Citation: | RUAN Wen-yuan, REN Jian-hao, GUO Mei-na, YI Ke-ke. Advances in the study of plant-microbial interactions coordinated by nitrogen and phosphorus nutrients[J]. Journal of Plant Nutrition and Fertilizers, 2024, 30(7): 1322-1328. DOI: 10.11674/zwyf.2024261 |
Nitrogen (N) and phosphorus (P) are essential macro elements for plant growth and development. The efficient absorption and utilization of nitrogen and phosphorus by plants are closely related to the external environment, and nitrogen and phosphorus can also affect the environmental adaptability of plants. How plants integrate and adapt to different external environments, especially biological environments, to efficiently absorb and utilize N and P nutrients is a new focus in plant nutrition research. In this paper, we reviewed the research progress of N-P nutrient-mediated microbial interaction with plants in recent years, including N-P-associated beneficial and detrimental microbial interactions with plants. We elucidated the important role of N/P-central transcriptional regulators NLPs and PHRs and summarized the functional diversity of internal P-sensor proteins SPXs in regulating plant-microbe interactions in different plant species. In addition, the key points of N-P-associated plant-microbial interaction research in the future were prospected.
[1] |
Chiou T J, Lin S I. Signaling network in sensing phosphate availability in plants[J]. Annual Review of Plant Biology, 2011, 62(1): 185−206.
|
[2] |
Xuan W, Beeckman T, Xu G H. Plant nitrogen nutrition: Sensing and signaling[J]. Current Opinion in Plant Biology, 2017, 39: 57−65.
|
[3] |
Yang J, Lan L Y, Jin Y, et al. Mechanisms underlying legume-rhizobium symbioses[J]. Journal of Integrative Plant Biology, 2022, 64(2): 244−267. DOI: 10.1111/jipb.13207
|
[4] |
Suzaki T, Kawaguchi M. Root nodulation: A developmental program involving cell fate conversion triggered by symbiotic bacterial infection[J]. Current Opinion in Plant Biology, 2014, 21: 16−22.
|
[5] |
Poole P, Ramachandran V, Terpolilli J. Rhizobia: From saprophytes to endosymbionts[J]. Nature Reviews Microbiology, 2018, 16(5): 291−303.
|
[6] |
Nishida H, Suzaki T. Nitrate-mediated control of root nodule symbiosis[J]. Current Opinion in Plant Biology, 2018, 44: 129−136. DOI: 10.1016/j.pbi.2018.04.006
|
[7] |
Nishida H, Tanaka S, Handa Y, et al. A NIN-LIKE PROTEIN mediates nitrate-induced control of root nodule symbiosis in Lotus japonicus[J]. Nature Communications, 2018, 9(1): 499. DOI: 10.1038/s41467-018-02831-x
|
[8] |
Soyano T, Shimoda Y, Hayashi M. NODULE INCEPTION antagonistically regulates gene expression with nitrate in Lotus japonicus[J]. Plant and Cell Physiology, 2015, 56(2): 368−376.
|
[9] |
Marchive C, Roudier F, Castaings L, et al. Nuclear retention of the transcription factor NLP7 orchestrates the early response to nitrate in plants[J]. Nature Communications, 2013, 4(1): 1713.
|
[10] |
Nussaume L, Kanno S, Javot H, et al. Phosphate import in plants: Focus on the PHT1 transporters[J]. Frontiers in Plant Science, 2011, 2: 83.
|
[11] |
Sulieman S, Tran L S P. Phosphorus homeostasis in legume nodules as an adaptive strategy to phosphorus deficiency[J]. Plant Science, 2015, 239: 36−43.
|
[12] |
Liese R, Schulze J, Cabeza R A. Nitrate application or P deficiency induce a decline in Medicago truncatula N2-fixation by similar changes in the nodule transcriptome[J]. Scientific Reports, 2017, 7(1): 46264. DOI: 10.1038/srep46264
|
[13] |
Ma Y L, Chen R J. Nitrogen and phosphorus signaling and transport during legume-rhizobium symbiosis[J]. Frontiers in Plant Science, 2021, 12: 683601. DOI: 10.3389/fpls.2021.683601
|
[14] |
Hernández G, Valdés-López O, Ramírez M, et al. Global changes in the transcript and metabolic profiles during symbiotic nitrogen fixation in phosphorus stressed common bean plants[J]. Plant Physiology, 2009, 151(3): 1221−1238. DOI: 10.1104/pp.109.143842
|
[15] |
Lu M Y, Cheng Z Y, Zhang X M, et al. Spatial divergence of PHR-PHT1 modules maintains phosphorus homeostasis in soybean nodules[J]. Plant Physiology, 2020, 184(1): 236−250. DOI: 10.1104/pp.19.01209
|
[16] |
Zhuang Q L, Xue Y B, Yao Z F, et al. Phosphate starvation responsive GmSPX5 mediates nodule growth through interaction with GmNF-YC4 in soybean (Glycine max)[J]. The Plant Journal, 2021, 108(5): 1422−1438. DOI: 10.1111/tpj.15520
|
[17] |
Tsikou D, Yan Z, Holt D B, et al. Systemic control of legume susceptibility to rhizobial infection by a mobile microRNA[J]. Science, 2018, 362: 233−236. DOI: 10.1126/science.aat6907
|
[18] |
Rui W J, Mao Z P, Li Z F. The roles of phosphorus and nitrogen nutrient transporters in the arbuscular mycorrhizal symbiosis[J]. International Journal of Molecular Sciences, 2022, 23(19): 11027. DOI: 10.3390/ijms231911027
|
[19] |
Wang W X, Shi J C, Xie Q J, et al. Nutrient exchange and regulation in arbuscular mycorrhizal symbiosis[J]. Molecular Plant, 2017, 10(9): 1147−1158. DOI: 10.1016/j.molp.2017.07.012
|
[20] |
Wipf D, Krajinski F, van Tuinen D, et al. Trading on the arbuscular mycorrhiza market: From arbuscules to common mycorrhizal networks[J]. New Phytologist, 2019, 223(3): 1127−1142. DOI: 10.1111/nph.15775
|
[21] |
Graham J H, Leonard R T, Menge J A. Membrane-mediated decrease in root exudation responsible for phosphorus inhibition of vesicular-arbuscular mycorrhiza formation[J]. Plant Physiology, 1981, 68(3): 548−552.
|
[22] |
Thomson B D, Robson A D, Abbott L K. Effects of phosphorus on the formation of mycorrhizas by Gigaspora calospora and Glomus fasciculatum in relation to root carbohydrates[J]. New Phytologist, 1986, 103(3): 751−765.
|
[23] |
Elias K S, Safir G R. Hyphal elongation of Glomus fasciculatus in response to root exudates[J]. Applied and Environmental Microbiology, 1987, 53(8): 1928−1933. DOI: 10.1128/aem.53.8.1928-1933.1987
|
[24] |
Shi J C, Zhao B Y, Zheng S, et al. A phosphate starvation response-centered network regulates mycorrhizal symbiosis[J]. Cell, 2021, 184(22): 5527−5540.
|
[25] |
Paries M, Gutjahr C. The good, the bad, and the phosphate: Regulation of beneficial and detrimental plant–microbe interactions by the plant phosphate status[J]. New Phytologist, 2023, 239(1): 29−46.
|
[26] |
Yuan K, Zhang H, Yu C J, et al. Low phosphorus promotes NSP1-NSP2 heterodimerization to enhance strigolactone biosynthesis and regulate shoot and root architecture in rice[J]. Molecular Plant, 2023, 16(11): 1811−1831.
|
[27] |
Lota F, Wegmüller S, Buer B, et al. The cis-acting CTTC-P1BS module is indicative for gene function of LjVTI12, a Qb-SNARE protein gene that is required for arbuscule formation in Lotus japonicus[J]. The Plant Journal, 2013, 74(2): 280−293. DOI: 10.1111/tpj.12120
|
[28] |
Das D, Paries M, Hobecker K, et al. PHOSPHATE STARVATION RESPONSE transcription factors enable arbuscular mycorrhiza symbiosis[J]. Nature Communications, 2022, 13(1): 477. DOI: 10.1038/s41467-022-27976-8
|
[29] |
Liao D H, Sun C, Liang H Y, et al. SlSPX1–SlPHR complexes mediate the suppression of arbuscular mycorrhizal symbiosis by phosphate repletion in tomato[J]. The Plant Cell, 2022, 34(10): 4045−4065. DOI: 10.1093/plcell/koac212
|
[30] |
Wang P, Snijders R, Kohlen W, et al. Medicago SPX1 and SPX3 regulate phosphate homeostasis, mycorrhizal colonization, and arbuscule degradation[J]. The Plant Cell, 2021, 33(11): 3470−3486. DOI: 10.1093/plcell/koab206
|
[31] |
Shi J C, Wang X L, Wang E T. Mycorrhizal symbiosis in plant growth and stress adaptation: From genes to ecosystems[J]. Annual Review of Plant Biology, 2023, 74(1): 569−607. DOI: 10.1146/annurev-arplant-061722-090342
|
[32] |
Nagy R, Karandashov V, Chague W, et al. The characterization of novel mycorrhiza-specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species[J]. The Plant Journal, 2005, 42(2): 236−250. DOI: 10.1111/j.1365-313X.2005.02364.x
|
[33] |
Mashiguchi K, Seto Y, Yamaguchi S. Strigolactone biosynthesis, transport and perception[J]. The Plant Journal, 2021, 105(2): 335−350. DOI: 10.1111/tpj.15059
|
[34] |
Govindarajulu M, Pfeffer P E, Jin H R, et al. Nitrogen transfer in the arbuscular mycorrhizal symbiosis[J]. Nature, 2005, 435: 819−823. DOI: 10.1038/nature03610
|
[35] |
Guether M, Neuhäuser, B, Balestrini R, et al. A mycorrhizal-specific ammonium transporter from Lotus japonicus acquires nitrogen released by arbuscular mycorrhizal fungi[J]. Plant Physiology, 2009, 150(1): 73−83. DOI: 10.1104/pp.109.136390
|
[36] |
Walder F, Brulé D, Koegel S, et al. Plant phosphorus acquisition in a common mycorrhizal network: Regulation of phosphate transporter genes of the Pht1 family in sorghum and flax[J]. New Phytologist, 2015, 205(4): 1632−1645. DOI: 10.1111/nph.13292
|
[37] |
Kojima S, Konishi N, Beier M P, et al. NADH-dependent glutamate synthase participated in ammonium assimilation in Arabidopsis root[J]. Plant Signaling & Behavior, 2014, 9(8): e29402.
|
[38] |
Volpe V, Giovannetti M, Sun X G, et al. The phosphate transporters LjPT4 and MtPT4 mediate early root responses to phosphate status in nonmycorrhizal roots[J]. Plant, Cell & Environment, 2016, 39(3): 660–671.
|
[39] |
Gaude N, Bortfeld S, Duensing N, et al. Arbuscule-containing and non-colonized cortical cells of mycorrhizal roots undergo extensive and specific reprogramming during arbuscular mycorrhizal development[J]. The Plant Journal, 2012, 69(3): 510−528. DOI: 10.1111/j.1365-313X.2011.04810.x
|
[40] |
Filiz E, Akbudak M A. Ammonium transporter 1 (AMT1) gene family in tomato (Solanum lycopersicum L. ): Bioinformatics, physiological and expression analyses under drought and salt stresses[J]. Genomics, 2020, 112(5): 3773−3782. DOI: 10.1016/j.ygeno.2020.04.009
|
[41] |
Hoysted G A, Field K J, Sinanaj B, et al. Direct nitrogen, phosphorus and carbon exchanges between Mucoromycotina ‘fine root endophyte’ fungi and a flowering plant in novel monoxenic cultures[J]. New Phytologist, 2023, 238(1): 70−79. DOI: 10.1111/nph.18630
|
[42] |
Bücking H, Heyser W. Uptake and transfer of nutrients in ectomycorrhizal associations: Interactions between photosynthesis and phosphate nutrition[J]. Mycorrhiza, 2003, 13(2): 59−68. DOI: 10.1007/s00572-002-0196-3
|
[43] |
Cairney J W G. Ectomycorrhizal fungi: The symbiotic route to the root for phosphorus in forest soils[J]. Plant and Soil, 2011, 344: 51–71.
|
[44] |
Garcia K, Delaux P M, Cope K R, Ané J M. Molecular signals required for the establishment and maintenance of ectomycorrhizal symbioses[J]. New Phytologist, 2015, 208(1): 79−87. DOI: 10.1111/nph.13423
|
[45] |
Werner G D A, Cornelissen J H C, Cornwell W K, et al. Symbiont switching and alternative resource acquisition strategies drive mutualism breakdown[J]. Proceedings of the National Academy of Sciences, 2018, 115(20): 5229−5234. DOI: 10.1073/pnas.1721629115
|
[46] |
Almario J, Fabiańska I, Saridis G, Bucher M. Unearthing the plant–microbequid pro quo in root associations with beneficial fungi[J]. New Phytologist, 2022, 234(6): 1967−1976. DOI: 10.1111/nph.18061
|
[47] |
Cheng Y Y, Narayanan M, Shi X J, et al. Phosphate-solubilizing bacteria: Their agroecological function and optimistic application for enhancing agro-productivity[J]. Science of the Total Environment, 2023, 901: 166468. DOI: 10.1016/j.scitotenv.2023.166468
|
[48] |
Radtke A L, O’Riordan M X D. Intracellular innate resistance to bacterial pathogens[J]. Cellular Microbiology, 2006, 8(11): 1720−1729. DOI: 10.1111/j.1462-5822.2006.00795.x
|
[49] |
Hood M I, Skaar E P. Nutritional immunity: Transition metals at the pathogen-host interface[J]. Nature Reviews Microbiology, 2012, 10(8): 525−537. DOI: 10.1038/nrmicro2836
|
[50] |
Rao A A. Nitrogenous manuring in relation to blast disease of rice[J]. Proceedings/Indian Academy of Sciences, 1964, 59(3): 173−184.
|
[51] |
Matsuyama N, Dimond A E. Effect of nitrogenous fertilizer on biochemical processes that could affect lesion size of rice blast[J]. Phytopathology, 1973, 63(9): 1202−1203. DOI: 10.1094/Phyto-63-1202
|
[52] |
Amin K S, Venkatarao G. Rice blast control by nitrogen management[J]. Journal of Phytopathology, 1979, 96(2): 140−145.
|
[53] |
Long D H, Lee F N, TeBeest D O. Effect of nitrogen fertilization on disease progress of rice blast on susceptible and resistant cultivars[J]. Plant Disease, 2000, 84(4): 403−409. DOI: 10.1094/PDIS.2000.84.4.403
|
[54] |
Campos-Soriano L, Bundó M, Bach-Pages M, et al. Phosphate excess increases susceptibility to pathogen infection in rice[J]. Molecular Plant Pathology, 2020, 21(4): 555−570. DOI: 10.1111/mpp.12916
|
[55] |
Sun Y M, Wang M, Mur L A J, et al. Unravelling the roles of nitrogen nutrition in plant disease defences[J]. International Journal of Molecular Sciences, 2020, 21(2): 572. DOI: 10.3390/ijms21020572
|
[56] |
Plavcová L, Hacke U G, Almeida-Rodriguez A M, et al. Gene expression patterns underlying changes in xylem structure and function in response to increased nitrogen availability in hybrid poplar[J]. Plant, Cell & Environment, 2013, 36(1): 186–199.
|
[57] |
Camargo E L O, Nascimento L C, Soler M, et al. Contrasting nitrogen fertilization treatments impact xylem gene expression and secondary cell wall lignification in Eucalyptus[J]. BMC Plant Biology, 2014, 14: 256. DOI: 10.1186/s12870-014-0256-9
|
[58] |
Kováčik J, Klejdus B, Bačkor M, Repčák M. Phenylalanine ammonia-lyase activity and phenolic compounds accumulation in nitrogen-deficient Matricaria chamomilla leaf rosettes[J]. Plant Science, 2007, 172(2): 393−399. DOI: 10.1016/j.plantsci.2006.10.001
|
[59] |
Modolo L V, Augusto O, Almeida I M G, et al. Nitrite as the major source of nitric oxide production by Arabidopsis thalianain response to Pseudomonas syringae[J]. FEBS Letters, 2005, 579(17): 3814−3820. DOI: 10.1016/j.febslet.2005.05.078
|
[60] |
Mur L A J, Santosa I E, Laarhoven L J J, et al. Laser photoacoustic detection allows in planta detection of nitric oxide in tobacco following challenge with avirulent and virulent Pseudomonas syringae pathovars[J]. Plant Physiology, 2005, 138(3): 1247−1258. DOI: 10.1104/pp.104.055772
|
[61] |
Chen J, Vandelle E, Bellin D, Delledonne M. Detection and function of nitric oxide during the hypersensitive response in Arabidopsis thaliana: Where there’s a will there’s a way[J]. Nitric Oxide, 2014, 43: 81−88. DOI: 10.1016/j.niox.2014.06.008
|
[62] |
Modolo L V, Cunha F Q, Braga M R, Salgado L. Nitric oxide synthase-mediated phytoalexin accumulation in soybean cotyledons in response to the Diaporthe phaseolorum f. sp. meridionalis elicitor[J]. Plant Physiology, 2002, 130(3): 1288−1297.
|
[63] |
Seifi H S, Van Bockhaven J, Angenon G, Höfte M. Glutamate metabolism in plant disease and defense: Friend or foe?[J]. Molecular Plant-Microbe Interactions, 2013, 26(5): 475−485. DOI: 10.1094/MPMI-07-12-0176-CR
|
[64] |
Pastor V, Gamir J, Camañes G, et al. Disruption of the ammonium transporter AMT1.1 alters basal defenses generating resistance against Pseudomonas syringae and Plectosphaerella cucumerina[J]. Frontiers in Plant Science, 2014, 5: 231.
|
[65] |
Castrillo G, Teixeira P J P L, Paredes S H, et al. Root microbiota drive direct integration of phosphate stress and immunity[J]. Nature, 2017, 543: 513−518. DOI: 10.1038/nature21417
|
[66] |
Eshraghi L, Anderson J P, Aryamanesh N, et al. Suppression of the auxin response pathway enhances susceptibility to Phytophthora cinnamomi while phosphite-mediated resistance stimulates the auxin signalling pathway[J]. BMC Plant Biology, 2014, 14: 68. DOI: 10.1186/1471-2229-14-68
|
[67] |
He Y Q, Zhao Y, Hu J T, et al. The OsBZR1–OsSPX1/2 module fine-tunes the growth–immunity trade-off in adaptation to phosphate availability in rice[J]. Molecular Plant, 2024, 17(2): 258−276. DOI: 10.1016/j.molp.2023.12.003
|
[68] |
Kong Y Z, Wang G, Chen X, et al. OsPHR2 modulates phosphate starvation-induced OsMYC2 signalling and resistance to Xanthomonas oryzae pv. oryzae[J]. Plant, Cell & Environment, 2021, 44(10): 3432-3444.
|
[69] |
Tang J, Wu D S, Li X X, et al. Plant immunity suppression via PHR1-RALF-FERONIA shapes the root microbiome to alleviate phosphate starvation[J]. EMBO Journal, 2022, 41(6): e109102. DOI: 10.15252/embj.2021109102
|
[70] |
Stegmann M, Monaghan J, Smakowska-Luzan E, et al. The receptor kinase FER is a RALF-regulated scaffold controlling plant immune signaling[J]. Science, 2017, 355: 287−289. DOI: 10.1126/science.aal2541
|
[71] |
Val-Torregrosa B, Bundo M, Mallavarapu M D, et al. Loss-of-function of NITROGEN LIMITATION ADAPTATION confers disease resistance in Arabidopsis by modulating hormone signaling and camalexin content[J]. Plant Science, 2022, 323: 111374. DOI: 10.1016/j.plantsci.2022.111374
|
[72] |
Gulabani H, Goswami K, Walia Y, et al. Arabidopsis inositol polyphosphate kinases IPK1 and ITPK1 modulate crosstalk between SA-dependent immunity and phosphate-starvation responses[J]. Plant Cell Reports, 2022, 41(2): 347−363. DOI: 10.1007/s00299-021-02812-3
|
[73] |
Dindas J, DeFalco T A, Yu G, et al. Direct inhibition of phosphate transport by immune signaling in Arabidopsis[J]. Current Biology, 2022, 32(2): 488−495. DOI: 10.1016/j.cub.2021.11.063
|
1. |
李明燕,黄倩,李天顺,朱文琎,普布. 哲古草原土壤原生动物群落结构及其对环境因子的响应. 湖南师范大学自然科学学报. 2024(06): 98-105 .
![]() |