• ISSN 1008-505X
  • CN 11-3996/S
LONG Dao-ping, WANG Xiao-fei, SHI Pan-pan, LIU Pei-yao, ZHANG Bing-bing, YANG Ze-yu, ZHAO Qing-ling, ZHOU Chun-ju, WANG Lin-quan. Response of ammonia volatilization from lawn canopy to shading and nitrogen fertilization and the source resolution[J]. Journal of Plant Nutrition and Fertilizers, 2025, 31(4): 671-686. DOI: 10.11674/zwyf.2024370
Citation: LONG Dao-ping, WANG Xiao-fei, SHI Pan-pan, LIU Pei-yao, ZHANG Bing-bing, YANG Ze-yu, ZHAO Qing-ling, ZHOU Chun-ju, WANG Lin-quan. Response of ammonia volatilization from lawn canopy to shading and nitrogen fertilization and the source resolution[J]. Journal of Plant Nutrition and Fertilizers, 2025, 31(4): 671-686. DOI: 10.11674/zwyf.2024370

Response of ammonia volatilization from lawn canopy to shading and nitrogen fertilization and the source resolution

More Information
  • Received Date: July 30, 2024
  • Accepted Date: February 01, 2025
  • Available Online: April 03, 2025
  • Objectives 

    The aims of this study were to investigate the dynamics of ammonia volatilization from the canopy of lawns of different vegetation types and its response to shade and nitrogen fertilization, and to examine the sources of ammonia volatilization from the canopy of C3 and C4 plants and their contribution to ammonia volatilization from lawns.

    Methods 

    The ammonia volatilization from different lawns and soils was monitored in a pot experiment using a pump suction portable ammonia detector (PAD). The experiment was set up with three lawn plants (C3 plant Ophiopogon japonicus, Festuca elata Keng and C4 plant Cynodon dactylon), three shade conditions (100%, 45%, and 25% light penetration) and two nitrogen application rates (N 2.3 and 0 g/kg dry soil) in complete combinations, and there were total 18 treatments. Leaf nitrate reductase (NR), glycolate oxidase (GO), glutamine synthetase (GS), and phenylalanine deaminase (PAL) activity, plant physiological and biochemical indices, such as chlorophyll a, chlorophyll b, and carotenoids, as well as environmental indices, such as light intensity and rainfall, soil temperature, moisture and mineral N content, were also monitored. Different turfgrass canopy ammonia sources were explored by structural equation modeling.

    Results 

    Canopy ammonia volatilization varied significantly among lawns, the accumulated canopy ammonia volatilization of Festuca elata keng, Cynodon dactylon and Ophiopogon japonicus in two growing seasons were N 52.1, 34.0 and 4.0 kg/hm2, respectively; the contribution rates of canopy ammonia volatilization to lawn ammonia volatilization were 71.1%, 62.8% and 66.8%, and nitrogen fertilizer emission factors were 4.3%, 4.4% and 0.4% respectively. Nitrogen application significantly increased lawn canopy ammonia volatilization by 35% (P<0.05); shading reduced ammonia emissions and ammonia emission coefficients of nitrogen fertilizer, but increased the contribution of canopy ammonia emissions to lawn ammonia volatilization. Glycolic acid oxidase (GO) and nitrate reductase (NR) activities of C3 plants were significantly higher than that of C4 plants. Chlorophyll content was positively correlated with canopy ammonia volatilization, and chlorophyll a and b and carotenoid contents in Ophiopogon japonicus were significantly lower than those of Cynodon dactylon and Festuca elata keng. Structural equation modeling showed that both lawn canopies ammonia emission was positively regulated by nitrogen application and negatively regulated by shading; the canopy ammonia volatilization from C3 and C4 plants was mainly regulated by the phenylpropane metabolic pathway and the photorespiratory metabolic pathway respectively.

    Conclusions 

    Nitrogen application significantly increases lawn canopy ammonia volatilization; shading significantly reduces the volatilization and fertilizer ammonia emission coefficients. The canopy ammonia volatilization of Festuca elata keng and Cynodon dactylon is significantly higher than that of Ophiopogon japonicus. The canopy ammonia valtilization sources of C3 plants are different from those of C4 plants and the former is mainly controlled by phenylpropane metabolism pathway, whereas the latter by photorespiration.

  • [1]
    黄娟. 草坪的功能与作用探析[J]. 园艺与种苗, 2015, (3): 49−50. DOI: 10.3969/j.issn.2095-0896.2015.03.018

    Huang J. Discussion on functions and roles of lawn[J]. Horticulture & Seed, 2015, (3): 49−50. DOI: 10.3969/j.issn.2095-0896.2015.03.018
    [2]
    付伟, 武慧, 赵爱花, 等. 陆地生态系统氮沉降的生态效应: 研究进展与展望[J]. 植物生态学报, 2020, 44(5): 475−493. DOI: 10.17521/cjpe.2019.0163

    Fu W, Wu H, Zhao A H, et al. Ecological impacts of nitrogen deposition on terrestrial ecosystems: Research progresses and prospects[J]. Chinese Journal of Plant Ecology, 2020, 44(5): 475−493. DOI: 10.17521/cjpe.2019.0163
    [3]
    刘伯顺, 黄立华, 黄金鑫, 等. 我国农田氨挥发研究进展与减排对策[J]. 中国生态农业学报, 2022, 30(6): 5−18.

    Liu B S, Huang L H, Huang J X, et al. Research progress and emission reduction measures of ammonia volatilization from farmland in China[J]. Chinese Journal of Eco-Agriculture, 2022, 30(6): 5−18.
    [4]
    An Z S, Huang R J, Zhang R Y, et al. Severe haze in northern China: A synergy of anthropogenic emissions and atmospheric processes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(18): 8657−8666.
    [5]
    吴馨俣, 康嘉慧, 杜晓芸, 等. 高原湖泊典型小流域农田氨挥发与近源沉降特征研究[J]. 生态环境学报, 2024, 33(8): 1236−1244.

    Wu X Y, Kang J H, Du X Y, et al. Study on characteristics of cropland ammonia emissions and its near-source deposition in typical small watershed of plateau lake[J]. Ecology and Environmental Sciences, 2024, 33(8): 1236−1244.
    [6]
    Lee Y, Im E, Lee G, et al. Comparison of ammonia volatilization in paddy and field soils fertilized with urea and ammonium sulfate during rice, potato, and Chinese cabbage cultivation[J]. Atmospheric Pollution Research, 2024, 15(4): 102049. DOI: 10.1016/j.apr.2024.102049
    [7]
    Sutton M A, Howard C M, Erisman J W, et al. The European nitrogen assessment: Sources, effects and policy perspectives[M]. UK: Cambridge University Press, 2011.
    [8]
    魏志标, 柏兆海, 马林, 等. 中国天然草地氮磷流动空间特征[J]. 中国农业科学, 2018, 51(3): 523−534. DOI: 10.3864/j.issn.0578-1752.2018.03.011

    Wei Z B, Bai Z H, Ma L, et al. Spatial characteristics of nitrogen and phosphorus flow in natural grassland of China[J]. Scientia Agricultura Sinica, 2018, 51(3): 523−534. DOI: 10.3864/j.issn.0578-1752.2018.03.011
    [9]
    白颖慧, 许迎浩, 吕慎强, 等. 植被冠层氨释放及对草地氨挥发贡献与氨源解析[J]. 农业与环境学报, 2022, 41(10): 2315−2326.

    Bai Y H, Xu Y H, Lü S Q, et al. Ammonia release from vegetation canopies and its contribution to grassland ammonia volatilization and source apportionment[J]. Journal of Agro-Environment Science, 2022, 41(10): 2315−2326.
    [10]
    叶子飘, 杨小龙, 康华靖. C3和C4植物光能利用效率和水分利用效率的比较研究[J]. 浙江农业学报, 2016, 28(11): 1867−1873. DOI: 10.3969/j.issn.1004-1524.2016.11.10

    Ye Z P, Yang X L, Kang H J. Comparsion of light-use and water-use efficiency for C3 and C4 species[J]. Acta Agriculturae Zhejiangensis, 2016, 28(11): 1867−1873. DOI: 10.3969/j.issn.1004-1524.2016.11.10
    [11]
    侯学文, 李英杰, 钟琪, 等. 光呼吸代谢途径及其调控的研究进展[J]. 植物生理学报, 2019, 55(3): 255−264.

    Hou W X, Li Y J, Zhong Q, et al. Advances in photorespiratory metabolic pathways and their regulation[J]. Plant Physiology Journal, 2019, 55(3): 255−264.
    [12]
    李彬, 赫凤彩, 王泓翔, 等. 不同光照强度对4种禾本科牧草幼苗定居的影响[J]. 草原与草业, 2022, 34(4): 32−37. DOI: 10.3969/j.issn.2095-5952.2022.04.012

    Li B, He F C, Wang H X, et al. Effects of different light intensities on seedling settlement of 4 gramineous forges[J]. Grassland and Prataculture, 2022, 34(4): 32−37. DOI: 10.3969/j.issn.2095-5952.2022.04.012
    [13]
    李文鑫, 张春霞, 冯自茂. 植物铵转运蛋白对NH4+信号感知及逆境响应研究进展[J]. 农业生物技术学报, 2020, 28(8): 1511.

    Li W X, Zhang C X, Feng Z M. Research progress on ammonium transporters' perception and stress response to NH4+ signals in plants[J]. Journal of Agricultural Biotechnology, 2020, 28(8): 1511.
    [14]
    Prochetto S, Studer A J, Reinheimer R. De novo transcriptome assemblies of C3 and C4 non-model grass species reveal key differences in leaf development[J]. BMC Genomics, 2023, 24(1): 64. DOI: 10.1186/s12864-022-08995-7
    [15]
    Still C J, Berry J A, Collatz G J, et al. Global distribution of C3 and C4 vegetation: Carbon cycle implications[J]. Global Biogeochemical Cycles, 2003, 17(1): 1006.
    [16]
    Yang Y, Ni X, Liu B, et al. Measuring field ammonia emissions and canopy ammonia fluxes in agriculture using portable ammonia detector method[J]. Journal of Cleaner Production, 2019, 216: 542−551. DOI: 10.1016/j.jclepro.2018.12.109
    [17]
    Sigua G C, Novak J M, Watts D W, et al. Urease activity and nitrogen dynamics in highly weathered soils with designer biochars under corn cultivation[J]. Biochar, 2020, 2(3): 343−356. DOI: 10.1007/s42773-020-00052-4
    [18]
    王绍辉, 郝翠玲, 张振贤. 植物遮荫效应的研究与进展[J]. 山东农业大学学报, 1998, 29(1): 130−134.

    Wang S H, Hao C L, Zhang Z X. The study and advance in the shade effect of plants[J]. Journal of Shandong Agricultural University, 1998, 29(1): 130−134.
    [19]
    马晓燕, 王军玲, 郭秀锐, 等. 不同施氮情景下北京地区露地甘蓝土壤氨的排放[J]. 北方园艺, 2017, (13): 140−147. DOI: 10.11937/bfyy.20164671

    Ma X Y, Wang J L, Guo X R, et al. Ammonia emission from outdoor cabbage soil in Beijing area based on different nitrogen application rate[J]. Northern Horticulture, 2017, (13): 140−147. DOI: 10.11937/bfyy.20164671
    [20]
    王齐, 师春娟. 草坪生态系统中氨挥发研究进展(综述)[J]. 亚热带植物科学, 2011, 40(4): 80−84. DOI: 10.3969/j.issn.1009-7791.2011.04.021

    Wang Q, Sh C J. Research progress of ammonia volatilization in turf ecosystem[J]. Subtropical Plant Science, 2011, 40(4): 80−84. DOI: 10.3969/j.issn.1009-7791.2011.04.021
    [21]
    Schlossberg M J, Mcgraw B A, Sebring R L, et al. Nitrogen recovery and loss from Kentucky bluegrass fertilized by conventional or enhanced-efficiency urea granules[J]. Agronomy, 2018, 8(8): 144. DOI: 10.3390/agronomy8080144
    [22]
    Leiby N L, Schlossberg M J. Field quantification of ammonia emission following fertilization of golf course turfgrass in sub/urban areas[J]. Applied Sciences, 2021, 11(24): 11644. DOI: 10.3390/app112411644
    [23]
    Huckaby E C K, Wood C W, Guertal E A. Nitrogen source effects on ammonia volatilization from warm-season sod[J]. Crop Science, 2012, 52(3): 1379−1384. DOI: 10.2135/cropsci2011.04.0198
    [24]
    陈钦. 麦冬在园林景观工程中的运用及其作用[J]. 上海建设科技, 2015, (4): 55−56. DOI: 10.3969/j.issn.1005-6637.2015.04.018

    Chen Q. The use of maitake in the garden landscape project and its role[J]. Shanghai Construction Technology, 2015, (4): 55−56. DOI: 10.3969/j.issn.1005-6637.2015.04.018
    [25]
    宋艳霞, 杨文钰, 李卓玺, 等. 套作遮荫对大豆不同品种苗期氮代谢的影响[J]. 中国油料作物学报, 2010, 32(3): 390−394.

    Song Y X, Yang W Y, Li Z X, et al. Effect of maize soybean relay cropping shade on nitrogen metabolism of soybean seedlings[J]. Chinese Journal of Oil Crop Science, 2010, 32(3): 390−394.
    [26]
    何静雯, 赵晟, 岳庆春, 等. 弱光胁迫下‘鄞红’葡萄光合特性及相关基因的表达[J]. 西南农业学报, 2018, 31(12): 2520−2526.

    He J W, Zhao S, Yue Q C, et al. Effects of weak light stress on photosynthetic characteristics and relative gene expression of ‘Yinhong’ grape[J]. Southwest China Journal of Agricultural Sciences, 2018, 31(12): 2520−2526.
    [27]
    Barak S, Nejidat A, Heimer Y, et al. Transcriptional and posttranscriptional regulation of the glycolate oxidase gene in tobacco seedlings[J]. Plant Molecular Biology, 2001, 45(4): 399−407. DOI: 10.1023/A:1010688804719
    [28]
    Tang Y, Shi W, Xia X, et al. Morphological, microstructural and lignin-related responses of herbaceous peony stem to shading[J]. Scientia Horticulturae, 2022, 293: 110734. DOI: 10.1016/j.scienta.2021.110734
    [29]
    罗红艺. C3植物、C4植物和CAM植物的比较[J]. 高等函授学报(自然科学版), 2001, 14(5): 35−38.

    Luo H Y. Comparison of C3 plants, C4 plants and CAM plants[J]. Journal of Higher Correspondence Education (Natural Sciences), 2001, 14(5): 35−38.
    [30]
    Dehigaspitiya P, Milham P, Ash G J, et al. Exploring natural variation of photosynthesis in a site-specific manner: Evolution, progress, and prospects[J]. Planta, 2019, 250(4): 1033−1050. DOI: 10.1007/s00425-019-03223-1
    [31]
    李义博, 陶福禄. 提高小麦光能利用效率机理的研究进展[J]. 中国农业气象, 2022, 43(2): 93−111. DOI: 10.3969/j.issn.1000-6362.2022.02.002

    Li Y B, Tao F L. Research progress on the mechanism of high light use efficiency in wheat[J]. Chinese Journal of Agrometeorology, 2022, 43(2): 93−111. DOI: 10.3969/j.issn.1000-6362.2022.02.002
    [32]
    葛阳, 王升, 万修福, 等. 施氮对中药材抗逆性影响及机制[J]. 中国中药杂志, 2021, 46(8): 1901−1909.

    Ge Y, Wang S, Wan X F, et al. Effects and mechanisms of nitrogen application on stress resistance of Chinese materia medica[J]. China Journal Chinese Materia Medica, 2021, 46(8): 1901−1909.
    [33]
    王梦翔, 卢晶晶, 张妞, 等. 遮荫与施硅对圆柏幼苗光合特性和生长的影响[J]. 天津农业科学, 2024, 30(3): 21−29. DOI: 10.3969/j.issn.1006-6500.2024.03.004

    Wang M X, Lu J J, Zhang N, et al. Effects of shading and silicon application on photosynthetic characteristics and growth of Juniperus chinensis seedlings[J]. Tianjin Agricultural Sciences, 2024, 30(3): 21−29. DOI: 10.3969/j.issn.1006-6500.2024.03.004
    [34]
    陈永聚, 林喜珀, 余荣鹏, 等. 群落演替中光和土壤环境改变对植物光合色素的影响[J]. 绿色科技, 2016, (14): 1−3. DOI: 10.3969/j.issn.1674-9944.2016.14.001

    Chen Y J, Lin X B, She R P, et al. Effects of light and soil environment changes on plant photosynthetic pigments in plant community succession[J]. Journal of Green Science and Technology, 2016, (14): 1−3. DOI: 10.3969/j.issn.1674-9944.2016.14.001
    [35]
    袁志民, 滑永春, 安慧君. 不同光质对银杏幼苗光合色素及生理特性的影响[J]. 贵州农业科学, 2023, 51(12): 13−22. DOI: 10.3969/j.issn.1001-3601.2023.12.003

    Yuan Z M, Hua Y C, An H J. Effects of different light quality on photosynthetic pigments and physiological characteristics of Gonkgo biloba seedlings[J]. Guizhou Agricultural Sciences, 2023, 51(12): 13−22. DOI: 10.3969/j.issn.1001-3601.2023.12.003
    [36]
    孙善军, 邹长明, 张晓红, 等. 遮阴对两个绿豆品种光合作用和生长发育的影响[J]. 草业科学, 2017, 34(6): 1247−1254. DOI: 10.11829/j.issn.1001-0629.2016-0416

    Sun S J, Zou C M, Zhang X H, et al. Effect of shading on photosynthesis and growth in two Phaseolus aureus varieties[J]. Pratacultural Science, 2017, 34(6): 1247−1254. DOI: 10.11829/j.issn.1001-0629.2016-0416
    [37]
    Dechorgnat J, Nguyen C T, Armengaud P, et al. From the soil to the seeds: The long journey of nitrate in plants[J]. Journal of Experimental Botany, 2011, 62(4): 1349−1359. DOI: 10.1093/jxb/erq409
    [38]
    周兴元, 曹福亮. 遮荫对假俭草抗氧化酶系统及光合作用的影响[J]. 南京林业大学学报(自然科学版), 2006, 30(3): 32−36.

    Zhou X Y, Cao F L. Effects of shading on the antioxidant enzymatic system and photosynthesis of centipedegrass[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2006, 30(3): 32−36.
    [39]
    Zelitch I, Schultes N P, Peterson R B, et al. High glycolate oxidase activity is required for survival of maize in normal air[J]. Plant Physiology, 2009, 149(1): 195−204. DOI: 10.1104/pp.108.128439
    [40]
    Popov V N, Dmitrieva E A, Eprintsev A T, et al. Glycolate oxidase isoforms are distributed between the bundle sheath and mesophyll tissues of maize leaves[J]. Journal of Plant Physiology, 2003, 160(8): 851−857. DOI: 10.1078/0176-1617-01105
  • Related Articles

    [1]ZHANG Yi, WANG Yun, LIU Can-yu, ZHANG Zhi-huan, HAN Min, CAO Bi-li, XU Kun. Effect of calcium level on growth and nitrogen metabolism of Welsh onion[J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(5): 1366-1373. DOI: 10.11674/zwyf.15319
    [2]SHI Yuan-zhi, FANG Li, Lv Run-qiang. The effects of the canopy microenvironment on the nitrogen and carbon metabolism of tea plants[J]. Journal of Plant Nutrition and Fertilizers, 2014, 20(5): 1251-1262. DOI: 10.11674/zwyf.2014.0522
    [3]WEI Li, MA Chao, HUANG Xiao-shu, DU Yuan-yuan, WANG Tong-chao. Effects of controlled-release nitrogen fertilizer on carbon and nitrogen metabolism of summer maize[J]. Journal of Plant Nutrition and Fertilizers, 2010, 16(3): 773-776. DOI: 10.11674/zwyf.2010.0338
    [4]GUO Feng, WAN Shu-bo, WANG Cai-bin, Li Xin-guo, MENG Jing-jing, XU Ping-li. Nitrogen metabolism and relative enzyme activities of the peanut relay-cropped with wheat[J]. Journal of Plant Nutrition and Fertilizers, 2009, 15(2): 416-421. DOI: 10.11674/zwyf.2009.0224
    [5]SHEN Li-xia, WANG Pu, LAN Lin-wang, SUN Xi-huan. Effect of nitrogen supply on carbon-nitrogen metabolism and kernel set in summer maize[J]. Journal of Plant Nutrition and Fertilizers, 2007, 13(6): 1074-1079. DOI: 10.11674/zwyf.2007.0614
    [6]ZHANG Zhi-meng, WAN Shu-bo, NING Tang-yuan, DAI Liang-xiang. Enzyme activities responsible for nitrogen metabolization in different peanut cultivars[J]. Journal of Plant Nutrition and Fertilizers, 2007, 13(4): 707-713. DOI: 10.11674/zwyf.2007.0427
    [7]LIU Qiang, PENG Jian-wei, RONG Xiang-min, XIE Gui-xian, ZHU Hong-mei. Effect of carboxymethyl chitosan on nitrogen metabolism of rice[J]. Journal of Plant Nutrition and Fertilizers, 2007, 13(4): 597-601. DOI: 10.11674/zwyf.2007.0410
    [8]RONG Xiang-min, XIE Gui-xian, LIU Qiang, PENG Jian-wei, ZHU Hong-mei. Effects of plant growth regulator on nitrogen metabolism of maize[J]. Journal of Plant Nutrition and Fertilizers, 2005, 11(5): 634-640. DOI: 10.11674/zwyf.2005.0511
    [9]LI Yan, LIU Xing, ZHUANG Wei. Effect of magnesium deficiency on nitrogen metabolism of longan (Dimocarpus longana Lour) seedlings[J]. Journal of Plant Nutrition and Fertilizers, 2001, 7(2): 218-222. DOI: 10.11674/zwyf.2001.0217
    [10]LIU Peng, YANG Yu. EFFECT OF MOLYBDENUM AND BORON ON NITROGEN METABOLISM OF SOYBEA[J]. Journal of Plant Nutrition and Fertilizers, 1999, 5(4): 347-351. DOI: 10.11674/zwyf.1999.0409

Catalog

    Article views (45) PDF downloads (20) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return