• ISSN 1008-505X
  • CN 11-3996/S
ZHU Bo, XU Qi-wen, MA Shu-ming, LIU Bang-yan, DUAN Mei-chun, WANG Long-chang. Effects of potassium fertilizer rate on growth, seed quality and potassium use efficiency in Brassica napus under drought stress[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(6): 1016-1026. DOI: 10.11674/zwyf.20561
Citation: ZHU Bo, XU Qi-wen, MA Shu-ming, LIU Bang-yan, DUAN Mei-chun, WANG Long-chang. Effects of potassium fertilizer rate on growth, seed quality and potassium use efficiency in Brassica napus under drought stress[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(6): 1016-1026. DOI: 10.11674/zwyf.20561

Effects of potassium fertilizer rate on growth, seed quality and potassium use efficiency in Brassica napus under drought stress

More Information
  • Received Date: November 17, 2020
  • Accepted Date: February 06, 2021
  • Available Online: June 03, 2021
  • Objectives 

    Under long-term drought stress, rate of potassium application could influence rape growth, seed quality, and potassium utilization. A pot experiment was conducted to clarify the mechanism of growth regulation and nutrient allocation of rape under drought stress in response to potassium fertilizer levels.

    Methods 

    Two rape cultivars Chuanyou 36 and Youyan 57 differ in drought resistance were used in a pot experiment. The pot was filled with 10 kg of air-dried soil, and three K2O rates of 0, 80 and 160 mg/kg soil were applied, respectively, and the drought stress was conducted by controlling soil moisture at 45%–50% of field water capacity after flowering period, denoted as DK0, DK80, DK160, respectively. Applying K2O 80 mg/kg soil and keeping soil moisture at 65% of field water capacity was used as control (CK). Rape growth, yield, seed quality and K utilization characteristics were investigated.

    Results 

    Rape growth was inhibited significantly by drought stress. Compared to the DK0, the root dry mass, total root length, root surface area, total plant dry mass and seed yield increased significantly under DK80 and DK160 treatments for both cultivars. Drought stress reduced seed quality however, potassium fertilizer relatively alleviated it. Rapeseed oleic acid content in DK160 and DK80 treatments were significantly higher than that in DK0 in ‘Youyan 57’, but the erucic acid content decreased with increasing rate of potassium fertilizer. Drought stress led to early senescence of leaves, the proportion of potassium in the early decayed leaves during flowering stage increased significantly as the rate of potassium fertilizer increased. Conversely, the proportion of potassium in the stem and pericarp decreased significantly and decreased with increasing rate of potassium application under drought stress, which led to the reduction of rape K-use efficiency. Drought-tolerant cultivar ‘Youyan 57’ maintained higher proportions of K in both stem and pericarp and conferred a superior K-use efficiency, improved yield and higher oleic acid content in seeds than those of ‘Chuanyou 36’ under potassium deficiency.

    Conclusions 

    Drought stress after flowering stage will inhibit root growth, cause leaf senescence, and decrease seed oil nutrition quality and yield. Applying potassium fertilizer could alleviate drought stress to some extent by increasing the allocation of K in leaves, and increase the seed yield and quality. However, the K in the fallen senescent leaves is unable to participate in the later growth, inducing the decrease of potassium use efficiency.

  • [1]
    Zhu B, Xu Q, Zou Y, et al. Effect of potassium deficiency on growth, antioxidants, ionome and metabolism in rapeseed under drought stress[J]. Plant Growth Regulation, 2020, 90(3): 455–466. DOI: 10.1007/s10725-019-00545-8
    [2]
    Leigh R A, Jones R G W. A hypothesis relating critical potassium concentrations for growth to the distribution and functions of this ion in the plant-cell[J]. New Phytologist, 1984, 97(1): 1–13. DOI: 10.1111/j.1469-8137.1984.tb04103.x
    [3]
    Broadley M R, Bowen H C, Cotterill H L, et al. Phylogenetic variation in the shoot mineral concentration of angiosperms[J]. Journal of Experimental Botany, 2004, 55(396): 321–336. DOI: 10.1093/jxb/erh002
    [4]
    Cakmak I. The role of potassium in alleviating detrimental effects of abiotic stresses in plants[J]. Journal of Plant Nutrition and Soil Science, 2005, 168(4): 521–530. DOI: 10.1002/jpln.200420485
    [5]
    Cakmak I, Engels C, Rengel Z. Role of mineral nutrients in photosynthesis and yield formation[J]. Mineral Nutrition of Crops Fundamental Mechanisms and Implications, 1999: 141–168.
    [6]
    Pervez H, Ashraf M, Makhdum M I. Influence of potassium nutrition on gas exchange characteristics and water relations in cotton (Gossypium hirsutum L.)[J]. Photosynthetica, 2004, 42(2): 251–255. DOI: 10.1023/B:PHOT.0000040597.62743.5b
    [7]
    Benlloch–Gonz Lez M, Romera J, Cristescu S, et al. K+ starvation inhibits water-stress-induced stomatal closure via ethylene synthesis in sunflower plants[J]. Journal of Experimental Botany, 2010, 61(4): 1139–1145. DOI: 10.1093/jxb/erp379
    [8]
    Zhang L, Gao M, Li S, et al. Potassium fertilization mitigates the adverse effects of drought on selected Zea mays cultivars[J]. Turkish Journal of Botany, 2014, 38(4): 713–723.
    [9]
    Egilla J, Davies F, Boutton T. Drought stress influences leaf water content, photosynthesis, and water–use efficiency of Hibiscus rosa–sinensis at three potassium concentrations[J]. Photosynthetica, 2005, 43(1): 135–140. DOI: 10.1007/s11099-005-5140-2
    [10]
    Soleimanzadeh H, Habibi D, Ardakani M, et al. Effect of potassium levels on antioxidant enzymes and malondialdehyde content under drought stress in sunflower (Helianthus annuus L.)[J]. American Journal of Agricultural and Biological Sciences, 2010, 5(1): 56–61. DOI: 10.3844/ajabssp.2010.56.61
    [11]
    Kanai S, Moghaieb R E, El-Shemy H A, et al. Potassium deficiency affects water status and photosynthetic rate of the vegetative sink in green house tomato prior to its effects on source activity[J]. Plant Science, 2011, 180(2): 368–374. DOI: 10.1016/j.plantsci.2010.10.011
    [12]
    Martineau E, Domec J C, Bosc A, et al. The effects of potassium nutrition on water use in field–grown maize (Zea mays L.)[J]. Environmental and Experimental Botany, 2017, 134: 62–71. DOI: 10.1016/j.envexpbot.2016.11.004
    [13]
    Orlovius K, Kirgby E. Fertilizing for high yield and quality oilseed rape[J]. IPI Bulletin, 2003, 16: 125.
    [14]
    Ren T, Lu J, Li H, et al. Potassium-fertilizer management in winter oilseed-rape production in China[J]. Journal of Plant Nutrition and Soil Science, 2013, 176(3): 429–440. DOI: 10.1002/jpln.201200257
    [15]
    潘勇辉, 陆志峰, 鲁剑巍, 等. 缺钾对越冬期油菜光合特性和叶绿体超微结构的影响[J]. 中国油料作物学报, 2015, 37(5): 688–693. DOI: 10.7505/j.issn.1007-9084.2015.05.015

    Pan Y H, Lu Z F, Lu J W, et al. Photosynthetic characteristics and chloroplast ultrastructure of wintering oilseed rape under potassium deficiency[J]. Chinese Journal of Oil Crop Sciences, 2015, 37(5): 688–693. DOI: 10.7505/j.issn.1007-9084.2015.05.015
    [16]
    陆志峰, 任涛, 鲁剑巍, 等. 缺钾油菜叶片光合速率下降的主导因子及其机理[J]. 植物营养与肥料学报, 2016, 22(1): 122–131.

    Lu Z F, Ren T, Lu J W, et al. Main factors and mechanism leading to the decrease of photosynthetic efficiency of oilseed rape exposure to potassium deficiency[J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(1): 122–131.
    [17]
    徐华丽, 鲁剑巍, 李小坤, 等. 湖北省油菜施肥现状调查[J]. 中国油料作物学报, 2010, 32(3): 418–423.

    Xu H L, Lu J W, Li X K, et al. Investigation of present fertilization on rapeseed in Hubei Province[J]. Chinese Journal of Oil Crop Sciences, 2010, 32(3): 418–423.
    [18]
    陈建中. 中国化肥区划[M]. 北京: 中国农业科技出版社, 1986.

    Chen J Z. Chemical fertilizer regionalization in China[M]. Beijing: China Agricultural Science and Technology Press, 1986.
    [19]
    韩上, 武际, 胡现荣, 等. 安徽省油菜钾肥施用效果及土壤速效钾丰缺指标研究[J]. 土壤, 2016, 48(2): 265–269.

    Han S, Wu J, Hu X R, et al. Study on the effect of potassium fertilizer and abundance and deficiency indices of soil available potassium on rapeseed in Anhui Province[J]. Soils, 2016, 48(2): 265–269.
    [20]
    Barber A S. A diffusion and mass-flow concept of soil nutrient availability[J]. Soil Science, 1962, 93(1): 39–49. DOI: 10.1097/00010694-196201000-00007
    [21]
    Bahrani A, Pourreza J. Effect of alternate furrow irrigation and potassium fertilizer on seed yield, water use efficiency and fatty acids of rapeseed[J]. Idesia, 2016, 34(2): 35–41.
    [22]
    Ali M, Bakht J, Daraz Khan G. Effect of water deficiency and potassium application on plant growth, osmolytes and grain yield of Brassica napus cultivars[J]. Acta Botanica Croatica, 2014, 73(2): 299–314. DOI: 10.2478/botcro-2014-0016
    [23]
    胡中科, 刘超, 庄文化, 等. 水钾耦合对油菜生长特性及产量的影响[J]. 灌溉排水学报, 2013, 32(6): 54–57.

    Hu Z K, Liu C, Zhuang W H, et al. Effect of water-potassium coupling on the growth characteristics and yield of rape[J]. Journal of Irrigation and Drainage, 2013, 32(6): 54–57.
    [24]
    刘红恩, 胡承孝, 聂兆君, 等. 钼磷配合施用对甘蓝型油菜产量和子粒品质的影响[J]. 植物营养与肥料学报, 2012, 18(3): 678–688. DOI: 10.11674/zwyf.2012.11351

    Liu H E, Hu C X, Nie Z J, et al. Interactive effects of molybdenum and phosphorus fertilizers on grain yield and quality of Brassica napus[J]. Journal of Plant Nutrition and Fertilizers, 2012, 18(3): 678–688. DOI: 10.11674/zwyf.2012.11351
    [25]
    毛振强, 宇振荣, 刘云慧, 等. 两种根系采样方法的对比及冬小麦根系的分布规律[J]. 中国农学通报, 2005, 21(5): 261–265. DOI: 10.3969/j.issn.1000-6850.2005.05.076

    Mao Z Q, Yu Z R, Liu Y H, et al. Comparative study on two root sampling methods and winter wheat root distribution in soil profile[J]. Chinese Agriculture Science Bulletion, 2005, 21(5): 261–265. DOI: 10.3969/j.issn.1000-6850.2005.05.076
    [26]
    伍晓明, 陈碧云, 陆光远. 油菜种质资源描述规范和数据标准[M]. 北京: 中国农业出版社, 2007.

    Wu X M, Chen B Y, Lu G Y. Description specification and data standard of rapeseed germplasm resources[M]. Beijing: China Agriculture Press, 2007.
    [27]
    Lindhauer M. Influence of K nutrition and drought on water relations and growth of sunflower (Helianthus annuus L.)[J]. Journal of Plant Nutrition and Soil Science, 1985, 148(6): 654–669.
    [28]
    Zhou Q, Chen J, Xing Y, et al. Influence of intercropping Chinese milk vetch on the soil microbial community in rhizosphere of rape[J]. Plant and Soil, 2019, 440(1–2): 85–96. DOI: 10.1007/s11104-019-04040-x
    [29]
    鲍士旦. 土壤农化分析(第3版)[M]. 北京: 中国农业出版社, 2000.

    Bao S D. Soil and agricultural chemistry analysis (3rd Edition.)[M]. Beijing: China Agriculture Press, 2000.
    [30]
    储成, 吴赵越, 黄欠如, 等. 有机质提升对酸性红壤氮循环功能基因及功能微生物的影响[J]. 环境科学, 2020, 41(5): 1–10.

    Chu C, Wu Z Y, Huang Q R, et al. Effects of organic matter promotion on nitrogen-cycling genes and functional microorganisms in acidic red soils[J]. Environmental Science, 2020, 41(5): 1–10.
    [31]
    黄绍文, 金继运, 王泽良, 程明芳. 北方主要土壤钾形态及其植物有效性研究[J]. 植物营养与肥料学报, 1998, 4(2): 156–164. DOI: 10.3321/j.issn:1008-505X.1998.02.010

    Huang S W, Jin J Y, Wang Z L, Cheng M F. Native potassium forms and plant avilability in selected soils from Northern China[J]. Journal of Plant Nutrition and Fertilizers, 1998, 4(2): 156–164. DOI: 10.3321/j.issn:1008-505X.1998.02.010
    [32]
    史建文, 鲍士旦, 史瑞和. 不同水稻和大麦品种对土壤层间钾的利用[J]. 南京农业大学学报, 1992, 15(1): 65–70.

    Shi J W, Bao S D, Shi R H. Utilzation of soil interlayer K by various varieties of rice and barley[J]. Journal of Nanjing Agricultural University, 1992, 15(1): 65–70.
    [33]
    鲍士旦, 史瑞和. 土壤钾素供应状况的研究——Ⅱ. 土壤供钾状况与水稻吸钾间的关系[J]. 南京农业大学学报, 1984, 7(4): 70–78.

    Bao S D, Shi R H. Researches on the potassium supply of soils——Ⅱ. The potassium supply of soils and its relation to the uptake by rice[J]. Journal of Nanjing Agricultural University, 1984, 7(4): 70–78.
    [34]
    Gowda V R P, Henry A, Yamauchi A, et al. Root biology and genetic improvement for drought avoidance in rice[J]. Field Crops Research, 2011, 122(1): 1–13. DOI: 10.1016/j.fcr.2011.03.001
    [35]
    Mheld R V, Kirkby E A. Research on potassium in agriculture: Needs and prospects[J]. Plant and Soil, 2010, 335(1–2): 155–180. DOI: 10.1007/s11104-010-0520-1
    [36]
    Robertson M J, Holland J F. Production risk of canola in the semi–arid subtropics of Australia[J]. Australian Journal of Agricultural Research, 2004, 55(5): 525–538. DOI: 10.1071/AR03219
    [37]
    Gan Y, Angadi S V, Cutforth H, et al. Canola and mustard response to short periods of temperature and water stress at different developmental stages[J]. Canadian Journal of Plant Science, 2004, 84(3): 697–704. DOI: 10.4141/P03-109
    [38]
    Mendham N J, Salisbury P A. Physiology: Crop development, growth and yield[M]. In: Kimber D, McGregor D I (eds) Brassica oilseeds: Production and utilization. Cambridges: Cambridge University Press, 1995, 11–64.
    [39]
    鲁艳红, 廖育林, 罗尊长, 等. 湖南省油菜施钾效应及土壤速效钾临界值研究[J]. 作物研究, 2011, 25(1): 26–29.

    Lu Y H, Liao Y L, Luo Z C, et al. Study on effect of K application on rapeseed and critical level of soil available K in Hunan Provinc[J]. Crop Research, 2011, 25(1): 26–29.
    [40]
    李银水, 鲁剑巍, 廖星, 等. 钾肥用量对油菜产量及钾素利用效率的影响[J]. 中国油料作物学报, 2011, 33(2): 152–156.

    Li Y S, Lu J W, Liao X, et al. Effect of potassium application rate on yield and fertilizer–potassium utilization efficiency in rapeseed[J]. Chinese Journal of Oil Crop Sciences, 2011, 33(2): 152–156.
    [41]
    陈松, 彭琦, 高建芹, 等. 转基因高油酸油菜株系W–4种子脂肪酸组成[J]. 中国油料作物学报, 2015, 37(2): 129–133. DOI: 10.7505/j.issn.1007-9084.2015.02.001

    Chen S, Peng Q, Gao J Q, et al. Fatty acid composition of transgenic high oleic acid rapeseed W–4 (Brassica napus L.)[J]. Chinese Journal of Oil Crop Sciences, 2015, 37(2): 129–133. DOI: 10.7505/j.issn.1007-9084.2015.02.001
    [42]
    傅寿仲, 张洁夫, 戚存扣, 等. 工业专用型高芥酸油菜新品种选育[J]. 作物学报, 2004, 30(5): 409–412. DOI: 10.3321/j.issn:0496-3490.2004.05.001

    Fu S Z, Zhang J F, Qi C K, et al. Breeding of high erucic acid rapeseed (B. napus) for industrial use[J]. Acta Agronomlca Sinica, 2004, 30(5): 409–412. DOI: 10.3321/j.issn:0496-3490.2004.05.001
    [43]
    Mithen R. Glucosinolates-biochemistry, genetics and biological activity[J]. Plant Growth Regulation, 2001, 34(1): 91–103. DOI: 10.1023/A:1013330819778
    [44]
    Mark T, Leigh R A. Partitioning of nutrient transport processes in roots[J]. Journal of Experimental Botany, 2001, 52(356): 445–457.
    [45]
    Li J, Zhang C L, Ma N, et al. Effects of ABA on photosynthetic characteristics of pods and yield of Brassica napus[J]. Agricultural Science & Technology, 2012, 13(4): 760–772.
    [46]
    Singal H R, Sheoran I S, Singh R. Photosynthetic carbon fixation characteristics of fruiting structures of Brassica campestris L.[J]. Plant Physiology, 1987, 83(4): 1043–1047. DOI: 10.1104/pp.83.4.1043
    [47]
    李继福, 王寅, 李小坤, 等. 鄂东地区油菜施钾效果及其适宜用量[J]. 华中农业大学学报, 2011, 30(6): 722–726.

    Li J F, Wang Y, Li X K, et al. Effects and optimum recommendation of potassium fertilizer for rapeseed in Eastern Hubei[J]. Journal of Huazhong Agricultural University, 2011, 30(6): 722–726.
    [48]
    Yang X, Liu J, Wang W, et al. Potassium internal use efficiency relative to growth vigor, potassium distribution, and carbohydrate allocation in rice genotypes[J]. Journal of Plant Nutrition, 2004, 27(5): 837–852. DOI: 10.1081/PLN-120030674

Catalog

    Article views (1363) PDF downloads (94) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return