Citation: | LIN Xiao-ying, WANG Zi-huang, LIU Wan-cen, QI Chuan-ren, LUO Wen-hai, GUO Wei, LI Guo-xue. Development of humic acid fertilizer via ultrafiltration concentration of kitchen waste biogas slurry: application strategies and fertilization performance evaluation[J]. Journal of Plant Nutrition and Fertilizers. DOI: 10.11674/zwyf.2024477 |
The efficiency of membrane separation technology in concentrating kitchen waste biogas slurry was evaluated, and the fertilization efficacy and economic performance of the compounded humic acid water-soluble fertilizer derived from the concentrated slurry was assessed.
Ultrafiltration (UF) membrane technology was employed to concentrate kitchen waste biogas slurry at 2×, 4×, 6×, and 8×folds, respectively. The concentrations of N, P, K, and humic acid (HA) in the concentrates were analyzed. Based on the analysis results, concentration at 6 folds was chosen in the following research. Potassium humate, monopotassium phosphate, and urea were added to the 6-fold concentrate of kitchen waste biogas slurry to formulate a humic acid water-soluble fertilizer. A 1 L sample of this fertilizer was stored at 4±2°C and 30±2°C for 63 days. Samples were collected at 7-day intervals to determine humic acid, total N, total P, total K, pH, and EC. The fertilizer was diluted at 100×, 200×, and 300× for pot experiments using cherry radish as test crop material, with distilled water as a control. The seedling height, stem diameter, fresh and dry biomass, and leaf SPAD values were measured, and the contents of soluble sugars and vitamin C were analyzed. At the same time, soil pH, organic matter, and available N, P, and K levels were analyzed. Subsequently, the 100× dilution of the biogas slurry humic acid fertilizer was selected for comparison with humic acid, chemical fertilizer, and commercial humic acid fertilizer in another pot trial to evaluate their effects on plant growth and soil improvement. Economic cost analysis and sensitivity analysis were conducted to further assess the economic viability and cost-sensitive factors of the fertilizer.
As the concentration factor increased, the contents of nitrogen and potassium in the concentrate remained relatively stable, while humic acid and TP concentrations significantly increased. At 6× concentration, the humic acid content rose from 2.33 g/L to 13.96 g/L. The cost of concentration decreased initially and reached its lowest at 6× concentration before increasing again. After 63 days of storage at both 4±2°C and 30±2°C, the humic acid fertilizer exhibited stable nutrient content, pH, and EC. Pot experiment results indicated that higher dilution led to reduced plant growth-promoting effects and lower soil organic matter, alkaline hydrolyzable nitrogen, available phosphorus, and available potassium levels. Application of the biogas slurry humic acid fertilizer significantly enhanced cherry radish growth, biomass, and SPAD values compared to those treated with humic acid alone, chemical fertilizer, or commercial humic acid fertilizer. Economic sensitivity analysis revealed that, at a 6× concentration rate, a 20% increase in the prices of humic acid, NPK fertilizers, and concentration energy consumption resulted in cost increases of 2.57 CNY/L, 0.79 CNY/L, and 6.54 CNY/L, respectively.
UF membrane technology effectively concentrates humic acid and P in kitchen waste biogas slurry effectively, with 100% humic acid and 80% P retention rate at 6× concentration, while the N and K retention is low, ranged from 10% to 50%. The resulting concentrate, with a humic acid content of 13.96 g/L, is suitable for formulating humic acid-based fertilizers. The prepared humic acid water-soluble fertilizer meets national standards, and maintains excellent stability under storage conditions of 4-30°C. When applied to soil at a 100× dilution, it demonstrates superior plant growth promotion and soil improvement effects compared to chemical and commercial humic acid fertilizers. The costs of humic acid addition and energy consumption during concentration are the primary factors influencing the overall production cost of the fertilizer.
[1] |
时睿佳, 宋啸博, 王御霏, 等. 国内外厨余垃圾现状及资源化处理方法[J]. 现代盐化工, 2020, 47(4): 68−69. DOI: 10.3969/j.issn.1005-880X.2020.04.032
Shi R J, Song X B, Wang Y F, et al. Present situation and recycling disposal methods of domestic and foreign kitchen waste[J]. Modern Salt and Chemical Industry, 2020, 47(4): 68−69. DOI: 10.3969/j.issn.1005-880X.2020.04.032
|
[2] |
李志强, 曹秀芹, 张达飞, 等. 餐厨垃圾干式厌氧消化的试验研究[J]. 科学技术与工程, 2018, 18(8): 343−348. DOI: 10.3969/j.issn.1671-1815.2018.08.058
Li Z Q, Cao X Q, Zhang F D, et al. Experimental study on dry anaerobic digestion by food waste[J]. Science Technology and Engineering, 2018, 18(8): 343−348. DOI: 10.3969/j.issn.1671-1815.2018.08.058
|
[3] |
炊春萌, 李保国, 刘莉, 等. 餐厨垃圾厌氧发酵研究进展[J]. 食品与发酵科技, 2020, 56(4): 60−64.
Chui C M, Li B G, Liu L, et al. Advances in anaerobic fermentation of kitchen waste[J]. Food and Fermentation Science & Technology, 2020, 56(4): 60−64.
|
[4] |
邴君妍, 罗恩华, 金宜英, 等. 我国餐厨废弃物厌氧消化技术的物质流分析[J]. 环境工程, 2018, 36(8): 130−133.
Bing J Y, Luo E H, Jin Y Y, et al. Material flow analysis for anaerobic digestion of food waste in China[J]. Environmental Engineering, 2018, 36(8): 130−133.
|
[5] |
Eriksson M, Osowski C P, Malefors C, et al. Quantification of food waste in public catering services – A case study from a Swedish municipality[J]. Waste Management, 2017, 61: 415−422. DOI: 10.1016/j.wasman.2017.01.035
|
[6] |
郝晓地, 周鹏, 曹达啓. 餐厨垃圾处置方式及其碳排放分析[J]. 环境工程学报, 2017, 11(2): 673−682. DOI: 10.12030/j.cjee.201508159
Hao X D, Zhou P, Cao D Q. Analyses of disposal methods and carbon emissions of food wastes[J]. Chinese Journal of Environmental Engineering, 2017, 11(2): 673−682. DOI: 10.12030/j.cjee.201508159
|
[7] |
刘斌, 贺业迅, 刘淑玲, 等. 某市餐厨垃圾处理项目经济评价研究[J]. 环境卫生工程, 2016, 24(1): 36−37. DOI: 10.3969/j.issn.1005-8206.2016.01.012
Liu B, He Y X, Liu S L, et al. Economic evaluation on a treatment project of kitchen waste[J]. Environmental Sanitation Engineering, 2016, 24(1): 36−37. DOI: 10.3969/j.issn.1005-8206.2016.01.012
|
[8] |
Banik S, Nandi R. Effect of supplementation of rice straw with biogas residual slurry manure on the yield, protein and mineral contents of oyster mushroom[J]. Industrial Crops & Products, 2004, 20(3): 311−319.
|
[9] |
韩敏, 刘克锋, 王顺利, 等. 沼液的概念、成分和再利用途径及风险[J]. 农学学报, 2014, 4(10): 54−57.
Han M, Liu K F, Wang S L, et al. Definition, ingredient, approaches and risks for reuse in biogas slurry[J]. Journal of Agriculture, 2014, 4(10): 54−57.
|
[10] |
段然. 沼肥肥力和施用后潜在污染风险研究与土壤安全性评价[D]. 甘肃: 兰州大学硕士学位论文, 2008.
Duan R. Studies on the biogas fertilizer fertility, potential pollution risk and safety evaluation of the soil after application[D]. Gansu: MS Thesis of Lanzhou University, 2008.
|
[11] |
熊亭. 餐厨沼肥的处理现状及综合利用发展趋势[J]. 绿色科技, 2019, 2: 94−95. DOI: 10.3969/j.issn.1674-9944.2019.12.034
Xiong T. Treatment status and development trend of comprehensive utilization of biogas slurry fertilizer in kitchen[J]. Journal of Green Science and Technology, 2019, 2: 94−95. DOI: 10.3969/j.issn.1674-9944.2019.12.034
|
[12] |
耿青云, 张大伟. 施用沼液对盐渍化土壤盐分的影响[J]. 甘肃农业, 2015, 14: 39−41. DOI: 10.3969/j.issn.1673-9019.2015.12.013
Geng Q Y, Zhang D W. Effect of application of biogas slurry on salinity of salinized soil[J]. Gansu Agriculture, 2015, 14: 39−41. DOI: 10.3969/j.issn.1673-9019.2015.12.013
|
[13] |
李保光, 张爱军, 戴小东, 等. 两级AO-MBR组合工艺处理餐厨垃圾厌氧沼液的工程应用[J]. 节能与环保, 2020, 4: 88−90. DOI: 10.3969/j.issn.1009-539X.2020.04.038
Li B G, Zhang A J, Dai X D, et al. Engineering application of two-stage AO-MBR process for anaerobic wastewater from kitchen waste treatment[J]. Energy Conservation & Environmental Protection, 2020, 4: 88−90. DOI: 10.3969/j.issn.1009-539X.2020.04.038
|
[14] |
尹福斌, 詹源航, 岳彩德, 等. 膜分离技术在大型养殖场沼液处理中的应用与展望[J]. 农业环境科学学报, 2021, 40(11): 2335−2341. DOI: 10.11654/jaes.2021-1118
Yin F B, Zhan Y H, Yue C D, et al. Research progress on membrane technology for treatment of husbandry biogas slurry and wastewater[J]. Journal of Agro-Environment Science, 2021, 40(11): 2335−2341. DOI: 10.11654/jaes.2021-1118
|
[15] |
崔文静, 李施雨, 李国学, 等. 基于沼液浓缩的液态有机肥利用现状与展望[J]. 农业环境科学学报, 2021, 40(11): 2482−2493. DOI: 10.11654/jaes.2021-0996
Cui W J, Li S Y, Li G X, et al. Current research status and perspectives on liquid organic fertilizer utilization based on concentrating biogas slurry[J]. Journal of Agro-Environment Science, 2021, 40(11): 2482−2493. DOI: 10.11654/jaes.2021-0996
|
[16] |
李赟, 刘婉岑, 李国学, 等. 沼液膜浓缩处理工艺的现状、问题和展望[J]. 中国沼气, 2020, 38(3): 28−41. DOI: 10.3969/j.issn.1000-1166.2020.03.004
Li Y, Liu W C, Li G X, et al. Membrane process concentrating biogas slurry: current situation, problems and the prospect[J]. China Biogas, 2020, 38(3): 28−41. DOI: 10.3969/j.issn.1000-1166.2020.03.004
|
[17] |
魏玉珍, 孙小妹, 褚润, 等. 沼液膜浓缩处理工艺工作参数研究[J]. 中国沼气, 2020, 38(2): 60−65. DOI: 10.3969/j.issn.1000-1166.2020.02.008
Wei Y Z, Sun X M, Chu R, et al. Process parameters of biogas slurry concentrating by membrane method[J]. China Biogas, 2020, 38(2): 60−65. DOI: 10.3969/j.issn.1000-1166.2020.02.008
|
[18] |
宋成芳, 单胜道, 张妙仙, 等. 畜禽养殖废弃物沼液的膜过滤浓缩试验研究[J]. 中国给水排水, 2011, 27(03): 84−86.
Song C F, Dan S D, Zhang M X, et al. Study on concentration of biogas slurry from livestock and poultry wastes using membrane technology[J]. China Water & Wastewater, 2011, 27(03): 84−86.
|
[19] |
杨珮瑶, 李键, 刘渊, 等. 膜技术理论及其在给水深度处理中的应用[J]. 城镇供水, 2022, 3: 4−11. DOI: 10.3969/j.issn.1002-8420.2022.03.003
Yang P Y, Li J, Liu Y, et al. Membrane technology theory and its application in advanced drinking water treatment[J]. City and Town Water Supply, 2022, 3: 4−11. DOI: 10.3969/j.issn.1002-8420.2022.03.003
|
[20] |
祖柱, 李娟, 易志刚, 等. 餐厨垃圾厌氧发酵沼液处理技术的现状与展望[J]. 资源节约与环保, 2023, 2: 72−75. DOI: 10.3969/j.issn.1673-2251.2023.02.019
Zhu Z, Li J, Yi Z G, et al. Current situation and prospect of anaerobic fermentation biogas slurry treatment technology for kitchen waste[J]. Resources Economization & Environmental Protection, 2023, 2: 72−75. DOI: 10.3969/j.issn.1673-2251.2023.02.019
|
[21] |
NY 1106-2010. 含腐植酸水溶肥料[S].
NY 1106-2010. Water-soluble fertilizers containing humic-acids[S].
|
[22] |
罗鑫源. 鸡粪好氧/厌氧发酵过程对腐植酸类物质组成与结构的影响[D]. 山东: 齐鲁工业大学硕士学位论文, 2024.
Luo X Y. Effects of aerobic/anaerobic fermentation of chicken manure on the composition and structure of humic acids[D]. Shandong: MS Thesis of Qilu University of Technology, 2024.
|
[23] |
Zeng W S, Lu R M, Wang D H, et al. An innovative method for the fractionation and pretreatment of pig farm biogas slurry by ultrafiltration[J]. Journal of Water Process Engineering, 2022, 48: 102859. DOI: 10.1016/j.jwpe.2022.102859
|
[24] |
李果, 陈玉成, 简维佳, 等. 臭氧氧化对奶牛场沼液中磷形态转化的影响[J]. 农业环境科学学报, 2019, 38(2): 451−457. DOI: 10.11654/jaes.2018-0797
Li G, Cheng Y C, Jian W J, et al. Effect of ozone oxidation on phosphorus speciation transformation in dairy biogas slurry[J]. Journal of Agro-Environment Science, 2019, 38(2): 451−457. DOI: 10.11654/jaes.2018-0797
|
[25] |
Tanguy G, Siddique F, Beaucher E, et al. Calcium phosphate precipitation during concentration by vacuum evaporation of milk ultrafiltrate and microfiltrate[J]. LWT - Food Science and Technology, 2016, 69: 554−562. DOI: 10.1016/j.lwt.2016.02.023
|
[26] |
Tansel B. Significance of thermodynamic and physical characteristics on permeation of ions during membrane separation: Hydrated radius, hydration free energy and viscous effects[J]. Separation and Purification Technology, 2012, 86: 119−126. DOI: 10.1016/j.seppur.2011.10.033
|
[27] |
吴奇, 谭美涛, 迟道才. 生物炭吸附富营养化水体氮、磷的研究进展[J]. 沈阳农业大学学报, 2022, 53(5): 620−629. DOI: 10.3969/j.issn.1000-1700.2022.05.012
Wu Q, Tan M T, Chi D C. Research progress of biochar on adsorption of nitrogen and phosphorus in eutrophic water[J]. Journal of Shenyang Agricultural University, 2022, 53(5): 620−629. DOI: 10.3969/j.issn.1000-1700.2022.05.012
|
[28] |
杜明阳, 邹京, 豆俊峰, 等. 钾改性蒙脱石磁性微球对铯的吸附性能[J]. 环境化学, 2021, 40(3): 779−789. DOI: 10.7524/j.issn.0254-6108.2019110202
Du M Y, Zou J, Dou J F, et al. Adsorption properties of potassium modified montmorillonite magnetic microspheres for cesium[J]. Environmental Chemistry, 2021, 40(3): 779−789. DOI: 10.7524/j.issn.0254-6108.2019110202
|
[29] |
Gong H, Yan Z, Liang K Q, et al. Concentrating process of liquid digestate by disk tube-reverse osmosis system[J]. Desalination, 2013, 326: 30−36. DOI: 10.1016/j.desal.2013.07.010
|
[30] |
王永芳, 崔文静, 刘婉岑, 等. 膜孔径对沼液超滤浓缩过程养分和污染物富集的调控作用[J]. 农业环境科学学报, 2023, 42(11): 2570−2581. DOI: 10.11654/jaes.2023-0033
Wang Y F, Cui W J, Liu W C, et al. Regulation of membrane pore size to nutrient and pollutant enrichment during ultrafiltration concentration of biogas slurry[J]. Journal of Agro-Environment Science, 2023, 42(11): 2570−2581. DOI: 10.11654/jaes.2023-0033
|
[31] |
倪中应, 章明奎, 沼液中氮磷钾化学形态组成及其生物有效性评价[J]. 土壤通报, 2017, 48(5): 1114-1118.
Ying Z Y, Zhang M K. Chemical compositions of nitrogen, phosphorus, and potassium in biogas slurry and their bio-availability[J]. Chinese Journal of Soil Science, 2017, 48(5): 1114-1118.
|
[32] |
Shen Y W, Lin H T, Gao W S, et al. The effects of humic acid urea and polyaspartic acid urea on reducing nitrogen loss compared with urea[J]. Journal of the Science of Food and Agriculture, 2020, 100(12): 4425−4432. DOI: 10.1002/jsfa.10482
|
[33] |
Deng F, Cao Z L, Luo Y P, et al. Production of artificial humic acid from corn straw acid hydrolysis residue with biogas slurry impregnation for fertilizer application[J]. Journal of Environmental Management, 2023, 345: 118845. DOI: 10.1016/j.jenvman.2023.118845
|
[34] |
邓冠勇. 赤泥/水热预处理强化餐厨垃圾两阶段厌氧消化性能研究[D]. 贵州: 贵州大学硕士学位论文, 2023.
Deng G Y. Study on two-stage anaerobic digestion performance of kitchen waste enhanced by red mud/hydrothermal pretreatment[D]. Guizhou: MS Thesis of Guizhou University, 2023.
|
[35] |
万海文. 沼液对土壤养分和玉米、小麦生理特性及产量的影响[D]. 陕西: 西北农林科技大学硕士学位论文, 2016.
Wang H W. Effect of biogas slurry on corn and wheat physiological characteristics, soil nutrient and yield[D]. Shanxi: MS Thesis of Northwest A&F University, 2016.
|
[36] |
陈佳, 姜增明, 费云鹏, 等. 复合肥与腐殖酸配施对盐碱地改良及棉花生长的影响[J]. 黑龙江农业科学, 2015, 10: 54−57.
Chen J, Jiang Z M, Fei Y P, et al. Effect of application of humic acid and inorganic fertilizers on modifying saline-alkali soil and the growth of cotton[J]. Heilongjiang Agricultural Sciences, 2015, 10: 54−57.
|
[37] |
李文涛. 沼液对土壤改良作用研究[D]. 黑龙江: 东北农业大学博士学位论文, 2014.
Li W T. The effects of biogas slurry on soil improvements[D]. Heilongjiang: PhD Dissertation of Northeast Agricultural University, 2014.
|
[38] |
刘恩科. 不同施肥制度土壤团聚体微生物学特性及其与土壤肥力的关系[D]. 北京: 中国农业科学院博士学位论文, 2007.
Liu E K. Microbiological features of soils under different fertilization systems and their related soil fertility[D]. Beijing: PhD Dissertation of Chinese Academy of Agricultural Sciences, 2007.
|
[39] |
Yu F B, Luo X P, Song C F, et al. Concentrated biogas slurry enhanced soil fertility and tomato quality[J]. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 2010, 60(3): 262-268.
|
[40] |
吴树彪, 崔畅, 张笑千, 等. 农田施用沼液增产提质效应及水土环境影响[J]. 农业机械学报, 2013, 44(8): 118−125. DOI: 10.6041/j.issn.1000-1298.2013.08.021
Wu S B, Cui C, Zhang X Q, et al. Effect of biogas slurry on yield increase, quality improvement, water and soil environment[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(8): 118−125. DOI: 10.6041/j.issn.1000-1298.2013.08.021
|
[41] |
覃舟. 施用沼液对紫甘蓝产量、营养品质及土壤质量的影响[J]. 江西农业学报, 2009, 21(7): 83−86. DOI: 10.3969/j.issn.1001-8581.2009.07.026
Tan Z. Effect of biogas slurry application on yield, nutrition quality of purple cabbage and soil quality[J]. Acta Agriculturae Jiangxi, 2009, 21(7): 83−86. DOI: 10.3969/j.issn.1001-8581.2009.07.026
|
[42] |
陆佳, 刘伟, 王欣, 等. 超滤膜浓缩处理沼液实验研究[J]. 应用能源技术, 2016, 8: 49−53. DOI: 10.3969/j.issn.1009-3230.2016.01.014
Lu J, Liu W, Wang X, et al. Research on biogas slurry concentration by ultrafiltration membrane[J]. Applied Energy Technology, 2016, 8: 49−53. DOI: 10.3969/j.issn.1009-3230.2016.01.014
|
[43] |
祁步凡. 猪场沼液膜浓缩制肥及其对小白菜的肥效与安全性评价[D]. 四川: 成都大学硕士学位论文, 2020.
Qi B F. Study on Fertilizer Efficiency and Safety of Pig Farm Liquid Digestate Membrane Concentrate Based Fertilizer on Pakchoi[D]. Sichuan: MS Thesis of Chengdu University, 2020.
|
[44] |
杨合法, 范聚芳, 郝晋珉, 等. 沼肥对保护地番茄产量、品质和土壤肥力的影响[J]. 中国农学通报, 2006, 7: 369−372. DOI: 10.3969/j.issn.1000-6850.2006.07.094
Yang H F, Fan J F, Hao J M, et al. The research of marsh fertilizer impact on tomatoes’ output, quality and soil fertility in protected field[J]. Chinese Agricultural Science Bulletin, 2006, 7: 369−372. DOI: 10.3969/j.issn.1000-6850.2006.07.094
|
[1] | DING Wen-cheng, HE Ping, ZHANG Jia-jia, XU Xin-peng, YANG Bing-geng, ZHOU Wei. Nutrient requirement characteristics of radish and the construction of Nutrient Expert Fertilizer Recommendation System[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(7): 1202-1212. DOI: 10.11674/zwyf.2023235 |
[2] | JIA Chun-hua, ZHANG Lin-lin, ZHANG Min, LIU Zhi-guang, ZHENG Lei, SUN Ling-li, SUN Zheng. Physiological mechanism of mitigation of high temperature stress by peptide-chelated iron application in cherry radish seedling[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(8): 1393-1400. DOI: 10.11674/zwyf.18343 |
[3] | ZHANG Jia-jia, DING Wen-cheng, AI Chao, CUI Rong-zong, LI Ming-yue, JIN Chong-wei, XU Xin-peng, HE Ping. Effects of optimum fertilization practices on yield and nutrient use efficiency of radish[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(2): 187-199. DOI: 10.11674/zwyf.18055 |
[4] | ZHANG Jian, LI Yan-ting, YUAN Liang, ZHAO Bing-qiang, LI Wei, ZHANG Shui-qin, LI Xu-hua. Tail liquid from amino acid fermentation could improve the uptake and utilization of water soluble fertilizer nitrogen by cherry tomato[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(1): 114-121. DOI: 10.11674/zwyf.17088 |
[5] | XIE Zhi-jian, TU Shu-xin, ZHANG Qin, LI Jin-ping, XU Chang-xu. Study on the correlations between transplanting date and nitrogen fertilizer efficiency of flue-cured tobacco (Nicotiana tabacum L.)[J]. Journal of Plant Nutrition and Fertilizers, 2013, 19(6): 1477-1482. DOI: 10.11674/zwyf.2013.0624 |
[6] | CHU Gui-xin, LI Min-fa, WEI Chang-zhou, HU Yun-cai, GUO Xiu-li, ZHANG Shu-ying. Influence of liquid and granular phosphorus fertilizer on soil inorganic phosphorus fractions and fertilizer efficiency in calcareous soil[J]. Journal of Plant Nutrition and Fertilizers, 2009, 15(2): 358-365. DOI: 10.11674/zwyf.2009.0216 |
[7] | xu Wan-li, WANG Jiang-li, LIU Hua, ZHAO Bing-qiang, ZHANG Fu-dao. 灰漠土长期定位施肥试验研究 Ⅲ.对灰漠土无机磷形态转化及其有效性的影响[J]. Journal of Plant Nutrition and Fertilizers, 2002, 8(S1): 92-95. |
[8] | SUN Ben-hua, YANG Xue-yun, GU Qiao-zhen, MA Lu-jun, ZHAO Bing-qiang, ZHANG Fu-dao. 黄土施肥效应与肥力演变的长期定位监测研究 Ⅱ.长期施肥对土壤理化性质的影响[J]. Journal of Plant Nutrition and Fertilizers, 2002, 8(S1): 71-74. |
[9] | YANG Xue-yun, SUN Ben-hua, MA Lu-jun, GU Qiao-zhen, TONG Yan-an, ZHANG Hang, ZHANG Shu-lan, ZHAO Bing-qiang, ZHANG Fu-dao. 黄土施肥效应与肥力演变的长期定位监测研究 I.长期施肥的产量效应[J]. Journal of Plant Nutrition and Fertilizers, 2002, 8(S1): 66-70. |
[10] | WANG Bai-ren, XU Ming-gan, WEN Shi-lin, Xiong ji-dong, ZHAO Bing-qiang, ZHANG Fu-dao. 长期施肥对红壤旱地磷组分及磷有效性的影响[J]. Journal of Plant Nutrition and Fertilizers, 2002, 8(S1): 47-52. |