Citation: | LI Juan, YANG Xiang-dong. Temperature sensitivity, nutrient release performance, and temperature sensitive mechanism of temperature-sensitive slow/controlled-release fertilizers: A comprehensive research review[J]. Journal of Plant Nutrition and Fertilizers, 2024, 30(9): 1812-1822. DOI: 10.11674/zwyf.2024050 |
Temperature is a crucial factor that influences the growth and development of crops. Developing temperature-sensitive slow/controlled-release fertilizers could better synchronize the release of nutrient with crop nutrient requirements, thereby enhance fertilizer utilization efficiency. We reviewed the sources, types, and mechanisms of common thermosensitive polymer materials such as polyamides, polyether, polyester, polysaccharides, and thermosensitive polyurethane and so on. We also reviewed the research progress of common thermosensitive polymer materials such as poly (N-isopropylacrylamide) (PNIPAM), poly (N-vinylcaprolactam) (PNVCL), ethylene oxide/propylene oxide block copolymer (EO/PO), methylcellulose, and thermosensitive polyurethane as temperature-responsive coatings for thermosensitive controlled-release fertilizer. The feasibility, advantages and disadvantages of these materials in thermosensitive controlled-release fertilizer applications were discussed detailedly. Based on the temperature-responsive properties of polymer materials, the current slow/controlled-release fertilizers are categorized into two groups: low critical solution temperature sensitive (LCST) and crystalline melting transition temperature (Tm)/glass transition temperature (Tg) sensitive slow/controlled-release fertilizers. The preparation methods, thermal properties, nutrient release performance, and molecular mechanisms of these two types are comprehensively reviewed in this study. Generally speaking, the research and development of thermosensitive controlled-release fertilizers are still in their infancy. The recent researches should be focused on the fundamental research and innovation of natural high molecular weight thermosensitive materials, screen green and biodegradable thermosensitive polyurethane materials, and the develop thermosensitive controlled-release fertilizers specified to crops and regions.
[1] |
丁文成, 何萍, 周卫. 我国新型肥料产业发展战略研究[J]. 植物营养与肥料学报, 2023, 29(2): 201−219. DOI: 10.11674/zwyf.2022669
Ding W C, He P, Zhou W. Development strategies of the new-type fertilizer industry in China[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(2): 201−219. DOI: 10.11674/zwyf.2022669
|
[2] |
周卫, 丁文成. 新阶段化肥减量增效战略研究[J]. 植物营养与肥料学报, 2023, 29(1): 1−7.
Zhou W, Ding W C. Strategic researches of reducing fertilizer use and increasing use efficiency in China in the new era[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(1): 1−7.
|
[3] |
杜昌文, 周健民, 王火焰. 聚合物包膜肥料研究进展[J]. 长江流域资源与环境, 2005, 14(6): 725−730. DOI: 10.3969/j.issn.1004-8227.2005.06.011
Du C W, Zhou J M, Wang H Y. Advance in polymer-coated controlled release fertilizers[J]. Resources and Environment in the Yangtze Basin, 2005, 14(6): 725−730. DOI: 10.3969/j.issn.1004-8227.2005.06.011
|
[4] |
Tian C, Sun M X, Zhou X, et al. Increase in yield and nitrogen use efficiency of double rice with long-term application of controlled-release urea[J]. Journal of Integrative Agriculture, 2022, 21(7): 2106−2118. DOI: 10.1016/S2095-3119(21)63734-6
|
[5] |
Lyu Y F, Yang X D, Pan H Y, et al. Impact of fertilization schemes with different ratios of urea to controlled release nitrogen fertilizer on environmental sustainability, nitrogen use efficiency and economic benefit of rice production: A study case from Southwest China[J]. Journal of Cleaner Production, 2021, 293: 126198. DOI: 10.1016/j.jclepro.2021.126198
|
[6] |
王兴刚, 吕少瑜, 冯晨, 等. 包膜型多功能缓/控释肥料的研究现状及进展[J]. 高分子通报, 2016, 29(7): 9−22.
Wang X G, Lü S Y, Feng C, et al. Research status and progress of coated multifunctional slow/controlled release fertilizer[J]. Polymer Bulletin, 2016, 29(7): 9−22.
|
[7] |
赵营, 刘晓彤, 罗健航, 等. 缓/控释肥条施对春玉米产量、吸氮量与氮平衡的影响[J]. 中国土壤与肥料, 2020, (5): 34−39.
Zhao Y, Liu X T, Luo J H, et al. Yield, N uptake, and apparent N balance in spring maize as affected by side bar application of slow/controlled release fertilizers[J]. Soil and Fertilizer Sciences in China, 2020, (5): 34−39.
|
[8] |
刘亮. CO2浓度和温度升高对玉米水分利用效率影响机理研究[D]. 河北邯郸: 河北工程大学博士学位论文, 2023.
Liu L. Effects of elevated atmospheric [CO2] and temperature on water use efficiency of maize[D]. Handan, Hebei: PhD Dissertation of Hebei University of Engineering, 2023.
|
[9] |
Lawrencia D, Wong S K, Low D Y S, et al. Controlled release fertilizers: A review on coating materials and mechanism of release[J]. Plants, 2021, 10(2): 238. DOI: 10.3390/plants10020238
|
[10] |
王洋, 张苗苗, 吕阳, 等. pH响应材料及其在智能肥料中的应用[J]. 化工进展, 2024, 43(8): 4477−4489 .
Wang Y, Zhang M M, Lyu Y, et al. pH-responsive materials and their applications in intelligent Fertilizer[J/OL]. Chemical Industry and Engineering Progress2024, 43(8): 4477−4489.
|
[11] |
李娟, 乔丹, 王亚静, 等. 筛选温敏聚氨酯包膜肥料膜材以提升养分智能控释效果[J]. 植物营养与肥料学报, 2023, 29(11): 2132−2142. DOI: 10.11674/zwyf.2023168
Li J, Qiao D, Wang Y J, et al. Screening of temperature-sensitive polyurethane materials to enhance the nutrient intelligent release of controlled-release fertilizers[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(11): 2132−2142. DOI: 10.11674/zwyf.2023168
|
[12] |
Ma Z Y, Jia X, Hu J M, et al. Mussel-inspired thermo-sensitive polydopamine-graft-poly (N-isopropylacrylamide) coating for controlled-release fertilizer[J]. Journal of Agricultural and Food Chemistry, 2013, 61(50): 12232−12237. DOI: 10.1021/jf4038826
|
[13] |
王超, 李普旺, 宋书会, 等. 环境响应性高分子材料与肥料缓控释的研究进展[J]. 高分子通报, 2020, 33(10): 30−36.
Wang C, Li P W, Song S H, et al. Progress in the study of environmental resopnsive polymer materials and controlled release of fertilizer[J]. Polymer Bulletin, 2020, 33(10): 30−36.
|
[14] |
侯肖邦, 肖惠宁, 潘远凤. 环境响应性纳米材料在农化控释领域研究进展[J]. 林业工程学报, 2019, 4(2): 19−25.
Hou X B, Xiao H N, Pan Y F. Research progress of stimuli-responsive nanomaterials on controlled-release of agrochemicals[J]. Journal of Forestry Engineering, 2019, 4(2): 19−25.
|
[15] |
危俊吾, 毕韵梅. 基于聚(N-乙烯基己内酰胺)的温度响应性聚合物在药物递送系统中的应用[J]. 曲阜师范大学学报(自然科学版), 2018, 44(4): 53−62.
Wei J W, Bi Y M. Application of temperature responsive polymer with poly (N-vinylcaprolactam) in drug delivery system[J]. Journal of Qufu Normal University (Natural Science), 2018, 44(4): 53−62.
|
[16] |
张子路. 聚丙烯酰胺衍生物的合成及温敏性研究[D]. 吉林长春: 长春理工大学硕士学问论文, 2020.
Zhang Z L. Synthesis and thermoresponsive properties of polyacrylamide derivatives[D]. Changchun, Jilin: MS Thesis of Changchun University of Science and Technology, 2020.
|
[17] |
Shang H Y, Yang, X X, Liu H. Temperature-responsive hydrogel prepared from carboxymethyl cellulose-stabilized N-vinylcaprolactam with potential for fertilizer delivery[J]. Carbohydrate Polymers, 2023, 313: 120875. DOI: 10.1016/j.carbpol.2023.120875
|
[18] |
Bloksma M M, Bakker D J, Weber C, et al. The effect of hofmeister salts on the LCST transition of poly (2-oxazoline)s with varying hydrophilicity[J]. Macromolecular Rapid Communications, 2010, 31(8): 724−728. DOI: 10.1002/marc.200900843
|
[19] |
宋一凡, 柴云, 张普玉. 温敏性聚合物胶束应用于药物控制释放体系的研究进展[J]. 化学世界, 2016, 57(6): 329−333.
Song Y F, Chai Y, Zhang P Y. Progress of thermoresponsive micelles for controlled drug delivery[J]. Chemical World, 2016, 57(6): 329−333.
|
[20] |
李志军, 董中朝, 叶伟. 温度敏感性聚甲基丙烯酸N, N-二甲基氨基乙酯(PDMAEMA)水凝胶的合成及性能研究[J]. 材料导报, 2009, 23(20): 32−34, 38. DOI: 10.3321/j.issn:1005-023X.2009.20.011
Li Z J, Dong Z C, Ye W. Synthesis and characteristics of temperature-sensitive poly (DMAEMA) hydrogels[J]. Materials Reports, 2009, 23(20): 32−34, 38. DOI: 10.3321/j.issn:1005-023X.2009.20.011
|
[21] |
王育才, 聚磷酸酯的控制合成及其在药物传递中的应用[D]. 安徽合肥: 中国科学技术大学博士学位论文, 2010.
Wang Y C. Controlled syntheses of polyphosphoesters and their applications in drug delivery[D]. Hefei, Anhui: PhD Dissertation of University of Science and Technology of China, 2010.
|
[22] |
Wang Y C, Tang L Y, Li Y, Wang J. Thermoresponsive block copolymers of poly (ethylene glycol) and polyphosphoester: Thermo-induced self-assembly, biocompatibility, and hydrolytic degradation[J]. Biomacromolecules, 2009, 10(1): 66−73. DOI: 10.1021/bm800808q
|
[23] |
Iwasaki Y, Wachiralarpphaithoon C, Akiyoshi K. Novel thermoresponsive polymers having biodegradable phosphoester backbones[J]. Macromolecules, 2007, 40(23): 8136−8138. DOI: 10.1021/ma0715573
|
[24] |
Chen Y C, Chen Y H. Thermo and pH-responsive methylcellulose and hydroxypropyl methylcellulose hydrogels containing K2SO4 for water retention and a controlled-release water-soluble fertilizer[J]. Science of the Total Environment., 2019, 655: 958−967. DOI: 10.1016/j.scitotenv.2018.11.264
|
[25] |
Qiu X Y, Hu S W. “Smart” materials based on cellulose: A review of the preparations, properties, and applications[J]. Materials, 2013, 6(3): 738−781. DOI: 10.3390/ma6030738
|
[26] |
Bonetti, L, De Nardo L, Farè S. Methylcellulose hydrogels: From design to applications as smart biomaterials[J]. Tissue Engineering Part B-reviews., 2020, 27(5): 486−513.
|
[27] |
龙青, 卢立新, 潘嘹, 卢莉璟. 温敏聚氨酯膜制备及性能研究[J]. 功能材料, 2019, 50(6): 6162−6166.
Long Q, Lu L X, Pan L, Lu L J. Preparation and properties of temperature sensitive polyurethane membrane[J]. Journal of Functional Materials, 2019, 50(6): 6162−6166.
|
[28] |
周虎, 寻瑞平, 吴科建, 等. 温度和pH双重敏感聚氨酯膜材料的制备及其性能[J]. 功能高分子学报, 2014, 27(4): 419−425.
Zhou H, Xun R P, Wu K J, et al. Preparation and porperties of temperature-and pH-sensitive polyurethane membranes[J]. Journal of Functional Polymers, 2014, 27(4): 419−425.
|
[29] |
张强宏. 温度敏感聚合物研究进展[J]. 重庆工商大学学报(自然科学版), 2017, 34(3): 112−115.
Zhang Q H. Research progress in temperature sensitive polymers[J]. Journal of Chongqing Technology and Business University (Natural Science Edition), 2017, 34(3): 112−115.
|
[30] |
Qiao S L, Wang H. Temperature-responsive polymers: Synthesis, properties, and biomedical applications[J]. Nano Research., 2018, 11(10): 5400−5423. DOI: 10.1007/s12274-018-2121-x
|
[31] |
Tang L, Wang L, Yang X, et al. Poly (N-isopropylacrylamide)-based smart hydrogels: Design, properties and applications[J]. Progress in Materials Science, 2021, 115: 100702. DOI: 10.1016/j.pmatsci.2020.100702
|
[32] |
Pourjavadi A, Kohestanian M, Streb C. pH and thermal dual-responsive poly (NIPAM-co-GMA)-coated magnetic nanoparticles via surface-initiated RAFT polymerization for controlled drug delivery[J]. Materials Science and Engineering: C, 2020, 108: 110418. DOI: 10.1016/j.msec.2019.110418
|
[33] |
Chang C, Wei H, Quan C Y, et al. Fabrication of thermosensitive PCL‐PNIPAAm‐PCL triblock copolymeric micelles for drug delivery[J]. Journal of Polymer Science Part A Polymer Chemistry, 2008, 46(9): 3048−3057. DOI: 10.1002/pola.22645
|
[34] |
Xu X H, Bai B, Wang H L, Suo Y R. A near-infrared and temperature-responsive pesticide release platform through core-shell polydopamine@PNIPAm nanocomposites[J]. ACS Applied Materials & Interfaces, 2017, 9(7): 6424−6432.
|
[35] |
Wang M T, Fan R R, Yu Q J, et al. Degradable PDA@PNIPAM-TA nanocomposites for temperature-and NI rlight-controlled pesticide release[J]. Langmuir, 2023, 39(37): 13109−13120. DOI: 10.1021/acs.langmuir.3c01515
|
[36] |
曹兆海. 温度敏感聚合物的合成及其应用[D]. 湖北武汉: 华中科技大学硕士学位论文, 2009.
Cao Z H. Synthesis of temperature-sensitive polymer and its application[D]. Wuhan, Hubei: MS Thesis of Huazhong University of Science and Technology, 2009.
|
[37] |
Wang Y L, Song S J, Chu X H, et al. A new temperature-responsive controlled-release pesticide formulation – poly (N-isopropylacrylamide) modified graphene oxide as the nanocarrier for lambda-cyhalothrin delivery and their application in pesticide transportation[J]. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2021, 612 : 125987.
|
[38] |
杨倩丽, 康晓明, 孙静, 等. 刺激响应性聚合物的设计、合成及其应用研究新进展[J]. 化工进展, 2015, 34(8): 3075−3084.
Yang Q L, Kang X M, Sun J, et al. New progress in the design, synthesis and application of stimuli responsive polymers[J]. Chemical Industry and Engineering Progress, 2015, 34(8): 3075−3084.
|
[39] |
危俊吾, 李杰, 钱杨杨, 等. 聚(N-乙烯基己内酰胺)的合成及温度响应性能研究[J]. 化学世界, 2019, 60(10): 684−689.
Wei J W, Li J, Qian Y Y, et al. The study on synthesis and thermoresponsive property of poly (N-vinylcaprolactam)[J]. Chemical World, 2019, 60(10): 684−689.
|
[40] |
Chen C Y, Wang Z H, Li Z B. Thermoresponsive polypeptides from pegylated poly-L-glutamates[J]. Biomacromolecules, 2011, 12(8): 2859−2863. DOI: 10.1021/bm200849m
|
[41] |
Jommanee N, Chanthad C, Manokruang K. Preparation of injectable hydrogels from temperature and pH responsive grafted chitosan with tuned gelation temperature suitable for tumor acidic environment[J]. Carbohydrate Polymers, 2018, 198: 486−494. DOI: 10.1016/j.carbpol.2018.06.099
|
[42] |
刘旭. pH/温度响应性聚磷酸酯全亲水性嵌段共聚物的合成及应用[D]. 江苏苏州: 苏州大学硕士学位论文, 2010.
Liu X. Synthesis and applications of polyphosphoester-based pH/thermo-responsive double-hydrophilic diblock copolymers[D]. Suzhou, Jiangsu: MS Thesis of Soochow University, 2010.
|
[43] |
Chenite A, Chapu C, Wang D, et al. Novel injectable neutral solutions of chitosan form biodegradable gels in situ[J]. Biomaterials, 2000, 21(21): 2155−2161. DOI: 10.1016/S0142-9612(00)00116-2
|
[44] |
康肸, 邓爱鹏, 杨树林. 壳聚糖基温敏水凝胶的研究进展[J]. 中国生物工程杂志, 2018, 38(5): 79−84.
Kang X, Deng A P, Yang S L. Research progress of chitosan based thermosensitive hydrogels[J]. China Biotechnology, 2018, 38(5): 79−84.
|
[45] |
Silva S M C, Pinto F V, Antunes F E, et al. Aggregation and gelation in hydroxypropylmethyl cellulose aqueous solutions[J]. Journal of Colloid and Interface Science, 2008, 327(2): 333−340. DOI: 10.1016/j.jcis.2008.08.056
|
[46] |
Wang Z X, Lu J K, Wu C Y, et al. Efficient reclamation phosphate by alginate-g-BMOF using poly (N-isopropyl acrylamide-co-acrylamide) as coating for temperature-responsive slow-release P-fertilizer[J]. International Journal of Biological Macromolecules, 2022, 201: 437−447. DOI: 10.1016/j.ijbiomac.2022.01.061
|
[47] |
Hua B Y, Wei H L, Hu C W, et al. Preparation of pH/temperature-responsive semi-IPN hydrogels based on sodium alginate and humic acid as slow-release and water-retention fertilizers[J]. Polymer Bulletin, 2024, 84(5): 4175−4198.
|
[48] |
Lin X Y, Guo L Z, Shaghaleh H, et al. A TEMPO-oxidized cellulose nanofibers/MOFs hydrogel with temperature and pH responsiveness for fertilizers slow-release[J]. International Journal of Biological Macromolecules, 2021, 191: 483−491. DOI: 10.1016/j.ijbiomac.2021.09.075
|
[49] |
Chi Y, Zhang G L, Xiang Y B, et al. Fabrication of a temperature-controlled-release herbicide using a nanocomposite[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(6): 4969−4975.
|
[50] |
Feng C, Lü S Y, Gao C M, et al. “Smart” fertilizer with temperature- and pH-responsive behavior via surface-initiated polymerization for controlled release of nutrients[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(12): 3157−3166.
|
[51] |
周虎, 陈东初, 曾坚贤, 等. 温敏聚氨酯的结构特点及其应用前景[J]. 胶体与聚合物, 2011, 29(2): 94−96.
Zhou H, Chen D C, Zeng J X, et al. Structural characteristics and applications of thermal sensitive polyurethane[J]. Chinese Journal of Colloid & polymer, 2011, 29(2): 94−96.
|
[52] |
刘凉冰, 刘红梅, 贾林才. 聚酯软段对聚氨酯弹性体力学性能影响的研究[J]. 聚氨酯工业, 2007, 22(4): 20−23.
Liu L B, Liu H M, Jia L C. Effect of soft-segment of polyester on mechanical properties of polyurethane elastomer[J]. Polyurethane Industry, 2007, 22(4): 20−23.
|
[53] |
周虎, 曾坚贤, 陈东初, 等. 温敏聚氨酯软段的结晶行为及其智能响应特性[J]. 材料研究学报, 2010, 24(6): 579−584.
Zhou H, Zeng J X, Chen D C, et al. The crystalization of soft segment of thermal sensitive polyurethane and its intelligent properties[J]. Chinese Journal of Materials Research, 2010, 24(6): 579−584.
|
[54] |
陈少军, 粟劲苍, 赵文彬, 刘朋生. 液化MDI基形状记忆聚氨酯软段组成的选择[J]. 高分子材料科学与工程, 2005, 21(5): 166−170. DOI: 10.3321/j.issn:1000-7555.2005.05.043
Chen S J, Su J C, Zhao W B, Liu P S. Studies on selecting of the soft-segment composition of shape memory polyurethane based liquidated-MDI[J]. Polymer Materials Science & Engineering, 2005, 21(5): 166−170. DOI: 10.3321/j.issn:1000-7555.2005.05.043
|
[55] |
Dou H M, Ding J H, Chen H, et al. Bio-based, biodegradable and amorphous polyurethanes with shape memory behavior at body temperature[J]. RSC Advance, 2019, 9(23): 13104−13111. DOI: 10.1039/C9RA01583C
|
[56] |
Yang J H, Chun B C, Chung Y C, Cho J H. Comparison of thermal/mechanical properties and shape memory effect of polyurethane block-copolymers with planar or bent shape of hard segment[J]. Polymer, 2003, 44(11): 3251−3258. DOI: 10.1016/S0032-3861(03)00260-X
|
[57] |
邱少稳, 严正, 程朝, 等. 温敏型聚氨酯改性技术的进展[J]. 现代涂料与涂装, 2018, 21(8): 20−23. DOI: 10.3969/j.issn.1007-9548.2018.08.007
Qiu S W, Yan Z, Cheng Z, et al. Research progress in temperature-sensitive polyurethane modification technology[J]. Modern Paint & Finishing, 2018, 21(8): 20−23. DOI: 10.3969/j.issn.1007-9548.2018.08.007
|
[58] |
Qiao D, Li J, Zhang S Q, Yang X. Controlled release fertilizer with temperature-responsive behavior coated using polyether polyol (PPG)/polycaprolactone (PCL) blend-based polyurethane performs smart nutrient release[J]. Materials Today Chemistry, 2022, 26: 101249. DOI: 10.1016/j.mtchem.2022.101249
|