhang Y Q, Yang H S, et al. Effects of expanding line spacing and shrinking row spacing on the accumulation, translocation and yield of nitrogen in spring maize[J]. Journal of Inner Mongolia Minzu University (Natural Sciences), 2021, 36(4): 345−349.
    [13]
    王静静, 贺洪军, 张自坤, 等. 宽行窄幅错位密播种植方式对夏玉米光合特性及产量的影响[J]. 玉米科学, 2017, 25(3): 65−72,79.

    Wang J J, He H J, Zhang Z K, et al. Effects of wide-narrow row interlaced thick-planting pattern on photosynthetic characteristic and yield in summer maize[J]. Journal of Maize Sciences, 2017, 25(3): 65−72,79.
    [14]
    柏延文, 杨永红, 朱亚利, 等. 种植密度对不同株型玉米冠层光能截获和产量的影响[J]. 作物学报, 2019, 45(12): 1868−1879.

    Bai Y W, Yang Y H, Zhu Y L, et al. Effect of planting density on light interception within canopy and grain yield of different plant types of maize[J]. Acta Agronomica Sinica, 2019, 45(12): 1868−1879.
    [15]
    徐田军, 吕天放, 赵久然, 等. 玉米生产上3个主推品种光合特性、干物质积累转运及灌浆特性研究[J]. 作物学报, 2018, 44(3): 414−422. DOI: 10.3724/SP.J.1006.2018.00414

    Xu T J, Lü T F, Zhao J R, et al. Photosynthetic characteristics, dry matter accumulation and translocation, grain filling parameter of three main maize varieties in production[J]. Acta Agronomica Sinica, 2018, 44(3): 414−422. DOI: 10.3724/SP.J.1006.2018.00414
    [16]
    董二伟, 王劲松, 焦晓燕, 等. 栽培模式对晋杂34产量及氮素吸收利用的调控效应[J]. 华北农学报, 2019, 34(1): 196−203. DOI: 10.7668/hbnxb.201751208

    Dong E W, Wang J S, Jiao X Y, et al. Effects of cultivation patterns on yield and nitrogen uptake and utilization of Jinza 34[J]. Acta Agriculturae Boreali-Sinica, 2019, 34(1): 196−203. DOI: 10.7668/hbnxb.201751208
    [17]
    高杰, 李青风, 汪灿, 等. 提高糯高粱干物质和氮素积累、转运及利用效率的适宜密度和施氮量[J]. 植物营养与肥料学报, 2022, 28(12): 2252−2262. DOI: 10.11674/zwyf.2022207

    Gao J, Li Q F, Wang C, et al. Optimum plant density and nitrogen level for the efficient accumulation and transportation of dry matter and nitrogen in waxy sorghum[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(12): 2252−2262. DOI: 10.11674/zwyf.2022207
    [18]
    Dobermann A, Arkebauer T J, Cassman K G, et al. Understanding corn yield potential and optimal soil productivity in irrigated corn systems[A]. Schlegel A J. Proceeding of great plains soil fertility conference[C]. Denver, Colorado: International Plant Nutrition Institute, 2002.
    [19]
    Zhang W F, Cao G X, Li X, et al. Closing yield gaps in China by empowering smallholder farmers[J]. Nature, 2016, 537: 671−674. DOI: 10.1038/nature19368
    [20]
    李广浩, 刘娟, 董树亭, 等. 密植与氮肥用量对不同耐密型夏玉米品种产量及氮素利用效率的影响[J]. 中国农业科学, 2017, 50(12): 2247−2258. DOI: 10.3864/j.issn.0578-1752.2017.12.006

    Li G H, Liu J, Dong S T, et al. Effects of close planting and nitrogen application rates on grain yield and nitrogen utilization efficiency of different density-tolerance maize hybrids[J]. Scientia Agricultura Sinica, 2017, 50(12): 2247−2258. DOI: 10.3864/j.issn.0578-1752.2017.12.006
    [21]
    白伟, 孙占祥, 郑家明, 等. 辽西地区不同种植模式对春玉米产量形成及其生长发育特性的影响[J]. 作物学报, 2014, 40(1): 181−189. DOI: 10.3724/SP.J.1006.2014.00181

    Bai W, Sun Z X, Zheng J M, et al. Effect of different planting patterns on maize growth and yield in western Liaoning Province[J]. Acta Agronomica Sinica, 2014, 40(1): 181−189. DOI: 10.3724/SP.J.1006.2014.00181
    [22]
    肖继兵, 刘志, 孔凡信, 等. 种植方式和密度对高粱群体结构和产量的影响[J]. 中国农业科学, 2018, 51(22): 4264−4276. DOI: 10.3864/j.issn.0578-1752.2018.22.005

    Xiao J B, Liu Z, Kong F X, et al. Effects of planting pattern and density on population structure and yield of sorghum[J]. Scientia Agricultura Sinica, 2018, 51(22): 4264−4276. DOI: 10.3864/j.issn.0578-1752.2018.22.005
    [23]
    王庆杰, 李洪文, 何进, 等. 大垄宽窄行免耕种植对土壤水分和玉米产量的影响[J]. 农业工程学报, 2010, 26(8): 39−43. DOI: 10.3969/j.issn.1002-6819.2010.08.006

    Wang Q J, Li H W, He J, et al. Effects of wide-ridge and narrow-row no-till cultivation on soil water and maize yield[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(8): 39−43. DOI: 10.3969/j.issn.1002-6819.2010.08.006
    [24]
    姚霄宇, 邱纹, 陆虎华, 等. 种植密度和施肥方式对春播鲜食糯玉米产量、品质及氮素吸收利用的影响[J]. 植物营养与肥料学报, 2023, 29(12): 2258−2271. DOI: 10.7606/j.issn.1004-1389.2022.03.003

    Liang X Q, Zhang F, Chen M, et al. Optimum combination of planting density and fertilization mode for high yield, quality and nitrogen utilization of spring-sown fresh waxy maize[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(12): 2258−2271. DOI: 10.7606/j.issn.1004-1389.2022.03.003
    [25]
    侯云鹏, 孔丽丽, 尹彩侠, 等. 覆膜滴灌下氮肥与种植密度互作对东北春玉米产量、群体养分吸收与转运的调控效应[J]. 植物营养与肥料学报, 2021, 27(1): 54−65. DOI: 10.11674/zwyf.20233

    Hou Y P, Kong L L, Yin C X, et al. Interaction between nitrogen fertilizer and plant density on nutrient absorption, translocation and yield of spring maize under drip irrigation in Northeast China[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(1): 54−65. DOI: 10.11674/zwyf.20233
    [26]
    Zhu X G, Donald R O, Martin A J, et al. A wish list for synthetic biology in photosynthesis research[J]. Journal of Experimental Botany, 2020, 71(7): 2219−2225. DOI: 10.1093/jxb/eraa075
    [27]
    Gao Z, Li J Z, Liu S T, Chen Y. Within-leaf chloroplasts and nitrogen allocation to thylakoids in relation to photosynthesis during grain filling in maize[J]. Plant Physiology and Biochemistry, 2023, 196: 830−840. DOI: 10.1016/j.plaphy.2023.02.034
    [28]
    赵广才, 张保明, 王崇义. 高产小麦氮素积累及其与产量和蛋白质含量的关系[J]. 麦类作物学报, 2000, 20(4): 90−93. DOI: 10.3969/j.issn.1009-1041.2000.04.020

    Zhao G C, Zhang B M, Wang C Y. Nitrogen accumulation and their relations to grain yield and protein content in high yielding winter wheat[J]. Journal of Triticeae Crops, 2000, 20(4): 90−93. DOI: 10.3969/j.issn.1009-1041.2000.04.020
    [29]
    刘文平, 梁烜赫, 张春宵, 等. 植物氮素利用途径中硝酸盐转运基因的研究进展[J]. 中国土壤与肥料, 2022, (7): 238−246. DOI: 10.11838/sfsc.1673-6257.21236

    Liu W P, Liang X H, Zhang C X, et al. Research progress of gene encoding nitrate transports involved in nitrogen use pathway in plants[J]. Soil and Fertilizer Sciences in China, 2022, (7): 238−246. DOI: 10.11838/sfsc.1673-6257.21236
    [30]
    丁永刚, 陈欢, 曹承富, 等. 高光效小麦群体提高氮素吸收利用和产量的机理[J]. 植物营养与肥料学报, 2024, 30(1): 27−35. DOI: 10.11674/zwyf.2023237

    Ding Y G, Chen H, Cao C F, et al. Mechanisms of improving nitrogen uptake, utilization and grain yield of wheat population with high radiation use efficiency[J]. Journal of Plant Nutrition and Fertilizers, 2024, 30(1): 27−35. DOI: 10.11674/zwyf.2023237
    [31]
    Abraham T P, Rao V Y. An investigation on functional models for fertilizer response studies[J]. Journal of the Indian Society of Agriculture Statistics, 1965, 18: 45−61.
    [32]
    Anderson R L, Nelson L A. A family of models involving intersecting straight lines and concomitant experimental designs useful in evaluating response to fertilizer nutrients[J]. Biometrics, 1975, 31(2): 303−318. DOI: 10.2307/2529422
    [33]
    Cerrato M E, Blackmer A M. Comparison of models for describing corn yield response to nitrogen fertilizer[J]. Agronomy Journal, 1990, 82(1): 138−143. DOI: 10.2134/agronj1990.00021962008200010030x
    [34]
    钱春荣, 于洋, 宫秀杰, 等. 黑龙江省不同年代玉米杂交种产量对种植密度和施氮水平的响应[J]. 作物学报, 2012, 38(10): 1864−1874.

    Qian C R, Yu Y, Gong X J, et al. Response of grain yield to plant density and nitrogen application rate for maize hybrids released from different eras in Heilongjiang Province[J]. Acta Agronomica Sinica, 2012, 38(10): 1864−1874.
    [35]
    曹胜彪, 张吉旺, 董树亭, 等. 施氮量和种植密度对高产夏玉米产量和氮素利用效率的影响[J]. 植物营养与肥料学报, 2012, 18(6): 1343−1353. DOI: 10.11674/zwyf.2012.12135

    Cao S B, Zhang J W, Dong S T, et al. Effects of nitrogen rate and planting density on grain yield and nitrogen utilization efficiency of high yield summer maize[J]. Journal of Plant Nutrition and Fertilizers, 2012, 18(6): 1343−1353. DOI: 10.11674/zwyf.2012.12135
    [36]
    王旭成, 王星, 王琴, 等. 行距和播量对沙芦草种子产量及其构成因子的影响[J]. 草地学报, 2023, 31(9): 2882−2889.

    Wang X C, Wang X, Wang Q, et al. Effects of row spacing and seeding rate on seed yield and its components of Agropyron mongolicum[J]. Acta Agrestia Sinica, 2023, 31(9): 2882−2889.

Catalog

    Article views (84) PDF downloads (43) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return